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Mutual neutralization in the collisions of H+ and H− is studied both theoretically and experimentally. The
quantum-mechanical ab initio model includes covalent states associated with the H(1)+H(n � 3) limits and
the collision energy ranges from 1 meV to 100 eV. The reaction is theoretically studied for collisions between
different isotopes of the hydrogen ions. From the partial wave scattering amplitude, the differential and total cross
sections are computed. The differential cross section is analyzed in terms of forward- and backward-scattering
events, showing a dominance of backward scattering which can be understood by examining the phase of the
scattering amplitudes for the gerade and ungerade set of states. The isotope dependence of the total cross section is
compared with the one obtained using a semiclassical multistate Landau-Zener model. The final state distribution
analysis emphasizes the dominance of the n = 3 channel for collisions below 10 eV, while at higher collision
energies, the n = 2 channel starts to become important. For collisions of ions forming a molecular system with a
larger reduced mass, the n = 2 channel starts to dominate at lower energies. Using a merged ion-beam apparatus,
the branching ratios for mutual neutralization in H+ and H− collisions in the energy range from 11 to 185 eV
are measured with position- and time-sensitive particle detectors. The measured and calculated branching ratios
satisfactorily agree with respect to state contributions.
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I. INTRODUCTION

When positive and negative hydrogen ions collide, charge
transfer may occur, resulting in formation of neutral atoms:

H− + H+ → H(1) + H(n), (1)

where, at low collision energies, only one of the hydrogen
atoms can be excited. This process is called mutual neutral-
ization (MN), and it is driven by nonadiabatic interactions
of electronic states, occurring at large internuclear distances.
Several studies have pointed out that such a reaction will have
a large cross section at low collision energies [1–10].

In the study of the formation of pregalactic clouds in the
early universe, H2 acts as a coolant [11]. Through associative
detachment [12], the hydrogen anion, H−, has been found to
play a crucial role in the formation of primordial H2 [12–18].
The MN process (1) is a competing reaction that removes H−.
Thus, for the modeling of the early universe, it is important to
have reliable data with respect to the MN rate coefficient and
final state distributions [13,15,16], which helps in determining
the share of H− that ends up forming H2.

At the international ITER fusion experiment [19,20], neu-
tral beam heating is based on an H− (or D−) ion source [21,22].
There is a need for modeling of the hydrogen anion density
of the source. A new diagnostic technique has been suggested
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based on measuring the Hα/Hβ Balmer line ratio [21–24].
Collisional radiative modeling shows that the measured line
ratio is very sensitive to the MN rate coefficient. The MN
reaction has to be studied, even for deuterium ions, since either
H− or D− ions are produced in the ion source [20,22,25].

The first theoretical study on the MN reaction in collisions
of H+ and H− was carried out in 1955 by Bates and Lewis
[1] using a semiclassical Landau-Zener model [26,27]. Several
other semiclassical studies [2,5,28–31] have followed and they
all agree on a relatively large cross section that is inversely
proportional to the energy and a dominance of the H(1)+H(3)
channel at low collision energies. Fussen and Kubach [3]
performed a quantum-mechanical study of the process using a
close-coupling one-electron model. More recently, some of us
[4] carried out an ab initio quantum-mechanical study, where
the adiabatic potential energy curves and the nonadiabatic
interactions were calculated using the full configuration
interaction method. The coupled radial Schrödinger equation
for the nuclear motion was then solved using the log-derivative
method of Johnson [32].

The first experiment on this reaction was carried out by
Moseley et al. [6] using a merged beam technique, where the
total cross section was measured for relative collision energies
below 3 eV. This is so far the only published measurement
of the total cross section at low collision energies. At higher
collision energies, however, there are other measurements of
the cross section [7–10] and they more or less agree with
each other and the theoretical predictions. The measured cross
section by Moseley et al. is about a factor of 3 larger than
many theoretical results and it has been debated whether the
experimental cross section might be overestimated [7–10]. We
have here performed measurements on MN for collisions of
H+ and H− at intermediate energies (11–185 eV) using a
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merged-beam technique. The total cross section has not been
determined, but rather the final state distributions.

