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Influence of the energy-band structure on ultracold reactive processes in lattices
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We study theoretically ultracold collisions in quasi-one-dimensional optical traps for bosonic and fermionic
reactive molecules in the presence of a periodic potential along the trap axis. Elastic, reactive, and umklapp
processes due to nonconservation of the center-of-mass motion are investigated for parameters of relevant
experimental interest. The model naturally keeps into account the effect of excited energy bands and is particularly
suited for being adapted to rigorous close-coupled calculations. Our formalism shows that a correct derivation of
the parameters in tight-binding effective models must include the strong momentum dependence of the coupling
constant we predict even for deep lattices.
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I. INTRODUCTION

Ultracold gases confined in optical lattices represent an
extremely active area of theoretical and experimental research
for quantum few- and many-body physics [1,2]. The flexibility
in the choice of the lattice parameters and the variety of
trappable atomic and molecular species allow the properties of
these systems to be controlled with unprecedented accuracy.
A variety of phases have been predicted and several have been
observed in celebrated experiments on atomic quantum gases
trapped in lattices of various dimensionality and structure
[3–5]. Over the last decade, different dynamical aspects such
as transport, few-body correlations, and the occurrence of
geometric resonances have been studied experimentally under
lattice confinement [6–10]. It is now also possible to prepare
cold or even Bose-condensed gases in excited bands of optical
potentials [11].

Understanding the microscopic few-body collisional inter-
action is essential to model the macroscopic behavior of a
gas held in a lattice. Several papers focused on the two-atom
problem in conditions where a harmonic confining potential
restricts the motion to one or two dimensions [12–16]. The
recent production of ultracold molecular samples has opened
the way to the study of reactive processes at extremely low
temperatures both in free space and in confined geometries.
The combined effect of confinement and of a polarizing electric
field has been studied both theoretically and experimentally in
[17], where the authors demonstrate that repulsion between po-
larized molecules held in a quasi-two-dimensional (quasi-2D)
pancake geometry strongly suppresses the reaction probability
and stabilizes the gas. A theoretical analysis of reactions has
also been carried out in quasi-one-dimensional (quasi-1D)
optical tubes [18]. In all these studies, hopping between lattice
sites is not included and the potential in the effectively free
dimensions remains flat.

The periodic nature of the trapping optical lattice has
been taken explicitly into account within tight-binding lattice
models [19,20] and using a more general formalism [21,22].
Little is known about reaction dynamics in a periodic potential.
Experimental work carried out at JILA on reactive polar
molecules addresses the effect of a weak lattice (a corrugation)
superimposed along the axis of an array of tubes [23]. The
authors speculate on the origin of the observed reaction rates
and show that one can interpret the observed suppression of

such inelastic processes as a manifestation of the quantum
Zeno effect [24].

The main goal of this paper is to model the two-body
reaction dynamics in 1D geometries similar to the afore-
mentioned experiment [23] using a more direct collisional
approach. We solve an effective model where the short-range
reaction dynamics is represented by a completely adsorbing
boundary condition. The key ingredient of our formalism is
the definition of a set of reference wave functions that include
in a rigorous way the effect of the excited energy bands. While
the formalism is applied to a simple yet realistic purely 1D
model with a pointlike interaction, it can in principle be readily
incorporated in a full 3D close-coupled calculation such as the
one of Ref. [18].

The paper is organized as follows. Section II describes
the model, defines the scattering observables in terms of
two-body Bloch functions, and introduces our numerical
approach. Section III presents results for lattices of different
strength for reactive molecules of both bosonic and fermionic
nature. Approximations are developed and discussed. A short
conclusion summarizes and puts into perspective this work.

II. THEORETICAL MODEL

We consider ultracold molecules in a strongly confining
harmonic potential along radial directions x and y in the
presence of a weaker periodic sinusoidal optical potential
along the axial direction z. The harmonic trapping frequency
ω⊥ is the same for both radial directions. In the absence of the
optical lattice, if the interaction potential is sufficiently short
ranged, one can describe the system as quasi-one-dimensional
along the longitudinal z axis. The practical criterion for van der
Waals interactions with dispersion coefficient C6 and particles
of mass m and reduced mass μ = m/2 is that the van der
Waals length ā = 0.5(2μC6/�

2)1/4 be much smaller than the
transverse oscillator length a⊥ = √

�/μω⊥.
The K-Rb fermionic molecules studied at JILA have been

found experimentally to be highly reactive [25]. In order to
address this experimentally relevant case, this work will focus
on universal reactive processes, in which all particle flux
reaching a suitable short-range region gives rise to reaction
with unit probability [15]. The typical size of this region
can be taken to be on the order of ∼40a0, such that the
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potential beyond this boundary is well approximated by an
isotropic van der Waals potential. Under such conditions,
the short-range collision dynamics for bosonic particles can
be summarized by a pseudopotential Ua = gδ(z2 − z1) with
complex coupling constant. The coupling constant can in turn
be simply expressed in terms of the geometric parameters of
the trap and of the van der Waals length as g = 2�ω⊥ā(1 − i)
[15].

It is important for the following to stress that the pseudopo-
tential conserves real center-of-mass (c.m.) momentum (as
opposed to the quasimomentum) of the system. Also, note that
the pseudopotential cannot be directly used to model fermions
since due to Pauli exclusion principle the wave function
strictly vanishes at zero interparticle separation. However, as
it will be detailed in Sec. III D, one can take advantage of a
boson-fermion mapping procedure in order to apply with little
modification the current formalism to fermionic particles as
well.

Finally, the optical lattice along the longitudinal direction
is taken of the form UL(z) = u sin2(kz) = u[1 − cos(kLz)]/2,
where u is the lattice depth, k the laser wave vector, kL ≡ 2k

the lattice wave vector, related to the lattice period a = 2π/kL.
We assume that this lattice does not modify the effective
1D interatomic potential. This is only justified when the
harmonic oscillator frequency ωL = kL

√
u/2m, obtained by

Taylor expanding UL near a minimum of the lattice potential,
is much smaller than ω⊥. The lattice depth will henceforth be
expressed in terms of the lattice recoil energy for one molecule
defined as ER = �

2k2
L/(2m). Note this quantity is four times

larger than the laser recoil energy �
2k2/(2m) which is often

used in experimental work.

