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Near-surface effect on interatomic resonance interaction
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We study theoretically the resonance interaction between two atoms located near a dielectric-plate surface with
quantum electrodynamics. One atom is initially excited and the other one is in the ground state. The effect of
the surface exerted on the atoms can sufficiently change the interatomic resonance interaction. This near-surface
effect on resonance interaction can be used to control atoms and can help to build on-chip quantum devices, new
types of light sources, and quantum storage devices.
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I. INTRODUCTION

In recent years, the atom chip has been a hot research do-
main in quantum physics [1,2]. To meet the development trends
of integration and miniaturization of quantum experimental
installations, a good method is to manipulate atomic ensembles
near a chip. The atom chip has broad use in technologies
such as optical communication, quantum storage, and quantum
control. Moreover, the atom chip can reduce the cost and
increase the reliability of experiments [3]. In the atom-chip
experiments, the atom-chip distance can fall to the nanometer
scale, and in this case the interaction between the atom and
chip becomes sufficiently strong. Furthermore, the interatomic
interaction will also be affected by the surface. The nature
of the atom chip and interatomic interactions is one kind of
mechanical effect of the vacuum electromagnetic field, which
is generally called the Casimir effect, named after the Dutch
physicist Hendrik Casimir. The Casimir effect is an important
quantum phenomenon and has continued to attract the interest
of researchers since the publication of the famous work on
the attraction between two uncharged conducting plates in
1948 [4]. In recent decades, the Casimir effect lies at the core
of developing nano-engineering [5–7], and research on the
repulsive Casimir force is especially hot [8–22].

The vacuum electromagnetic field can lead to a mechanical
force between macro subjects as well as between neutral
microparticles, such as atoms or molecules [23]. By exchang-
ing virtual photons, two neutral atoms (or one atom and
one surface) can interact with each other, and the vacuum
electromagnetic field acts as a medium in the interaction.
Generally, the Van de Waals interaction is used to name
the interaction between atoms, while the interaction between
one atom and the surface of one macro subject is called
the Casimir–Polder interaction. The interaction between two
identical atoms with one of them initially in an excited state
is called the resonance interaction (RI) [24–26]. The RI can
lead to some collective behavior of the atoms, for example,
collective spontaneous emission [27–31] and the collective
atomic level shift [32]. Therefore, it plays an important role in
laser cooling [33], producing entanglement [34,35], quantum
storage [36], cold-molecule formation [37–39], quantum trans-
mission, and building new types of quantum light sources [40].
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The modifications of RI have been studied extensively over
the past several decades, such as by using microcavities [41],
nanofibers [42], waveguides [43], etc. Because of the broad
use of RI and the fast development of atom-chip technology,
we think it is significant to combine these two areas and study
the RI between atoms near the surface of a chip. Because the
surface is a boundary for the electromagnetic field, the density
of states of the vacuum electromagnetic field near the surface
must change, and the RI between the atoms located near the
surface must be affected. On the other hand, by making use of
this effect, we can change how atoms behave with one surface.

For these reasons, investigating the effect exerted on atoms
by a nearby surface becomes important. In this paper, we
study theoretically the RI between two atoms located near
a dielectric-plate surface. For the atoms very close to the
surface, we approximately treat the surface as infinitely
large. Quantum electrodynamics is employed to describe the
interaction between the vacuum electromagnetic field and the
two atoms, whereas the reflection of electromagnetic waves
from the dielectric plate is calculated by the classical Maxwell
theory. The retardation effect of light in propagation is brought
into consideration. We analytically calculated the interatomic
RI characterized by the spontaneous radiation rates and the
atomic level shifts. Our results show that, when the atoms
are located near a surface, the RI depends on not only the
interatomic displacement but also the atom-surface distance.
Because the effect of the surface on interatomic RI becomes
notable only when atoms are very close to the surface, we call
the effect the “near-surface effect” (NSE). The NSE provides
the possibility of controlling RI by using a surface.