For the theoretical calculations, we are using the same ab
initio quantum model for studying the process as the one by
Stenrup et al. [4]. Electronic states of 1�+

g and 1�+
u symmetries,

associated with the H(1) + H(n � 3) asymptotic limits, are
considered. The nonadiabatic couplings among the states,
computed ab initio by a three-point finite difference method,
are used to perform an adiabatic-to-diabatic transformation.
By solving the coupled Schrödinger equation for the different
partial waves, the scattering matrix elements are computed.
From the matrix elements, not only the total cross section but
also the differential cross section can be obtained. The total and
differential cross sections as well as the final state distributions
for collisions between all possible isotopes of positive and
negative hydrogen ions are calculated by using the appropriate
reduced mass of the system. The reaction is studied for all
possible isotopes of hydrogen ions and the symmetry effects
due identical nuclei and inversion symmetries are discussed.

The paper is arranged as follows. Section II discusses
the formulas for the total and differential cross sections for
collisions of different isotopes of hydrogen ions. In Sec. III, the
merged-beam measurements are described, while in Sec. IV
we present the computed differential and total cross sections as
well as the comparison between measured and calculated final
state distributions. A conclusion on the results can be found in
Sec. V.

II. SCATTERING THEORY

Employing the full configuration interaction method with
a basis set consisting of (11s,8p,7d,2f ) primitive Gaussian
basis functions contracted to (9s,8p,7d,2f ), the potential
energy curves and nonadiabatic interactions of the seven
lowest states of 1�+

g symmetry and six lowest states of 1�+
u

symmetry have been computed [4]. These are the states
associated asymptotically with the H(1)+H(n � 3) and the
ion-pair, H++H−, limits. Using the radial first derivative
nonadiabatic coupling elements, a strict adiabatic-to-diabatic
transformation is performed [33]. Instead of directly solving
the coupled radial Schrödinger equation, the matrix Riccati
equation is solved for the logarithmic derivative of the radial
wave function [32,34,35]. From the asymptotic value of the
logarithmic derivative, the partial wave scattering matrix (Sg/u

ij,� )
is obtained for both the gerade and ungerade manifold of states.
(For more details see Ref. [4].)

For scattering of nonidentical particles (where there is
no electron-inversion symmetry), the scattering amplitude is
calculated from the scattering matrix as [36]

fij (θ,E) = 1

2i
√

kikj

∑

�

(2� + 1)(Sij,� − δij )P�(cos θ ). (2)

Here ki and kj are the wave numbers of the final and initial
states (channels), respectively, � is the angular momentum
quantum number, and P�(x) is the Legendre polynomial of
degree �. The differential cross section is obtained from the
scattering amplitude as [36]

dσij

d	
(θ,E) = ki

kj

|fij (θ,E)|2. (3)

The total cross section is obtained by a direct integration of the
differential cross section over the entire unit sphere, resulting
in

σij (E) = π

k2
j

∑

�

(2� + 1)|Sij,� − δij |2. (4)

In the present work, we study scattering of systems with
two nuclei A and B which are isotopes. We study collisions
A+ + B− where the nuclear masses, mA and mB, may not
necessarily be the same. The electronic part of the problem has
inversion symmetry and the electronic states are labeled gerade
(g) or ungerade (u), respectively. We can now distinguish a
number of different cases caused by the colliding ions and
the particular detection system of the experiment where the
reaction products are measured:

(1) If the nuclear masses of the colliding ions are different
(mA �= mB), we do not have inversion symmetry but the
electronic states of the collision complex can be labeled as
gerade and ungerade, respectively. If we assume that we can
measure the masses of the different reaction products MA and
MB, we have one case (a), whereas if we cannot distinguish
them we have another case, (b). We thus now need to formally
study all cases.