A. Band structure and free Bloch waves

In the absence of the effective interatomic potential,
the wave function of a pair of molecules is described
by a product of 1D Bloch waves |φm

p1
〉 ⊗ |φn

p2
〉, labeled

by quasimomenta pα for particle α in energy zones m

and n, respectively. The energy of a single-particle Bloch
state |φm

p 〉 is Em(p) and the single-atom states are quasi-
momentum normalized 〈φm

p′ |φn
p〉 = δ(p′ − p)δmn. For de-

scribing the effects of the interaction it is convenient to
introduce the relative and c.m. quasimomenta {q = (p1 −
p2)/2, Q = p1 + p2} and the two-particle state |�mn

qQ〉 =
|vmn(q,Q)|−1/2(|φm

Q/2+q〉 ⊗ |φn
Q/2−q〉). Such state has energy

Emn(q,Q) = Em(Q/2 + q) + En(Q/2 − q) and vmn(q,Q) =
∂Emn/∂(�q) is the relative group velocity for particles in zones
m and n. In this way, pair states are quasimomentum normal-
ized for the c.m. quasimomentum and energy or flux nor-
malized for the relative quasimomentum, i.e., 〈�m′n′

q ′Q′ |�mn
qQ〉 =

δ[Emn(q ′,Q′) − Emn(q,Q)]δ(Q′ − Q)δmm′δnn′ . For notational
simplicity, when possible we will henceforth condense the
double zone index into a single Greek letter α ≡ (m,n).

When two molecules collide with relative quasimomentum
q and c.m. quasimomentum Q the interatomic potential can
induce coupling to different states �q ′Q′ such that total energy
is conserved E′ = E and the c.m. quasimomentum varies by a
multiple of a lattice vector Q′ = Q (mod kL). Such processes
are known as umklapp collisions in solid-state physics (see,
e.g., Ref. [26]) and have been experimentally observed in

[27] where they were described in terms of a phase-matching
condition. In a quasi-1D lattice, such condition of energy and
momentum conservation is restrictive and only a small number
of allowed states exist for given E and Q. Umklapp processes
are more conveniently discussed by choosing the fundamental
reciprocal lattice cell {q,Q} ∈ [−kL/2,kL/2] × [0,kL] where
Q is unambiguously defined. Thus, when restricted to this
specific unit cell umklapp collisions strictly, not only (mod kL),
do conserve Q.

Figure 1 shows the relative-motion energy dispersion
relation of two molecules in the fundamental band for selected
values of Q. It is easy to show that square lattice periodicity
implies that the reciprocal lattice points (q,Q) and (q − kL,Q)
only differ by a reciprocal lattice vectors. The energy is
thus periodic in q at the cell edges, i.e., Emm(−kL/2,Q) =
Emm(kL/2,Q) for particles in the same band. If particles belong
to different energy bands, the former symmetry relation reads
as Emn(−kL/2,Q) = Enm(kL/2,Q).

We consider in this work identical particle scattering and by
the symmetrization principle the range of q can be restricted
to half-space only (q � 0) if particles are in the same energy
band. For particles in different bands, one has to consider
either q � 0 and both (m,n) and (n,m) combinations, or both
positive and negative values of q with the restriction m > n.
With this proviso, if for a given Q and energy E of the
incoming molecules the dispersion relation Emn(q,Q) presents
at least a maximum or minimum in q, umklapp collisions
in the given band will occur at energies E such that the
equation E(q,Q) = E admits a double solution (with the
restriction q > 0 if m = n). Sample values of Q for which
this condition is verified are shown by dashed curves in the
figure. On the converse, if the dispersion relation is monotonic,
no umklapp processes will be possible. Note that if the lattice
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FIG. 1. Two-particle energy as a function of q in an optical lattice
of depth u = 0.5 ER for discrete values of total quasimomentum Q

varying from 0 to kL in step of 0.1 kL in the sense of the arrow. Both
molecules are in the fundamental band. The dashed curves correspond
to c.m. quasimomenta for which umklapp collisions are allowed (see
text). The lower limit of the first excited energy band is visible in the
upper part of the panel.
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is weak or collisions take place in excited bands, the energy
gap will become sufficiently small that umklapp processes can
take place not only intraband, as in the case of Fig. 1, but also
interband.

If the lattice is strong enough, the dispersion relation is
explicitly known in the tight-binding approximation. For one
molecule in energy band n it can be written as Em(p1) = Dm −
Jm cos(ap1) [26] where |Jm| is the energy half-bandwidth and
the constant Dm in the harmonic approximation is related to
the harmonic frequency at the bottom of the well as Dm =
�ωL(m + 1/2). Since potential is separable, energy is additive
Emn = Em(p1) + En(p2) and simple algebra gives

Emn(q,Q) = Dm + Dn + (Jm − Jn) sin(aQ/2) sin(aq)

− (Jm + Jn) cos(aQ/2) cos(aq). (1)

It is easy so show that Emn(q,Q) is monotonic in the interval
q ∈ [0,kL/2] for any Q if n = m, otherwise, it admits therein
a single maximum or minimum for Q �= 0. The umklapp
collisions will therefore occur in the tight-binding limit if and
only if the colliding particles belong to different single-particle
energy bands.

B. Scattering wave function and scattering observables

The incoming wave function for the collision will be taken
as a Bloch wave �α

q,Q(z,Z) with relative group velocity v < 0,
i.e., moving opposite to the z direction. Outside the range of the
interatomic potential (z → ∞) the wave function is written as
the sum of an incoming plus outgoing scattered Bloch waves

	α
qQ = �α

qQ ±
∑

q ′Q′α′
�α′

q ′Q′S(q ′Q′α′ ← qQα), (2)

where the upper (lower) sign holds for bosons (fermions). The
sum includes all purely real relative quasimomenta q ′ such
that Eα′(q ′,Q′) = Eα(q,Q) in zone α′ for Q′ = Q (mod kL).
Since we are imposing outgoing boundary conditions, the
scattered waves on the right-hand side must be chosen with
relative group velocity in the direction of the positive z axis
for z > 0.

The sum also contains functions that decrease exponentially
with increasing z characterized by complex relative quasimo-
mentum with Imq > 0. In the language of scattering theory,
we will often term the propagating (evanescent) waves with
Imq = 0(Imq �= 0) the open (closed) channels of the collision.
An algebraic procedure to determine both kind of Bloch waves
will be the subject of Sec. III C.