This paper is organized as follows: The formalism of
the interaction between two atoms and the electromagnetic
vacuum is reviewed in Sec. II, then we introduce the mode
function of the vacuum electromagnetic field in Sec. III,
followed by Sec. IV in which we calculate the damping rates
and level shifts of atomic excited states that characterize the
interatomic RI. Some numerical examples are given, and the
properties of the NSE are discussed in Sec. V. Finally, we
conclude in Sec. VI.

II. DYNAMICS OF INTERATOMIC
RESONANCE INTERACTION

In this section, a brief review of the dynamical analysis
of dipole-reservoir interaction will be given. The system we
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FIG. 1. The scheme investigated is illustrated. The dielectric
surface is located in the x-y plane. The distance between atom 1
(atom 2) and the surface is labeled as z1 (z2). The distance between
the drop shadows of the two atoms on surface is x12.

studied is shown in Fig. 1. We use 1 and 2 to label the two
atoms. z1 (z2) is used to represent the distance from atom 1 (2)
to the dielectric-plane surface. Without loss of generality, we
assume the two atoms are all located in the x-z plane, and the
distance between the drop shadows of the two atoms on the
surface is x12.

We calculate the atom-light interaction problem in the
Schrödinger picture. The two atoms are marked as atom 1
and atom 2. The quantum state of the system can be expressed
by

|ψ〉 =
∑
i=1,2

Ci |i〉|0〉 +
∑
i=3,4

∑
kλ

Di,kλ|i〉|kλ〉, (1)

in which the basis kets |1〉–|4〉 are

|1〉 = |e1g2〉, |2〉 = |g1e2〉,
|3〉 = |e1e2〉, |4〉 = |g1g2〉, (2)

where |e〉 and |g〉 are the quantum states of atoms. |gi〉
represents atom i in the ground state and |ej 〉 means atom
j in the excited state. For example, the ket |1〉 = |e1g2〉
means atom 1 is excited while atom 2 is in the ground
state. The electromagnet field state |kλ〉 means a photon with
wave vector k and polarization λ exists, while |0〉 means
there is no photon (the electromagnetic vacuum state). Ci

and Di,kλ are probability amplitudes. We bring |3〉 = |e1e2〉
into consideration because we hold the counter-rotating wave
terms in the interaction Hamiltonian, which make transitions
|1〉|0〉 ↔ |3〉|kλ〉 ↔ |2〉|0〉 possible. For the eigenenergy of
intermediate state |3〉|kλ〉 to be different from that of initial
state |1〉|0〉, |2〉|0〉, and final state |4〉|k0λ〉, state |3〉|kλ〉 is short
lived. When the atom-light system jumps to state |3〉|kλ〉, it
will jump back to |1〉|0〉 or |2〉|0〉 in a very short time. For this
reason, all the eigenstates with photon number larger than 1
can at best negligibly contribute to the atom-light interaction
and have be dropped in Eq. (1) [44,45].

The total Hamiltonian Ĥ can be divided into three parts: the
atomic Hamiltonian ĤA, the electromagnetic Hamiltonian ĤF ,
and the atom-light interaction Hamiltonian Ĥint. The atomic
Hamiltonian can be written as

ĤA = �

∑
i

ωiσii , (3)

where σij = |i〉〈j | are the atomic flip operators. The electro-
magnetic Hamiltonian is

ĤF (r) =
∑
kλ

�ωk

(
a
†
kλakλ + 1

2

)
, (4)

where a
†
kλ and akλ are creation and annihilation operators for

the photon of mode kλ, respectively. � is the modified Planck
constant and ωk is the angular frequency of the photon. The
interaction Hamiltonian is

Ĥint = −
∑
a=1,2

d̂a · Ê(ra), (5)

where d̂a = ∑
ij da

ij σij are the electric-dipole operators with

da
ij being the dipole transition matrix elements, and Ê(r) is

the electric-field operator, which is given by

Ê(r) =
∑
kλ

Akλâkλ E(kλ,r) + H.c. (6)

The electric wave mode function E(kλ,r) is determined by the
refractive index of the surrounding medium and the boundary
conditions. Akλ is the normalization coefficients.