(2) When ions with identical nuclei collide (A = B ⇒
mA = mB), the overall symmetry of the total wave function of
the collision complex (AB) must either be (a) antisymmetric
or (b) symmetric, depending on the spin of the nuclei. When
deriving the formulas of the differential cross sections for the
system with total inversion symmetry, we follow the ideas of
Masnou-Seeuws and Salin [37].

To formulate scattering amplitudes where the electrons are
localized on one of the nuclei, the direct and exchange am-
plitudes are evaluated as complex-valued linear combinations
of the scattering amplitudes of the gerade and ungerade states
[37,38],

f di
ij (θ,E) = 1

2

[
f

g

ij (θ,E) + f u
ij (θ,E)

]
,

f ex
ij (θ,E) = 1

2

[
f

g

ij (θ,E) − f u
ij (θ,E)

]
. (5)

For collisions of ions with nonidentical nuclei (mA �= mB

such as H++D−), the electronic part of the Schrödinger
equation still possesses the same inversion symmetry as when
mA = mB. For a system with moving nuclei of different
masses, the inversion symmetry is broken due to the shift
between the center of mass and the center of charge [39,40].
This causes mixing between the gerade and ungerade states;
however, this is neglected here.

Case 1(a). Assuming the mass of the detected atom at an
angle θ is not specified, the differential cross section at this
angle is obtained by incoherently adding the contributions
from the direct and exchange scattering at angles θ and π − θ ,
respectively [39,40]. The differential cross section becomes

dσij

d	
(θ,E) = 1

4

ki

kj

∣∣f g

ij (θ,E) + f u
ij (θ,E)

∣∣2

+ 1

4

ki

kj

∣∣f g

ij (π − θ,E) − f u
ij (π − θ,E)

∣∣2
. (6)
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The total cross section is then expressed as

σij (E) = π

2k2
j

∑

�

(2� + 1)
∣∣Sg

ij,� − δij

∣∣2

+ π

2k2
j

∑

�

(2� + 1)
∣∣Su

ij,� − δij

∣∣2
. (7)

Note that for collisions of ions with nonidentical nuclei,
the differential cross section exhibits the gerade-ungerade
coherence effects, while for the total cross section all these
effects are averaged out [39].

Case 1(b). If the mass of the reaction products at an angle
θ can be measured separately such that one can detect if it was
an atom with mass MA or MB that was found, the differential
cross section is given by one of the two terms of Eq. (6),
depending on the experimental arrangement.

Case 2(a). For collisions of ions with identical spin-1/2
nuclei (e.g., H++H− or T++T−), the overall wave function
has to be antisymmetric and hence the symmetric spin function
has to be combined with an antisymmetric scattering amplitude
and vice versa. The symmetric and antisymmetric scattering
amplitudes are calculated by linear combinations of the direct
and exchange scattering amplitudes [37,39,40]. By combining
the symmetrized spatial amplitudes with the corresponding
spin factors, the differential cross section becomes

dσij

d	
(θ,E) = 3

4

ki

kj

∣∣f g,odd
ij (θ,E) + f

u,even
ij (θ,E)

∣∣2

+ 1

4

ki

kj

∣∣f g,even
ij (θ,E) + f

u,odd
ij (θ,E)

∣∣2
. (8)

Here the superscript even or odd refers to a summation over
even or odd angular momentum quantum numbers when the
amplitudes are computed. The total cross section is again
obtained by a direct integration

σij (E) = 3π

4k2
j

∑

�,odd

(2� + 1)
∣∣Sg

ij,� − δij

∣∣2

+ 3π

4k2
j

∑

�,even

(2� + 1)
∣∣Su

ij,� − δij

∣∣2

+ π

4k2
j

∑

�,even

(2� + 1)
∣∣Sg

ij,� − δij

∣∣2

+ π

4k2
j

∑

�,odd

(2� + 1)
∣∣Su

ij,� − δij

∣∣2
, (9)

which is the same expression as given in Ref. [4].
Case 2(b). For collisions of ions with identical nu-

clei that have spin 1 (D++D−), the overall wave func-
tion has to be symmetric. The differential cross section
becomes

dσij

d	
(θ,E) = ki

3kj

∣∣f g,odd
ij (θ,E) + f

u,even
ij (θ,E)