For a real nonabsorbing potential, the choice of flux
normalized reference functions and conservation of probability
result in unitarity of the S matrix block formed by all the
S(q ′Q′α′ ← qQα) elements with purely real q and q ′. This is
not any longer true for our potential that aims at modeling
reactive processes through the introduction of a nonzero
imaginary part. It is indeed the difference to unitarity that
gives the reaction probability; see Eq. (4) following.

The scattering matrix encompasses all information about
the scattering process. Our conventions on the propagation
directions of the incoming and scattered waves allow the same
expressions for the scattering observables to be used as in
the no-lattice case [18]. Thus, the elastic scattering rate is

expressed in terms of the scattering matrix as

Kel
α (q,Q) = |vα(q,Q)||1 − S(qQα ← qQα)|2. (3)

Another quantity of experimental interest is the reaction
probability

P r
α(q,Q) = 1 −

∑
q ′Q′α′

|S(q ′Q′α′ ← qQα)|2 (4)

which in the formalism stems from the lack of unitarity of the
S matrix due to the complex nature of the coupling constant.
The summed probability for umklapp processes, that can be
interpreted as superelastic collisions taking place at fixed total
energy, is given by

P u
α (q,Q) =

∑′

q ′Q′α′
|S(q ′Q′α′ ← qQα)|2, (5)

where the sum
∑′ is restricted to {q ′Q′α′} �= {qQα}. Such

scattering quantities are in principle measurable in a reference
frame in uniform motion with velocity equal to the c.m. group
velocity vc.m. = ∂E/∂(�Q) of the colliding particles.

The effect of the lattice can be summarized in
quasimomentum-dependent scattering lengths defined for
bosons and fermions, respectively, as

aB
α (q,Q) = �

μ|vα(q,Q)|kα(q,Q)
(6)

and

aF
α(q,Q) = − � kα(q,Q)

μ|vα(q,Q)| , (7)

where μ = m/2 is the reduced mass and kα(q,Q) ≡
i[1 − S(qQα ← qQα)]/[1 + S(qQα ← qQα)]. If one
writes as usual S = e2iδ , the quantity k is seen to simply
represent the tangent of the (generally complex) phase shift δ.
Note that the aF,B above reduce to the standard ones in free
space in the absence of the lattice. Finally, boson scattering
can also be conveniently described by introducing an effective
momentum-dependent coupling constant in band α:

geff
α (q,Q) = − �

2

μaB
α (q,Q)

. (8)

This quantity is the effective interaction that after averaging
over a period of the center-of-mass coordinate gives a scatter-
ing matrix element in the elastic channel equal to the actual
one. The imaginary part of geff accounts for the combined
effect of reactive and umklapp processes. In the absence of
optical lattice geff(q,Q) reduces to g as expected.

C. Determining the reference functions

For notational convenience in the next two sections we
adopt as the units of momentum, length, and energy the lattice
vector kL, its inverse k−1

L , and the lattice recoil energy ER,
respectively. The coupling constant will thus be expressed in
units ER/kL.

The reference functions used in Eq. (2) can be built as
follows. According to the Bloch theorem, even in the presence
of the interaction the scattering wave function transforms as
a Bloch function 	qQ(z,Z + 2π ) = ei2πQ	q,Q(z,Z) under
c.m. coordinate translations of period 2π . Bloch’s theorem
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allows then 	 to be expressed in the general form 	qQ(z,Z) =
eiQZ

∑
n einZψqQ,n(z).

In order to represent the interacting 	, noninteracting
reference functions must therefore be built with the given
(real) value of Q. To this aim, Bloch theorem now applied
to both the c.m. and relative coordinates implies that the
pair wave function in the absence of the interaction can
be written in the form �q,Q(z,Z) = ei(QZ+qz)uqQ(z,Z) with
uqQ periodic with the lattice periodicity. Similarly, it can
be easily verified by direct differentiation that any spatial
derivative of �qQ can be expressed in Bloch’s form as well.
In particular, χqQ(z,Z) ≡ ∂z�qQ(z,Z) = ei(QZ+qz)vqQ(z,Z)
with vqQ = iquqQ + ∂zuqQ a function periodic on the lattice.

With these definitions, the second-order time-independent
Schrödinger equation can be rewritten as a set of two coupled
partial differential equations of order one:

i
∂

∂z
uqQ − ivqQ = quqQ,

i
∂

∂z
vqQ + i

2

[
E − 1

2

(
− i

∂

∂Z
+ Q

)2

− VL(z,Z)

]
uqQ

= qvqQ (9)

in the form of an eigenvalue problem for the unknown
spatial functions uqQ and vqQ and the eigenvalue q. The
operator on the left-hand side can be considered a matrix
differential operator acting on column vector wave functions
�wqQ ≡ (uqQ,vqQ)t in a lattice unit cell. One can verify that
such operator is Hermitian with respect to the symplectic inner
product 〈 �wq ′Q| �wqQ〉s ≡ 〈uq ′Q|vqQ〉 − 〈vq ′Q|uqQ〉, where the
scalar product on the right-hand side is the standard one over
a unit cell. Since the symplectic inner product is not positive
definite, it is not possible to show that q is real in general.
One can, however, deduce following the standard proof
that if q ′ �= q∗ then the symplectic orthogonality condition
〈 �wq ′Q| �wqQ〉s ∝ δq ′q∗ holds.

Additional properties follow from the lattice symme-
tries. First, since the lattice potential VL is real, taking
the conjugate of (9) shows that if �wqQ is eigenfunction
with eigenvalue q, then �w∗

qQ = �w−q∗−Q is eigenfunction
of the corresponding problem with quasimomentum −Q

and eigenvalue q∗ (time-reversal property). Moreover, the
particles being identical, irrespective of the nature of VL

one has VL(−z,Z) = VL(z,Z). Application of the permutation
operation z → −z to (9) shows that if q is an eigenvalue
with eigenfunction (uqQ,vqQ), then −q is also eigenvalue
with eigenvector [u−qQ(z,Z),v−qQ(z,Z)] = [uqQ(−z,Z), −
vqQ(−z,Z)]. Finally, reflection of both coordinates (z,Z) →
(−z, − Z) about the center of symmetry of the lattice
also leaves VL invariant. One concludes that if (uqQ,vqQ)
solves Eq. (9) with eigenvalue q, [u−q−Q(z,Z),v−q−Q(z,Z)] =
[uqQ(−z, − Z), − vqQ(−z, − Z)] will also be the solution of
the equation with eigenvalue −q and c.m. quasimomentum Q.
Note that if q is purely real or purely imaginary, only two of the
four solutions with quasimomenta ±q and ±q∗ generated by
the symmetry operations above will be linearly independent.

