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Nuclear mass corrections to the Casimir-Polder interaction
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We present a derivation of the finite nuclear mass corrections to the Casimir-Polder interaction between two
atomic systems in the ground state. Equivalently, we show how the long-range asymptotics of the adiabatic
correction is modified due to the finite speed of light. We show that in addition to the contribution resulting from
the finite-mass correction to atomic polarizabilities, a further contribution exists.
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I. INTRODUCTION

The finite nuclear mass corrections to the long-range
retarded interactions between atomic systems have not yet
been studied in the literature. For most atomic systems
both the finite speed of light and the finite nuclear mass
lead to small corrections to the interaction energy. Their
nonadditive combination could be expected to be even smaller.
Additionally, there has been no theoretical framework in which
retardation and the adiabatic correction could be combined.
While the Born-Oppenheimer (BO) potential at large distances
is replaced by the Casimir-Polder (CP) interaction [1] which
incorporates the retardation effects, it has not been known how
the adiabatic correction to the BO potential is modified by these
retardation effects. Here we present a complete derivation
of the atom-atom interaction potential including both the
retardation and finite nuclear mass effects. We demonstrate that
besides the Casimir-Polder potential modified by finite-mass
corrections to atomic polarizabilities, there exists an additional
effect, which leads to a modification of the CP formula.
The obtained results, together with the previously obtained
relativistic corrections to the Casimir-Polder potential [2],
have an application to the accurate description of long-range
interactions between atomic systems. While we derive only
the lowest-order results, the formalism we present can also be
applied to higher orders of perturbation theory and to higher
orders of the multipole expansion.

II. SEPARATION OF THE ATOMIC MASS CENTER

In order to derive the finite nuclear mass corrections to
the long-range interaction, one has to separate out the total
atomic coordinates from the internal degrees of freedom in the
presence of the electromagnetic field. We follow here Ref. [3]
and consider a general system of N nonrelativistic charged
particles, electrons, and nuclei, placed in the electromagnetic
field. For consistency we use the natural system of units (� =
c = 1), and the conversion to the atomic units is done using the
Bohr radius a0 = 1/(m α) and the Hartree energy Eh = m α2.
The initial Hamiltonian of a nonrelativistic system of charged
particles is

H =
∑

a

( �π 2
a

2ma

+ ea A0
a

)
+

∑
a>b

ea eb

4π rab

, (1)

where �πa = �pa − ea A(�ra), and the summation goes over
electrons and nuclei. We now introduce global variables, the

center of mass �R and the total momentum ��,

�R =
∑

a

ma

M
�ra , (2)

�� =
∑

a

[ �pa − ea
�A( �R)] = �P − e�

�A( �R) , (3)

where M = ∑
a ma and e� = ∑

a ea , and the relative coordi-
nates are

�xa = �ra − �R , (4)

�qa = �pa − ma

M
�P , (5)

such that

[
xi

a , q
j

b

] = i δij

(
δab − mb

M

)
, (6)

[Ri , P j ] = i δij , (7)

[
xi

a , P j
] = [

Ri , qj
a

] = 0 . (8)

Next, we perform a canonical transformation φ,

H ′ = e−i φ H ei φ + ∂tφ , (9)

with

φ =
∑

a

ea

∫ 1

0
du �xa · �A( �R + u �xa) . (10)

Assuming that the characteristic wavelength of the electro-
magnetic field is larger than the size of each of the interacting
systems, φ can be expanded into multipoles:

φ =
∑

a

ea

[
xi

a Ai( �R) + 1

2!
xi

a xj
a

∂Ai(�r)

∂rj

∣∣∣∣
�r= �R

+ · · ·
]
. (11)

The scalar potential is transformed to
∑

a

ea A0
a + ∂tφ = e� A0 − di Ei , (12)

where d is the dipole moment

di =
∑

a

ea xi
a , (13)
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A0 ≡ A0( �R), �E ≡ �E( �R), and �B ≡ �B( �R). The kinetic momen-
tum is transformed to

e−i φ πj
a ei φ = π̃ j

a + ma

M
�j, (14)

where

π̃a = �qa + 1

2

(
ea �xa + ma

M
�d
)

× �B, (15)

and the kinetic energy is

e−i φ
∑

a

π2
a

2ma

ei φ = �2

2M
+

��
M

· �d × �B +
∑

a

π̃2
a

2ma

. (16)

The total Hamiltonian after the transformation φ takes the form

H ′ =
∑

a

π̃2
a

2ma

+
∑
a>b

ea eb

4π rab

+
��2

2M

+ e� A0 − �d · �E + �d · �B ×
��
M

. (17)