∣∣2

+ 2ki

3kj

∣∣f g,even
ij (θ,E) + f

u,odd
ij (θ,E)

∣∣2
, (10)

and the total cross section is given by

σij (E) = π

3k2
j

∑

�,odd

(2� + 1)
∣∣Sg

ij,� − δij

∣∣2

+ π

3k2
j

∑

�,even

(2� + 1)
∣∣Su

ij,� − δij

∣∣2

+ 2π

3k2
j

∑

�,even

(2� + 1)
∣∣Sg

ij,� − δij

∣∣2

+ 2π

3k2
j

∑

�,odd

(2� + 1)
∣∣Su

ij,� − δij

∣∣2
. (11)

III. EXPERIMENTAL METHOD

Using the ion-ion merged beam apparatus in operation
at Université catholique de Louvain, the branching ratio
among the principal quantum numbers populated by MN was
determined between 11 and 185 eV. The apparatus has been
described previously [41], and it is an evolution of the original
setup of Szücs et al. [10]. The ∼ 7-keV H+ and H− beams
were extracted from an electron cyclotron resonance (ECR)
and a duoplasmatron source, respectively, and merged in the
ultrahigh-vacuum region of the apparatus. A 4.67-m-long drift
tube and a pair of position- and time-sensitive particle detectors
allow us to measure the time-of-flight (TOF) difference
between hydrogen atoms resulting from MN reactions [42].
The long flight path compared to the short interaction length
(7.5 cm) ensures that the small difference in exoergicity
between n = 2 and n = 3 levels, i.e., 1.891 eV, shows up in the
time-of-flight spectrum, as displayed in Fig. 1 for a collision
energy of 58 eV.

In order to measure the TOF difference between neutral
atoms in coincidence mode, we operated with inclined beams
intersecting under a shallow angle of ∼ 6 mrad. Each beam
was pointed in such a way that all pairs of scattered atomic
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FIG. 1. Time-of-flight difference spectrum recorded at a collision
energy of 58 eV (beam energies 6.1 and 7.9 keV, for H+ and H−,
respectively) at the end of a 4.67-m-long drift tube. Numbers 1–4 on
top indicate the expected time of flight for a reaction taking place in
the center of the interaction region and producing H(1)+H(n) pairs.
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FIG. 2. Differential cross section for mutual neutralization in
collisions of H+ and H− for selected collision energies. Arrows
indicate the angles where fast oscillations start.

products of the reaction fell within the geometrical acceptance
of the detectors, as verified from the impact positions recorded
in coincidence. A time-to-digital converter was used to build
the corresponding TOF difference spectrum. Note that a full
determination of the kinetic energy release is not achievable
due to the imperfect collimation of the atomic beams, which
prevents us from reconstructing the momentum vectors of
the MN products in the center-of-mass frame. The respective
contribution of each principal quantum number was extracted
by a fit to the double-peak structure (see Fig. 1). No statistically
significant contribution of n > 3 levels could be inferred from
this measurement, as their contribution would fall in the
leading edge of the H+H peak, whose asymmetry results
from both the inclined beam geometry and the residual
angular scattering in the center-of-mass frame. Furthermore,
no contribution of the ground-state products is observed, which
would fall at the right-hand side of the spectrum depicted in
Fig. 1. This finding is discussed below in Sec. IV C.