Equations (9) can be solved algebraically noting that the
periodic nature of the functions uqQ and vqQ allows the latter
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FIG. 2. Evolution with E of the complex relative quasimomen-
tum determined from the solution of Eq. (9) for Q = 0.6 kL and
u = 0.5 ER. Propagating Bloch waves are characterized by a purely
real q (heavy lines) describing energy bands Emn. Thin lines represent
the quasimomenta of evanescent waves with Imq �= 0 (see text). Two
additional curves with larger |Imq| and Req = 0 fall in the range of
the figure but have not been drawn to improve plot readability.

to be developed in a 2D Fourier series

uqQ(z,Z) =
∑

�K
a �K (q,Q)ei �K·�r (10)

and

vqQ(z,Z) =
∑

�K
b �K (q,Q)ei �K·�r , (11)

where the sum is over all reciprocal lattice vectors �K , and using
standard numerical eigenvalue solvers. The resulting families
of discrete eigenvalues q depend on the two real parameters
Q and E. Since the bidimensional quasimomentum vector of
components (q,Q) is defined (mod �K), as in the discussion of
umklapp processes it is convenient to choose the specific unit
cell (Req,Q) ∈ [−1/2,1/2] × [0,1]. Note that the imaginary
part Imq is to be left unrestricted since Bragg periodicity only
concerns the real part of the quasimomentum.

It is instructive to study the evolution of eigenvalues q

with total energy at fixed values of total quasimomentum;
see Fig. 2 for the selected case Q = 0.6. With reference to the
figure, in the allowed energy regions the energy-band structure
highlighted by thick lines is retrieved as expected. One can
recognize in particular the fundamental band dispersion E00

with two extrema already depicted in Fig. 1 and the first excited
band structure formed by the E01 and E10 components. The
symmetry E01(q,Q) = E10(−q,Q) is apparent. The bottoms
of higher-energy bands E11, E20, and E02 are also visible.

If E is below the lowest limit of the fundamental band, all q
have nonvanishing imaginary part and no propagating waves
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FIG. 3. The relative group velocity v of two particles in the first
energy band for a lattice depth u = ER. Beyond being obviously zero
for p1 = p2, the velocity v also vanishes for q �= 0 along nontrivial
curves where the single-particle group velocities are equal.

exist. In Fig. 3, one identifies four branches located in the
Req = 0 plane and two in the Req = ± 1

2 planes, respectively.
That is, below the minimum of E00 one finds six intersections
between any horizontal plane and the curves of complex q

depicted in the plot.
These curves correspond to evanescent-character waves

and merge at critical points with the dispersion curves
of the authorized energy zones. In fact, |Imq| decreases
with increasing E, and as |Imq| → 0 two branches merge
with E00 at the edge of the Brillouin zone Req = ±kL/2
where they become of propagating character. At slightly
larger energy, two branches with purely imaginary argument
q merge with the curve E00 at the relative minimum of
the latter. The two remaining curves with Req = 0 in the
figure merge at the bottom of E11 at still larger energies
(E � 1.5).

The behavior near the upper limit of E00 is particularly
interesting. As the value of energy varies from below to above
the upper band limit, two new branches with Imq �= 0 appear
above each maximum. These curves are nonplanar and join
again near the minima at the bottom of the E10 and E01 bands.
The existence of these “smoke rings” connecting band edges
is necessary since quantum states cannot disappear as the
parameter E is made to vary. Similar ring structures connecting
the top of E10 and E01 with the bottom of E20 and E02 are also
(barely) visible in the figure.

D. Scattering matrix calculation

Next, we note that 2π periodicity in the Z coordinate alone
allows one to write �qQ(z,Z) = eiQZ

∑
n einZηqQ,n(z) and

χqQ(z,Z) = eiQZ
∑

n einZξqQ,n(z), where

ηqQ,n(z) = eiqz

2π

∫ 2π

0
dZ e−inZuqQ(z,Z),

ξqQ,n(z) = eiqz

2π

∫ 2π

0
dZ e−inZvqQ(z,Z). (12)

For a given truncation order of the Fourier series in Z it
is possible to arrange the coefficients ηqQ,n and ξqQ,n into
finite square solution matrices η± and ξ±, where η− (resp.
η+) contains along the columns propagating Bloch waves
with v < 0 (v > 0) and evanescent Bloch waves exponentially
decreasing towards z > 0 (z < 0).

Combining the symmetry properties stated below Eq. (9)
one can easily prove the symmetry relation η∗

qQ,n(z) =
η−q∗Q,n(z) and ξ ∗

qQ,n(z) = ξ−q∗Q,n(z). As already remarked,
four independent degenerate solutions may exist with mo-
menta ±q and ±q∗. In this case, which only may occur for
closed channels, we find it convenient to form real reference
functions according to (η±qQ,n + η∓q∗Q,n) and −i(η±qQ,n −
η∓q∗Q,n). Analogous definitions are used to construct the
derivatives ξ .

With these conventions the matrix form of Eq. (2) is

ψ(z) = η−(z) + η+(z)S, (13)

where ψ has elements ψqQ,n, while the z derivative is
expressed as

∂

∂z
ψ(z) = ξ−(z) + ξ+(z)S. (14)

In order to determine the scattering matrix, we note that
our zero-range model interaction conserves real (as opposed
to quasi) total momentum and imposes a discontinuity to the
relative coordinate derivative at the origin

∂

∂z
ψqQ,n

∣∣∣∣
0+

− ∂

∂z
ψqQ,n

∣∣∣∣
0−

= 2
∂

∂z
ψqQ,n

∣∣∣∣
0+

= g

2
ψqQ,n(0),

(15)

where the first equality follows from the even character
of the bosonic wave function. This set of conditions can
be summarized in the logarithmic derivative of the matrix
solution evaluated at the origin Z ≡ (∂zψ)ψ−1 = (g/4)1.
Finally, imposing the asymptotic form (13) and following the
standard matching procedure [28], the scattering matrix can
be determined in terms of Z by solving the linear system

[ξ+(0+) − Zη+(0]S = [Zη−(0) − ξ−(0+)]. (16)