From now on we assume that the external magnetic field and
the total charge both vanish ( �B = 0, e� = 0), whereupon the

transformed Hamiltonian simplifies to

H ′ =
∑

a

�q 2
a

2ma

+
∑
a>b

ea eb

4π rab

+
�P 2

2M
− �d · �E. (18)

III. EFFECTIVE HAMILTONIAN APPROACH

Let’s assume for a moment that this atomic system is
placed in the inhomogeneous electric field �E( �R), and we
would like to find out an effective wave function for the
center-of-mass motion �R. Because of the �d · �E( �R) coupling,
the center-of-mass motion cannot be completely separated
from internal degrees of freedom, and therefore one cannot
uniquely define this effective wave function. Consequently,
the effective Hamiltonian is not unique, and we will use this
freedom to transform it to its simplest possible form. Let
us return now to the main topic of this work, which is the
long-range interaction between atomic systems. The effective
Hamiltonian Heff is obtained by taking the matrix element of
the resolvent between the ground atomic states,

1

E − Heff
= 〈φA,φB,0| 1

E + EA + EB − HA − �P 2
A

2MA
− HB − �P 2

B
2MB

− �dA · �E(�rA) − �dB · �E(�rB) − HEM

|0,φA,φB〉, (19)

where HEM is the Hamiltonian for the electromagnetic field and |0〉 is the electromagnetic vacuum state. EA, EB are the
ground-state energies, φA, φB are the corresponding wave functions, and MA, MB are the total masses of atoms A and B. HA,
HB are the internal Hamiltonians of atoms A and B, respectively. The first two terms of Eq. (18) are

HA =
∑

a

�q 2
a

2ma

+
∑
a>b

ea eb

4π rab

(20)

=
∑

a

′ �q 2
a

2m
+

( ∑′
a �qa

)2

2mA
+

∑
a>b

ea eb

4π rab

, (21)

where
∑′ denotes the sum over only electrons and mA and mB are masses of nuclei A and B, respectively.

One calculates Heff by taking the power series of both sides of Eq. (19) in the fine-structure constant α = e2/(4π ). In the
zeroth order

H
(0)
eff =

�P 2
A

2MA
+

�P 2
B

2MB
. (22)

Neglecting the self-interaction, the leading correction comes from the two-photon exchange,

1

E − Heff
= 1

E − H
(0)
eff

+ 1

E − H
(0)
eff

H
(2)
eff (E)

1

E − H
(0)
eff

, (23)

where

H
(2)
eff (E) = 〈φA,φB,0|[ �dA · �E(�rA) + �dB · �E(�rB)]

1

E − H0
[ �dA · �E(�rA) + �dB · �E(�rB)]

1

E − H0
[ �dA · �E(�rA) + �dB · �E(�rB)]

× 1

E − H0
[ �dA · �E(�rA) + �dB · �E(�rB)]|0,φA,φB〉 (24)

and where

H0 = HA − EA +
�P 2

A

2MA
+ HB − EB +

�P 2
B

2MB
+ HEM. (25)
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The main issue is the elimination of dependence of Heff

on E. This is achieved as follows. The atomic excitation
energy is the largest among all the energy scales, so one
can expand the matrix element in Eq. (24) in powers of
E − P 2

A/(2MA) − P 2
B/(2MB) = E − H

(0)
eff . At the zeroth

order, it is the well-known Casimir-Polder interaction VCP.
We will be interested in the first-order term in this expansion,
which can be represented as

H
(2)
eff (E)=VCP + V ′

CP + (
E − H

(0)
eff

)
Q + Q

(
E − H

(0)
eff

)
, (26)

with some Hermitian operator Q. The last two terms do not
change the position of a pole of the resolvent of the effective
Hamiltonian

1

E − Heff
= 1

E − H
(0)
eff

+ Q
1

E − H
(0)
eff

+ 1

E − H
(0)
eff

Q (27)

and only change the residuum, namely, |φ〉〈φ|, where φ is
the effective (unnormalized) wave function for the center of
mass of each atom A and B. As we have already emphasized,
this wave function is not a well-defined quantity, so we can
change its definition to simplify the effective Hamiltonian.
We therefore define a new effective wave function

φ′ = (1 − Q) φ, (28)

for which the stationary Schrödinger equation takes the form

(E − H ′
eff) φ′ = 0, (29)

with the new effective Hamiltonian

H ′
eff = P 2

A

2MA
+ P 2

B

2MB
+ VCP + V ′

CP, (30)

which does not depend on energy and includes the
Casimir-Polder potential VCP and an additional correction V ′

CP
due to the finite atomic masses.