IV. RESULTS AND DISCUSSION

A. Computed differential cross sections

The scattering amplitudes are computed and total and
differential cross sections are obtained by summing up over
the angular momenta, �, as described in the previous section.
A similar convergence criterion as in Ref. [4] is introduced to
terminate the summation. The calculation of the differential
cross section is carried out at a number of fixed scattering en-
ergies, and the scattering angle is varied between 0◦ and 180◦.
The total differential cross section of mutual neutralization
in collisions of H+ and H− is presented in Fig. 2, for some
selected energies. Here the contributions from all covalent
states are added.

The differential cross section exhibits fast irregular os-
cillations as a function of the scattering angle reflecting
contributions of high angular momenta. For all collision
energies, the backward scattering dominates and there are
even faster oscillations in the differential cross sections at
large scattering angles. The arrows in Fig. 2 indicate the
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FIG. 3. Differential cross sections for mutual neutralization at
0.1 eV for collisions between different isotopes of positive and
negative hydrogen ions. We here assume that the reaction products
can not be distinguished.

positions where the differential cross sections change their
oscillatory behaviors. When the collision energy increases,
the angle where the fast oscillations start becomes larger
and the oscillations in the cross section become longer, with
decreasing amplitudes, indicating a more classical motion
of the particles. Additionally, as the energy increases, the
cross section decreases, predominantly at θ = 90◦, indicating
that the forward and backward scattering become more
pronounced, still with a dominance of the backward scattering.

The differential cross sections are computed for mutual
neutralization in collisions of all possible isotopes of the
hydrogen cations and anions. The results at a collision energy
of 0.1 eV are shown in Fig. 3 and it is clear that the differential
cross sections are very similar for all combinations of isotopes.
For collisions of ions with nonidentical nuclei the figure shows
the differential cross section where the mass of the detected
atom is not distinguished [using Eq. (6)]. This corresponds
to case 1(a), described in Sec. II. The overall magnitudes
and shapes of the differential cross sections are very similar,
although the exact form of the oscillations varies. The
isotope effects are very small and for all cases the backward
scattering dominates and the differential cross section shows
fast oscillations at large scattering angles. This does not seem
to be the case for mutual neutralization of heteronuclear ions,
where the molecular system has no inversion symmetry. For
example, quantum-mechanical ab initio studies of mutual
neutralization in collisions of Li+ and H− [43] as well as
Li+ and F− [44] produce differential cross sections peaked
at the forward direction. At small scattering angles, there are
fast oscillations, and at large angles, the oscillations are slow.
Using a semiclassical analysis of interfering branches of the
deflection function, Delvigne and Los [45] have discussed
that the angle where there is a transition between fast and
slow oscillations can be understood as the Coulomb scattering
angle, where the transition takes place at the distance of the
closest approach. When the collision energy increases, this
angle decreases.
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FIG. 4. Comparison of the direct and exchange contributions to
the total differential cross section of the D+ + H− system at 0.1 eV
collision energy.

The present system has inversion symmetry and it is
clear from Fig. 3 that the backward scattering dominates for
collisions of all isotopes with the fast oscillations at large
angles. The differential cross sections are computed using
Eqs. (6), (8), or (10), depending on the spin of the nuclei.
Since isotope effects are negligible, here we only present an
analysis of the results for collisions of nonidentical nuclei,
where Eq. (6) is applied. In Fig. 4, the contributions to
the differential cross section from the direct and exchange
scattering amplitudes are displayed for the D+ and H−
system at 0.1 eV collision energy. It is clear that exchange
scattering dominates at large angles. At θ ≈ 60◦, the direct
and exchange terms switch their dominance, with the direct
term having a small dominance at smaller angles. Note that
these cross sections correspond to case 1(b); i.e., the masses
of the products MA and MB are possible to distinguish in an
experimental measurement.