For fermions the condition dictated by the zero-range
potential is of no practical use since it is identically verified by
any wave function asymmetric in z. Use of more sophisticated
pseudopotentials valid for fermions can be avoided by the
simpler prescription of Ref. [29]. In this approach, resulting
from a mapping between bosons and fermions valid in
dimension one, the fermionic problem is solved as if the
particles were bosons with a mapped coupling constant

gmap

a⊥�ω⊥
= −a⊥

aF
0

. (17)
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Here, the aF
0 is the 1D scattering length for fermions in

the absence of the optical lattice, which can be determined
analytically for universal scattering in tubes [15]. Substituting
the latter equation into (17), one obtains

gmap

a⊥�ω⊥
= a3

⊥
12ā2ā1

(1 − i), (18)

where ā1 = 1.064ā. Note that fermions, which due to Pauli
principle are weakly interacting, are mapped to a bosonic
problem implying strong interactions, i.e., the gmap constant
above is large in natural units. The scattering matrix Smap is
computed with the mapped interaction exactly as for bosons
and as a final step simply transformed to the physical fermionic
counterpart SF = −Smap.

E. Wigner threshold laws

In the presence of a lattice, Wigner threshold laws describe
elastic and inelastic processes when the initial or final
state relative group velocity approaches zero. This naturally
generalizes the notion of Wigner laws for free scattering, which
is expressed in terms of momenta or equivalently in terms of
velocities. In a periodic lattice, however, unlike in free space,
a zero group velocity does not only occur for q → 0; see
Fig. 3 for the fundamental band case. Threshold laws will
therefore also apply at locations in the Brillouin zone where
the group velocities of the two molecules are close, under the
condition that they must be expressed in terms of v rather than
q. In fact, the Wigner laws essentially arise from the density
of energy states for the relative motion ρε , and in a lattice
ρε ∝ (∂E/∂q)−1 = �v−1.

With this proviso, threshold laws can be expressed on
the same footing as, e.g., in Ref. [28] with the scaling
behavior typical of dimension one. For bosons, the elastic
collision rate Kel,B ∼ v and both the umklapp and the reactive
probability vanish with the group velocity of the incoming
particles as P r,u ∼ v. Moreover, if the relative group velocity
v′ of the products of a superelastic umklapp collisions is
small, the probability for the umklapp process behaves as
P u ∼ v′. The P u probability drops therefore continuously to
zero as the exit channels for the superelastic process become
energetically closed.

The Wigner laws valid for bosons also hold for identical
particles of fermionic nature, with the exception of the elastic
collision rate that vanishes for q → 0 as Kel,F ∼ v3 for
particles in the same energy band. Note that the reciprocal-
space point of coordinates (q = kL/2,Q) can be brought into
(q = 0,Q + kL) by a reciprocal lattice vector translation of kL

parallel to the p2 axis. As a consequence, the Wigner laws for
q → 0 and q → ±kL/2 are the same.

Finally, the Wigner laws imply that for bosons the quantity
geff is finite at the lower or upper limit of the energy band occur-
ring at q = 0. If the energy-band limit occurs at nonzero values
of q, the geff vanishes. Similarly, for fermionic molecules the
momentum-dependent scattering lengths aF(q,Q) tend to a
finite quantity if the band edge occurs at q = 0 and vanishes
otherwise.

Let us examine in more detail the threshold behavior of
the bosonic scattering matrix elements. To this aim, we fix a
specific value of Q = 0.4 kL such that energy-band limits of
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FIG. 4. Upper panel: energy dispersion relation for two particles
in a lattice of depth u = 0.5 ER and Q = 0.4 kL. Dotted lines denote
energy thresholds for collision channels (see text). Lower panel: real
(full line) and imaginary parts (dashed line) of scattering matrix
elements. Labels 1, 2, and 3 denote the elements S11, S22, and S12

defined in the text, respectively.

different nature Ei (i = 1,2,3) exist in the dispersion relation;
see upper panel of Fig. 4. If E < E1, no open channels
(propagating waves) exist. As energy increases above E1, one
symmetrized collision channel becomes available. As shown
in the lower panel of Fig. 4 E → E+

1 the unique S-matrix
element S11 → −1. In terms of distinguishable particles, this
behavior would amount to reflection with unit probability.

At the second threshold E2 an additional channel with
q = kL/2 becomes energetically open. The matrix element S11

is therein continuous with discontinuous derivative, the new
elastic element S22 → −1 as E → E+

2 , whereas the transition
amplitude S12 vanishes at threshold. Finally, for E → E−

3 the
two open channel states tend to coalesce and the S matrix tends
to a finite limit with elements S11 = S22 = 0 and S12 = −1.
This result is somehow expected since exactly at threshold
E3 there is only one quantum state and the rates for elastic
and umklapp scattering must therefore become equal there.
The fermionic scattering matrix elements simply behave as
SF = −SB.

F. One- and two-channel models

Is is instructive to display at first the explicit structure
of the scattering matrix within a minimal model with only
open channels, therefore neglecting the influence of the closed
channels. Let us first consider the bosonic case. Calculation
in the presence of multiple open channels is more easily
performed using standing-wave solutions defined as η1 =
(η+ + η−)/2 and η2 = −i(η+ − η−)/2. Such asymptotic ref-
erence functions are real by virtue of the symmetry property
η∗

− = η+ below Eq. (9). Derivative matrices ξ 1 and ξ 2 are
likewise represented in terms of ξ+ and ξ−.

By replacing standing waves for propagating waves, the
asymptotic form (13) defines the reactance matrix K. System
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of equations (16) becomes

ξ 2(0+)K = Zη1(0). (19)

Right multiplication of the system (19) by ηt
1(0) gives the

solution K = (ηt
1ξ 2)−1(ηt

1Zη1), where the 0+ argument has
been omitted.

Observing that η2(0) vanishes, the matrix ηt
1(0)ξ 2(0+) is

identified as the value at the origin of the Wronskian

W = ηt
1(z)ξ 2(z) − ξ t

1(z)η2(z) (20)

of linearly independent solution matrices of the Schrödinger
equation for a given Q. Since the Wronskian is a constant
matrix, integrating both sides of Eq. (20) with respect to z

and using Eq. (E6) in the Appendix of Ref. [26] to recover
the group velocity as well as the symplectic orthogonality

condition below Eq. (9), one obtains that W = a−11. Had
we used momentum- rather than energy-normalized reference
functions, the Wronskian would have been proportional to
a diagonal matrix with entries the relative velocities. When
applied to closed channels, Eq. (E6) defines a purely imaginary
velocity that, while nonphysical, will play an important role in
the following.