IV. CP INTERACTION WITH THE FINITE
NUCLEAR MASS

The leading Casimir-Polder interaction VCP comes from
the two-photon exchange with the interaction �d · �E. It is
given by Eq. (24), but it can also be derived from the
scattering amplitude [4,5] using Feynman diagrams. Two
diagrams for two-photon exchange (Fig. 1) contribute, and

(a)

(b)

FIG. 1. The only Feynman diagrams contributing, in the lowest
order, to the atom-atom interaction energy.

the corresponding expression for the energy is

VCP(R) = −1

2

∫ ∞

−∞

dω

2πi
αik

A (ω) α
jl

B (ω) gij ( �R) gkl( �R), (31)

where

gij ( �R) =
∫

d3k

(2π )3
ei �k· �R (ω2 δik − ki kk)

ω2 − k2
, (32)

α
ij

A (ω) = −
〈
di 1

EA − HA + ω
dj + dj 1

EA − HA − ω
di

〉
,

(33)

where R is the distance between mass centers of atoms A and
B and H is the Hamiltonian from Eq. (21).

The ω integration in Eq. (31) is assumed along the
Feynman contour. If this integration is performed, the resulting
expression corresponds to the standard Rayleigh-Schrödinger
perturbation theory but becomes much more lengthy. Instead,
this integration contour is deformed to the imaginary axis by
the replacement ω = iλ. The k integral leads to

gij ( �R) =
(

λ2δij − ∂2

∂Ri ∂Rj

)
e−λR

4π R

= e−λR

4π R3

[
δij (λ2R2 + λR + 1)

− RiRj

R2
(λ2R2 + 3λR + 3

)]
. (34)

For atomic and molecular states with spherically symmetric
polarizability tensors α

ij

A = δ
ij
αA, αij

B = δ
ij
αB the CP formula

simplifies to

VCP(R) = − 1

16π3

∫ ∞

0
dλ αA(iλ) αB(iλ)

λ4 e−2λR

R2

×
(

1 + 2

λR
+ 5

(λR)2
+ 6

(λR)3
+ 3

(λR)4

)
. (35)

This result for infinite nuclear masses has been derived by
Casimir and Polder [1]. At short distances, the potential
simplifies to −C6/R

6,

VCP(R) ≈ −Eh

(
a0

R

)6

C6, (36)

C6 = 3

π

1(
4πa3

0

)2

∫ ∞

0
dλ αA(iλ) αB(iλ)

= 2

3

Eh

a4
0

〈
di

A d
j

B

1

HA − EA + HB − EB
di

A d
j

B

〉
. (37)

For large distances, the potential depends on only the static
polarizabilities,

VCP(R) ≈ −Eh

(
a0

R

)7

K7, (38)

K7 = 27

4πα

αA(0) αB(0)

(4πa3
0)2

. (39)

The finite nuclear masses enter through the second term in
Eq. (21). For the pair of hydrogen atoms, this terms leads to
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the reduced-mass (1/μ = 1/me + 1/M) scaling of the atomic
polarizability,

αH(ω) =
(

me

μ

)3

αH

(
μ

me

ω

)∣∣∣∣
M=∞

, (40)

and the leading-order coefficient of the small-R and large-R
asymptotic expansions,

CH
6 =

(
me

μ

)5

CH
6

∣∣∣∣
M=∞

, KH
7 =

(
me

μ

)6

KH
7

∣∣∣∣
M=∞

.

This result was first obtained by Dalgarno and McCarroll
[6]. The next terms in the 1/R expansion of the adiabatic
correction to Born-Oppenheimer energies were considered by
Marinescu and Dalgarno [7], but in their derivation, only part
of the higher-order terms has been included. The complete
expressions for the coefficients of the 1/R6, 1/R8, and 1/R10

terms have been derived by Przybytek and Jeziorski [8],
and their results are in agreement with the direct numerical
calculation of the adiabatic correction performed in Ref. [9].
It should be pointed out that the adiabatic correction is usually
computed as a function of the distance between nuclei and not
of the distance between atomic mass centers. This difference
leads to different finite-mass corrections for higher-order terms
in the 1/R expansion of the adiabatic energy, like that for the
A8 coefficient [8].