The direct and exchange amplitudes, given by Eq. (5), are
obtained as the sum (direct) and the difference (exchange)
of the complex-valued gerade and ungerade scattering ampli-
tudes, f

g

ij (θ,E) ± f u
ij (θ,E). We thus need to consider both the

magnitudes and the phases of these terms when computing
the likewise complex-valued direct and exchange scattering
amplitudes. This construction is illustrated in Fig. 5, where the
matrix elements of the amplitudes for scattering to the lowest
covalent state converging to the n = 3 limit are considered
at a collision energy of 0.1 eV. For both f

g

ij and f u
ij , the

largest magnitudes are obtained at small scattering angles.
For θ = 0◦ [see Fig. 5(a)], the f

g

ij and f u
ij are of similar

magnitudes, but almost out of phase. The magnitude of the
direct term, f

g

ij (θ,E) + f u
ij (θ,E), is thus relatively small and

has approximately the same phase as f
g

ij . The exchange
term, f

g

ij (θ,E) − f u
ij (θ,E), will be considerably larger than

the direct scattering term and this will give rise to the large
differential cross section observed in the backward direction.
For θ = 180◦, the gerade and ungerade scattering amplitudes
have different magnitudes, where |f g

ij | is larger than |f u
ij |.

The gerade amplitude is located in the third quadrant of the
complex plane while the much smaller ungerade amplitude
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FIG. 5. The importance of the phases of f g and f u when forming
the sums and the differences to obtain differential cross sections.
(a) The sum and difference when θ = 0◦ and (b) the results when
θ = 180◦. The procedure is discussed in the text.

is found in the fourth quadrant. Figure 5(b) illustrates the
consequence: the direct and exchange amplitudes have about
the same magnitudes and are both found in the third quadrant
of the complex plane. This kind of analysis, when carried out
for all angles and all isotope combinations, explains how the
differential cross section varies with the relative collision angle
as shown in Fig. 4. The large differential cross section in the
backward direction can hence be understood as an interference
effect due to the out-of-phase gerade and ungerade scattering
amplitudes at small angles. Since inversion symmetry is not
present in heteronuclear systems [43,44], the dominance of
the backward scattering in the differential cross section is not
likely to be found there.

B. Isotope dependence of the computed total cross section

By integrating the differential cross section, we obtain
the same total cross section for MN in H++H− collisions
as Stenrup et al. [4] computed directly using the scattering
matrix elements [using Eq. (9)]. The total MN cross sections
are computed for collisions of all hydrogen isotopes, and the
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FIG. 6. Calculated total cross sections for mutual neutralization in
collision of different isotopes of positive and negative hydrogen ions.
The computed results are compared with measured cross sections by
Peart and Hayton [7] and by Moseley et al. [6]. The experimental
measurements are for the MN reaction of H+ + H−.

results are presented in Fig. 6. We compare the calculated
total cross section with two experimental measurements. One
measurement is by Peart and Hayton [7], using a merged
beam apparatus, for collisions of H+ and H−. The measured
data cover the energy range 3–500 eV. At lower energies,
the measured cross section is smaller than the cross section
for H+ + H− MN here computed, while at higher energies
they are comparable. The other measurement is by Mosely
et al. [6], who used a merged beam technique to measure
the H+ + H− MN total cross section for collision energies
larger than 0.1 eV. This cross section is about a factor of 3
larger than our calculated cross section and, as pointed out
previously [7–10], for the whole energy range it is larger than
other results.

For collision energies approaching zero, the cross sections
for all isotopes are exhibiting the E−1 characteristics of a
Coulomb attraction [46]. The isotope dependence of the total
cross section is not very large. At low energies the collision
complex with larger reduced mass produces a slightly larger
cross section. At 0.001 eV, the ratios of the total cross section
for the heavier isotopes to that of H2 are HD, 1.10; HT, 1.15;
D2, 1.30; DT, 1.38; and T2, 1.47. Between 10 and 100 eV, the
cross sections have a minimum and then they start to increase
again. The inset of Fig. 6 shows the high-energy region where
the n = 2 channel starts to become important. The oscillations
in the cross sections are possibly quantum interference effects
(Stueckelberg oscillations [47]). The position of the minimum
is shifted toward larger energies with increasing reduced mass
of the molecular system. A very similar isotope dependence
for the present mutual neutralization reaction is obtained by
carrying out a semiclassical Landau-Zener [26,27] calculation.
In Fig. 7 the total mutual neutralization cross section is
calculated using the multistate Landau-Zener model [5]. The
electronic couplings between the ionic and covalent states
are here obtained using the formula obtained by Janev [48]
assuming a one-electron asymptotic method [49]. This model
only considers the avoided crossings between the ionic and
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FIG. 7. Total cross section for mutual neutralization in collision
of different isotopes of positive and negative hydrogen ions calculated
using the Landau-Zener model.