The scattering matrix is expressed in terms of K using
the Cayley transform S = (1 + iK)(1 − iK)−1. The present
approach is equivalent to the unitarized Born approximation,
where the reactance matrix is computed in the first-order Born
approximation and the scattering matrix obtained through the
Cayley transform is automatically unitary if interaction is
real.

To be definite, let us consider the situation where two
channels characterized by relative quasimomentum qi and cor-
responding velocity vi ≡ vα(qi,Q) (i = 1,2) are energetically
available in two-particle band α for total quasimomentum Q.
Simple matrix algebra gives

S =

⎛
⎜⎜⎜⎜⎜⎝

(
gα

12

)2 − (
gα

11 + i�v1
)(

gα
22 − i�v2

)
(
gα

11 − i�v1
)(

gα
22 − i�v2

) − (
gα

12

)2

2i�gα
12

√
v1v2(

gα
11 − i�v1

)(
gα

22 − i�v2
) − (

gα
12

)2

2i�gα
21

√
v1v2(

gα
11 − i�v1

)(
gα

22 − i�v2
) − (

gα
12

)2

(
gα

12

)2 − (
gα

11 − i�v1
)(

gα
22 + i�v2

)
(
gα

11 − i�v1
)(

gα
22 − i�v2

) − (
gα

12

)2

⎞
⎟⎟⎟⎟⎟⎠

, (21)

where the dependence on velocities has been made explicit.
The renormalized coupling constants gα

ij in (21) are defined as
the entries of the symmetric matrix

gα = gaηt
1(0)η1(0), (22)

in which the reference functions η must now be taken
as momentum normalized. In strong lattices, the coupling
constant scales with the lattice depth as gα

ij ∼ u1/4 [30]
whereas v decreases exponentially with

√
u [31].

Expression (21) explicitly shows for the particular case of
two open channels the Wigner laws stated in the previous
section. Indeed, for E → E−

3 one has v1 � v2 → 0, gα
12 �

gα
11 � gα

22, implying S12 → −1 and Sii → 0. For E → E+
2 ,

the velocity v1 is finite whereas v2 → 0. Crossing the threshold
E2 from above, the velocity v2 turns from purely real to
imaginary, giving rise to a singularity in the energy derivative
of the scattering matrix element S11 (the threshold singularity)
which remains otherwise continuous. Below E2 there is a
sole physical matrix element S11. Taking the limit E → E+

1
(v1 → 0 with v2 finite), one obtains S11 → −1.

A simpler expression can be obtained in the single-channel
case, where solution of the linear system (19) and Cayley
transform gives the unique scattering-matrix element

S = −gα
11 + i�v1

gα
11 − i�v1

, (23)

which evidently tends to −1 as v1 vanishes. The corresponding
effective coupling constant is simply geff

α = gα
11 and the

reaction probability reads as

P r
α = − 4�v1Imgα

11(
Regα

11

)2 + (
�v1 − Imgα

11

)2 . (24)

We recall that in general Imgα
ij < 0 and that within the

universal model Regα
11 = −Imgα

11. Analogous expressions for
fermions are obtained by replacing the constant g with gmap

and by changing the sign of S. With these modifications, one
retrieves in particular the Kel ∼ v3 law valid near the edge of
an energy band Emm when the former occurs at q = 0.

G. Tight-binding limit

Single-particle Bloch waves in energy band n can in general
be represented in terms of Wannier states wn as φn

p(x) =∑
s eispawn(x − sa). This representation is most useful in the

tight-binding limit, where the Wannier states are localized in
individual lattice sites with little overlap from site to site. In this
case, the renormalized coupling constant becomes essentially
independent of momentum (hence, ∀ i,j we will pose gα

ij ≡
ḡα) and only depends on the considered band indices (m,n) =
α for the two particles. Therefore, the renormalized constant
for single-particle energy bands takes the value

ḡα = ag

∫ a/2

−a/2
w2

m(z)w2
n(z)dz. (25)

By convenience we fix below the zero of energy at p1,2 = kL/4
in single-particle bands.

Let us consider first a one-channel model situation where
two atoms are in the same band. In order to express S in
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Eq. (23) in terms of Q and E as independent variables, one
needs to solve for q the trigonometric equation

Emm(q,Q) = −2Jm cos(aQ/2) cos(aq) = E (26)

and to insert the result in the expression for the group velocity

�v = 2Jma cos(aQ/2) sin(aq). (27)

With the position EQ ≡ Eα(0,Q), simple algebra gives the
relative group velocity

�v1 = a

√
E2

Q − E2. (28)

Inserting Eqs. (25) and (28) into (23), one obtains the scattering
matrix element

S =
√

E2
Q − E2 − iḡ/a√

E2
Q − E2 + iḡ/a

. (29)

The present result is equivalent to the one of Ref. [20] that was
obtained directly in the Wannier representation.

Similarly, if the atoms are in different energy bands, the
two solutions of the trigonometric equation

Emn(q,Q) = −J+ cos(aQ/2) cos(aq)+J− sin(aQ/2) sin(aq)

= E (30)

with J+ = Jm + Jn and J− = Jnm − Jn inserted in the corre-
sponding expression for group velocity,

�v = J+a cos(aQ/2) sin(aq) + J−a sin(aQ/2) cos(aq),

(31)

give two coincident solutions

�v1,2 = a

√
J 2+ cos2(aQ/2) + J 2− sin2(aQ/2) − E2. (32)

Such identity of v1 and v2 only holds for the tight-binding
dispersion relation and not in weak lattices. Defining v̄ ≡ v1,2

and using Eq. (21), one obtains the reaction probability as

P r
α = 1 − |S11|2 − |S12|2 = − 4�v̄Imḡ

4(Reḡ)2 + (�v̄ − 2Imḡ)2
.

(33)

Again, in the universal model the latter expression can be
simplified using Reḡ = −Imḡ.

III. RESULTS

We now present our main numerical results. We consider
physical parameters for K-Rb molecules in an optical tube
with transverse angular frequency ω⊥ = 2π × 40 kHz. The
longitudinal lattice is produced by a laser of wavelength
2π/k = 1064 nm. Long-range intermolecular interactions in
the absence of polarizing electric fields are isotropic and will be
parametrized in terms of the van der Waals length ā = 118a0

[32].