The finite nuclear mass correction due to the atomic kinetic
energy can be obtained in an analogous way. Let us include at
the beginning the finite mass of only atom A and consider the
corresponding scattering amplitude

V ′
CP(R) = −1

2

∫ ∞

−∞

dω

2πi
βik

A (ω) α
jl

B (ω)

× gij ( �R)

(
Ekin

A − P 2
A

2MA

)
gkl( �R), (41)

where Ekin
A is the kinetic energy, �PA is the momentum operator

of atom A, and

β
ij

A (ω) =
〈
di 1

(EA − HA + ω)2
dj + dj 1

(EA − HA − ω)2
di

〉
.

(42)

Due to the symmetry of αij and βij in Cartesian indices only
the symmetric (in the simultaneous interchange of i,k and j,l

indices) component of the integrand contributes to the integral
(41), and thus we can use the following identity:

gij ( �R)

(
Ekin

A − P 2
A

2MA

)
gkl( �R) +

(
i ↔ k

j ↔ l

)

=
[
gij ( �R),

[
Ekin

A − P 2
A

2MA
, gkl( �R)

]]

+
(

Ekin
A − P 2

A

2MA

)
gij ( �R) gkl( �R)

+ gij ( �R) gkl( �R)

(
Ekin

A − P 2
A

2MA

)
.

Since it is the on-shell scattering amplitude, the last two terms
in Eq. (43) automatically vanish, and the remainder becomes[
gij ( �R),

[
Ekin

A − P 2
A

2MA
, gkl( �R)

]]
= − 1

MA

∂gij

∂Rn

∂gkl

∂Rn
, (43)

and V ′
CP becomes

V ′
CP(R) = 1

4

∫ ∞

−∞

dω

2πi

∂ gij

∂Rn

∂ gkl

∂Rn

×
(

βik
A (ω) α

jl

B (ω)

MA
+ αik

A (ω) β
jl

B (ω)

MB

)
. (44)

Assuming the spherical symmetry of the αij and βij tensors
of both atoms, the potential V ′

CP(R) simplifies to

V ′
CP(R) = − 1

32π3

∫ ∞

0
dλ

[
1

MA
βA(iλ) αB(iλ)

+ 1

MB
αA(iλ) βB(iλ)

]

× λ6 e−2λR

R2

(
1 + 4

λR
+ 14

(λR)2
+ 42

(λR)3

+ 81

(λR)4
+ 90

(λR)5
+ 45

(λR)6

)
. (45)

The leading term in the small-R expansion starts with R−8 and
takes on a form dependent on the reduced mass of the nuclei
of both interaction atoms,

V ′
CP(R) ≈ −Eh

(
me

MA
+ me

MB

)(
a0

R

)8

C ′
8, (46)

C ′
8 = 45

π

1(
4πa3

0

)2

∫ ∞

0
dλ αA(iλ) βB(iλ)

= 5
E2

h

a4
0

〈
di

A d
j

B

1

(HA − EA + HB − EB)2
di

A d
j

B

〉
. (47)

This result differs from A8 in Ref. [8], which is a consequence
of not including the higher-order (dipole-quadrupole) term
and of a different definition of R. In our work, the interaction
potential is a function of the distance between the atomic
mass centers, while in Ref. [8], it is a function of the
distance between the atomic nuclei. In the large-R limit V ′

CP
decays as R−9,

V ′
CP(R) ≈ − 837

16πα

(
me

MA

)
βA(0) αB(0)(

4πa3
0

)2

(
a0

R

)9

− (A ↔ B).

(48)

One may observe that for atomic systems, where the typical
excitation energy is of the order of Eh and the typical dipole
moment matrix elements are of the order of ea0, V ′

CP(R) is
smaller than VCP(R) by a factor of the order of

V ′
CP(R) ∼ me

M

(
a0

R

)2

VCP(R), (49)

so it is not expected to be a significant correction. For example,
in the case of two interacting hydrogen atoms the ratio between
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V ′
CP(R) and a finite-mass correction to VCP(R) (both being of

the order me/M) varies from 1.707630747(a0/R)2 for small
distances to 12.34259259(a0/R)2 in the retardation limit.

V. SUMMARY

This work resolves the problem of the retardation in
the adiabatic correction for diatomic molecules. Namely,
the adiabatic correction to the Born-Oppenheimer energy, at
large distances, is being replaced by the sum of two terms:
the finite nuclear mass corrections in the Casimir-Polder
potential VCP(R) through reduced mass and mass polarization

corrections in the atomic matrix elements and an additional
contribution V ′

CP(R). We also demonstrate that in typical cases
V ′

CP(R) is much smaller than the finite-mass correction to
VCP(R) and the ratio of these two contributions behaves as
1/R2 for large interatomic distances.
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