covalent n = 2 and n = 3 states occurring at large internuclear
distances.

By comparing Figs. 6 and 7, it is clear that the relatively
simple Landau-Zener model supports the isotope effects
observed in the fully quantum study. At low collision energies,
the system with heaviest reduced mass has the largest cross
section, while it is the opposite as the energy becomes large.
This isotope dependence was not observed by Croft et al. [43],
where their ab initio quantal treatment of mutual neutralization
in collisions of Li+ with H− or D− produced a larger cross
section at low energies for the lighter isotope. As the energy
increases, the isotope dependence became negligible.

C. Calculated and measured final state distributions

From the scattering calculations, we also obtain information
about the final state distributions in the mutual neutralization
process. The present model includes all covalent 1�+

g and 1�+
u

molecular states associated with the H(1)+H(n � 3) limits.
For all energies, the contribution to the H(1)+H(1) channel is
very small, with a ratio to the total cross section of the order of
10−6. Figure 8 presents the n = 2 and n = 3 branching ratios
for mutual neutralization in collisions of different isotopes
of hydrogen ions. At low collision energies the n = 3 channel
dominates and the mutual neutralization reaction is completely
driven by the avoided crossing between the ionic and covalent
states at an internuclear distance of about 35a0. At larger
energies, the avoided crossing at smaller distances can be
reached and the n = 2 channel starts to become important.
The minimum in the total neutralization cross section can be
understood from the change of dominance from the n = 3 to
the n = 2 dissociation channels. As can be seen, the switchover
occurs at lower energies for the lighter isotopologs.

In Fig. 8, the measured branching ratios for H+ + H−
MN using the merged beam technique, described in Sec. III,
are displayed. The measured final state distributions show a
similar trend as the ones calculated, with a dominance of the
n = 3 channel at low collision energies and the increasing
significance of the n = 2 channel as the energy increases, and
a complete absence of n = 1 contribution. At E > 50 eV the
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measured n = 2 ratio is slightly larger than what is predicted
by the theoretical calculation. At higher energies, effects not
considered in the present theoretical model (such as higher
electronic states, rotational couplings, or autoionization) could
start to be important.

V. CONCLUSION

Mutual neutralization in low-energy H+ and H− collisions
was studied both theoretically using a fully quantum ab
initio model as well as experimentally using a merged beam

setup. The theoretical model includes 1�+
g/u states associated

with H(1)+H(n � 3) channels and the reaction is studied for
collisions of all possible hydrogen isotopes. The computed
differential cross section exhibits fast and irregular oscillations
as a function of the scattering angle. For all isotopes, there
is a clear dominance of backward scattering which can be
explained by the fact that the collisions cause large scattering
amplitudes at small angles for the gerade and ungerade
manifold of states, which are out of phase with each other.
The isotope effects are studied in terms of the differential
and total neutralization cross sections as well as the final
state distributions. The observed dependencies of the total
cross sections upon the molecular reduced mass are compared
with semiclassical calculations using a multistate Landau-
Zener model. The total cross section is compared with two
experimental results and at higher energies, it agrees well with
the cross section by Peart and Hayton [7] while it is about a
factor of 3 lower than the cross section by Moseley et al. [6].
The measured final state distributions obtained with a merged
beam apparatus show a similar form as the ones computed
theoretically.
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