A. Collision probabilities and rates

Let us first consider bosonic molecules colliding in the
fundamental energy zone for a lattice of average strength
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FIG. 5. Elastic scattering rate (left panel) and reaction probability
(right panel) for collisions of bosonic molecules in a lattice of depth
u = ER. Both colliding molecules are in the fundamental energy
band.

u = ER. The elastic collision rate is shown in the left panel of
Fig. 5 and it varies widely in the Brillouin zone. As expected,
it tends to be maximum where |v| is large and according
to the Wigner laws it drops to zero at the locations where
v → 0. The reaction probability depicted in the right panel of
the figure vanishes at the specific locations where v does. It
also exhibits in the upper quadrant two nontrivial maximum
lines where P r ∼ 0.9. These lines follow closely the boundary
separating the region where scattering is purely elastic from the
region where umklapp processes become allowed by E and Q

conservation. The maximum corresponds to a nonanalyticity
cusp point or threshold singularity arising from the physics
of channel opening discussed in Sec. II F; see also [33] for a
comprehensive discussion.

The right panel of Fig. 6 shows the probability of umklapp
transitions. Note the region of the first Brillouin zone where
such processes are possible is quite narrow for u = ER. For
comparison, we show in the left panel the corresponding
results obtained for u = 0.2ER, where the umklapp region
is significantly broader. In both cases, as per the Wigner laws,
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FIG. 6. Umklapp collision probability for bosonic molecules in
a lattice of depth u = ER (left panel) and u = 0.2 ER (right panel).
Both colliding molecules are in the fundamental energy band.
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FIG. 7. Elastic scattering factor (left panel) and reaction proba-
bility (right panel) for collisions of bosonic molecules in a lattice of
depth u = ER. Both colliding molecules are in the first excited energy
band.

the probability drops to zero at the edges of the region, where
the product velocity v′ vanishes. The location near the middle
of the region where the probability reaches unity corresponds
to the upper limit of the relative-motion energy band occurring
at q �= 0. Along this line there is coalescence of two quantum
states and, as discussed in Sec. II E, according to the Wigner
threshold laws S12 → −1.

Figure 7 presents our results for two particles in the first
excited energy band. For u = ER, the bandwidth is relatively
large. As shown in the right panel of the figure this increased
mobility results in the reaction probability being large in
most of the Brillouin zone. The elastic rate (not shown)
presents a structure in the Brillouin zone similar to the reactive
one, mostly determined by the velocity factor in definition
(3). At variance with the case of the fundamental band, we
prefer to depict in the left panel the elastic scattering factor
|1 − S(qQα ← qQα)|2. Such factor reaches its maximum for
q → 0 (p1 → p2) where the elastic scattering matrix element
S → −1. In most of the Brillouin zone, both interband and
intraband umklapp processes are allowed with up to four
channels open. Near the upper and lower right corners of the
Brillouin zone, scattering is purely elastic. Channel opening
takes place along nontrivial lines where the scattering quan-
tities present nonanalytical cusp behaviors. Closer inspection
shows for instance that the arched dark line in the left panel
and the two bright light lines near the upper and lower right
corners are in fact threshold features.

B. Influence of the lattice depth

Let us now study the possibility to use an optical lattice to
control the molecular reactivity. We fix example single-particle
quasimomenta p1 = kL/4 and p2 = −p1 such that the reaction
probability tends to be large, as can be seen in the right panel
of Fig. 5.

For particles in the fundamental band, Fig. 8 shows a
monotonic decrease of the reaction probability. The drop of
P r with u is slower for u � ER and exponential for large
u, as dictated by the velocity factor in the numerator of
Eq. (24). The figure also shows a good agreement between the

0 2 4 6 8 10
u / ER

0

0.2

0.4

0.6

0.8

Pr

(0,0)

(1,0)

(1,1)

FIG. 8. Reaction probability for two bosonic molecules with
quasimomentum respectively equal to p1 = kL/4 and p2 = −kL/4
as a function of the lattice depth. Labels (m,n) indicate the respective
energy zone of each particle. Cusps in the (1,0) and (1,1) reaction
probabilities correspond to collision thresholds occurring at the values
of u marked by vertical dotted lines. The dashed curve represents the
one-channel approximation of Eq. (24).

exact numerical result and the single-channel approximation
of Eq. (24) with interaction and velocity parameters calculated
numerically. The behavior of P r

α for α = (10) follows a similar
pattern, with the exception of a cusp point for u � 0.25ER

corresponding to a collision channel closing as neighboring
energy bands separate. The value of P r is about one order of
magnitude larger as compared to the case where the particles
are in the fundamental band. For the case of two particles
in the first excited band, the reaction probability presents a
nonmonotonic behavior before dropping exponentially.

As it can be seen in Fig. 9, the reaction probability for
fermionic molecules belonging to the same single-particle

0 1 2 3 4 5 6 7 8 9 10
u / ER
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FIG. 9. Same as Fig. 8 but for fermions. Note the dramatic
increase of the reaction probability for particles in (1,0) bands. Unlike
the bosonic case, threshold singularities are not visible on this scale.
The dashed curve represents the reaction probability obtained from
the two-channel scattering matrix of Eq. (24) with interaction and
velocity parameters calculated numerically.
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energy band is naturally small in the absence of the lattice
and is rapidly decreasing with u. The situation is drastically
different for particles belonging to the fundamental and the
first band that show a remarkably high reactivity P r � 0.4 for
lattices of few recoils. As shown in the figure, the two-channel
model (21) with g replaced by gmap and the overall minus
sign needed for fermions is sufficient to explain with sufficient
accuracy this peculiar result. Further insight can be gained
by noticing that for weak lattices, the c.m. quasimomentum
can be identified with the true c.m. momentum. Since the
latter is conserved under the intermolecular interaction, for
u � ER one has gα

12 ≈ 0. Moreover, our pseudopotential is
assumed independent of collision energy, implying that to a
good approximation gα

11 ≈ gα
22. In the tight-binding limit one

must obtain gα
11 ≈ gα

22 ≈ gα
12. As remarked below Eq. (18),

gmap is large for fermions, and magnitude is on the order
of 102

�v for our physical parameters when u is small. The
reaction probability obtained from the two-channel model can
therefore be developed to first order in the small parameter v.
Simple algebra gives

P r = 2�vRegα
11(

Regα
11

)2 − (
Regα

12

)2 . (34)

The steep rise of P R arises from the denominator exponentially
vanishing with u. In the tight-binding limit, the reaction
probability is ruled by Eq. (33) which gives the expected
exponential drop of P r with v. Interpolation between these two
trends results in the maximum observed in the exact numerical
calculation.

C. Effective coupling constant and c.m. motion

The presence of a lattice breaks up Galilean invariance of
flat space. Scattering quantities in a lattice will therefore in
general depend on the value of Q or, more precisely, on the
c.m. group velocity vc.m.. Consider an ultracold gas such that
in the center-of-mass frame the atom quasimomenta |pi | �
kL. In the laboratory frame Q does not need to be small,
a situation that can be experimentally realized by creating
an ultracold gas at rest and then adiabatically accelerating
or tilting the lattice [34]. We consider here the case of gas
with |q � kL| and focus on a relatively deep lattice u = 5ER.
The numerically calculated geff is shown in Fig. 10 for bosonic
molecules colliding in the fundamental band. The most striking
feature is the drop of both real and imaginary parts of the
effective coupling constant for Q � kL/2 (p1,2 � kL/4).

In fact, Eq. (29) results from the scattering solution of a
tight-binding Hamiltonian with only one symmetrized state of
relative motion, equivalent to the Bose-Hubbard model with
two particles. This expression predicts an effective coupling
constant geff

α = ḡα . The momentum dependence of functions
uq in Eq. (22) and thus of ḡ becomes negligible in the
strong lattice limit and the dispersion relation in lattices of
depth beyond few recoils is also very accurately represented
by the tight-binding form. The strong dependence of ḡ on
quasimomentum depicted in Fig. 10 is therefore unexpected.

For the considered lattice depth, the tight-binding approx-
imation holds with accuracy and umklapp transitions are
forbidden for any Q. However, one exception exists and is
the special value Q = kL/2 at which according to Eq. (1)
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FIG. 10. The real and imaginary parts of the effective coupling
constant for a lattice depth u = 5.0ER computed in the q → 0 limit
as a function of the total quasimomentum Q. Numerical results (full
line) are compared with single-channel (dashed-dotted lines) and
two-channel (dashed lines) models (see text).

with n = m, the relative energy band becomes completely
flat. This nonphysical feature stems from the strict (u → ∞)
tight-binding approximation, but in practice the relative motion
energy presents for Q � kL/2 extrema analogous to the dashed
curves shown in Fig. 1 for weaker lattices. In this situation,
a pair of symmetrized open channels with real q exists. As
Q moves away from kL/2, one of the two open channels
becomes energetically closed (q becomes imaginary) and thus
inaccessible to real transitions. However, virtual transitions to
such closed channel have a profound influence on the collision.

In order to study this effect on a quantitative ground, let us
consider the two-channel scattering matrix (21) for one open
channel and a second channel which can now be either open
or become closed with purely imaginary velocity v2 ≡ iṽ2. In
the latter case, the relevant S-matrix element becomes

S11 =
(
gα

12

)2 − (
gα

11 + i�v1
)(

gα
22 + �ṽ2

)
(
gα

11 − i�v1
)(

gα
22 + �ṽ2

) − (
gα

12

)2 (35)

which through Eq. (8) gives an effective coupling constant

geff
α = gα

11

(
gα

22 + �ṽ2
) − (

gα
12

)2

gα
22 + �ṽ2

. (36)

The behavior of the parameters factoring in the former
equation is represented in Fig. 11, which shows, namely,
the quantities Regα

ij = −Imgα
ij and ṽ2 = Imv2 as a function

of Q. On one side, one may observe that as predicted by
the tight-binding approximation the dependence of gα

11 on
the particle quasimomenta is extremely weak. On the other
side, the open-closed gα

12 and closed-closed gα
22 channel

couplings involve closed-channel wave functions that cannot
be represented in terms of localized Wannier functions. As a
consequence, both gα

12 and gα
22 show significant dependence

on Q and only tend to gα
11 for Q near kL/2, where the closed

and the open channels coalesce. The velocity v2 will be real
and small in the tiny region of Q ≈ kL/2 where two open
channels exist. Moving away from this region v2 first vanishes
then evolves continously into a purely imaginary quantity.
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FIG. 11. Evolution with Q of the two-channel model parameters
in Eq. (21) for a lattice depth u = 5 ER. The vanishing of the velocity
parameter v2 near Q = kL/2 has a strong influence on the collision
(see text). The imaginary part of the coupling constant is not shown
since for universal reactions one has strictly Img = −Reg.

The single-channel result geff
α = gα

11 is only retrieved in the
case of weak interactions |gα

22| � �|ṽ2| and |gα
12|2 � �|ṽ2g

α
11|.

These conditions will, however, never be satisfied for collisions
of atoms with q ≈ 0 and Q ≈ kL/2 since ṽ2 becomes then
arbitrarily small. In this case, the effect of the closed channel
must be taken into account and Eq. (36) predicts indeed the
noninteracting behavior with geff

α � 0 observed in the full
numerical calculation of Fig. 10. Note incidentally that the
denominator of Eq. (36) may vanish if gα

22 is real (i.e., for
nonreactive species) and equal to ṽ2, leading to novel resonant
behaviors that we plan to study in the near future.

IV. CONCLUSIONS AND PERSPECTIVES

We have presented a computational algorithm for the
calculation of two-body collision properties in an infinite
periodic 1D structure. Our computational approach presents
distinct advantages since it uses regular and irregular functions
computed at fixed collision energy, therefore avoiding a numer-
ically more tedious spectral expansion of the Green’s operator
[21]. The model allows us to assess quantitatively the expected
effect of the lattice in suppressing the reactive collision rates.
We also show that for fermionic molecules in different bands
the lattice can have the counterintuitive effect of strongly
enhancing the reactive processes before suppressing them.
A two-channel approach stresses the role of Bloch waves
with complex relative quasimomentum in renormalizing the
coupling constant for particles in the fundamental band even
when the lattice is strong.

In perspective, it will be interesting to study lattice-induced
resonances in nonreactive systems and, in the spirit of what
has been done in three dimensions in Ref. [22], to predict
the Bose-Hubbard parameters in 1D systems based on an
accurate microscopic model. Finally, if a fully quantitative
model will be needed in order to compare with experiments,
the present reference functions can be used in standard 3D
close-coupled models to extract efficiently the scattering
observables.
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