By making use of the Schrödinger equation

i�
∂|ψ〉
∂t

= Ĥ |ψ〉, (7)

we can get the equations of motion of the probability
amplitudes Ci and Di,kλ:

Ċ1 = i

�

∑
a=1,2

∑
i ′=3,4

∑
kλ

Di ′,kλAkλda
1i ′ · E(kλ,ra), (8)

Ċ2 = i

�

∑
a=1,2

∑
i ′=3,4

∑
kλ

Di ′,kλAkλda
2i ′ · E(kλ,ra), (9)

Ḋ3,kλ = −i(ωk + ω0)D3,kλ

+ i

�

∑
a=1,2

∑
i ′=1,2

Ci ′A
∗
kλda

3i ′ · E∗(kλ,ra), (10)

Ḋ4,kλ = −i(ωk − ω0)D4,kλ

+ i

�

∑
a=1,2

∑
i ′=1,2

Ci ′A
∗
kλda

4i ′ · E∗(kλ,ra). (11)

To solve this group of equations, we first calculate the formal
solutions of Eqs. (10) and (11):

D3,kλ(t) = i

�
A∗

kλ

∑
a=1,2

∑
i ′=1,2

da
3i ′ · E∗(kλ,ra)Ci ′(t)

×
[
πδ(ωk + ω0) − i

(ωk + ω0)

]
, (12)

D4,kλ(t) = i

�
A∗

kλ

∑
a=1,2

∑
i ′=1,2

da
4i ′ · E∗(kλ,ra)Ci ′(t)

×
[
πδ(ωk − ω0) − i

(ωk − ω0)

]
, (13)
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in which the Markov approximation has been used;∫ t

0
Ci ′(t

′)e−i(ωk−ω0)(t−t ′)dt ′

≈ Ci ′(t)

[
πδ(ωk − ω0) − i

(ωk − ω0)

]
. (14)

Substituting Eqs. (12) and (13) into Eqs. (8) and (9), we get
the equations for C1 and C2:

Ċ1 = A11C1(t) + A12C2(t), (15)

Ċ2 = A22C2(t) + A21C1(t), (16)

in which the coefficients Aaa(b) are defined by

Aaa = − 1

�2

∑
kλ

|Akλ|2
{
Gaa(kλ)πδ(ωk − ω0) − Gaa(kλ)

i

(ωk − ω0)
− Gbb(kλ)

i

(ωk + ω0)

}
,

Aab = − 1

�2

∑
kλ

|Akλ|2
{
Gba(kλ)πδ(ωk − ω0) − Gba(kλ)

i

(ωk − ω0)
− Gab(kλ)

i

(ωk + ω0)

}
, (17)

where a = 1,2 and b = 1,2 are the atom labels and a �= b. The functions Gaa(b)(kλ) ≡ da · E∗(kλ,ra)E(kλ,ra(b)) · da(b), where
the dipole transition matrix elements da

ij are denoted by da for simplicity. The coefficients Aaa (a = 1,2) describe the interaction
between one single atom a (a = 1,2) and the vacuum field, while Aab (a,b = 1,2) describe the interaction between two atoms.
Equations (15) and (16) can be worked out:

C1(t) = C2(0)e
A11+A22

2 t A12

	

(
e

1
2 	t − e− 1

2 	t
) + C1(0)e

A11+A22
2 t (A11 − A22 + 	)e

1
2 	t − (A11 − A22 − 	)e− 1

2 	t

2	
,

C2(t) = C1(0)e
A11+A22

2 t A21

	

(
e

1
2 	t − e− 1

2 	t
) − C2(0)e

A11+A22
2 t (A11 − A22 − 	)e

1
2 	t − (A11 − A22 + 	)e− 1

2 	t

2	
, (18)

where

	 =
√

(A11 − A22)2 + 4A12A21.

In the initial condition that C1(0) = 1 and C2(0) = 0, we have

C1(t) = e
A11+A22

2 t (A11 − A22 + 	)e
1
2 	t − (A11 − A22 − 	)e− 1

2 	t

2	
, C2(t) = e

A11+A22
2 t A21

	
(e

1
2 	t − e− 1

2 	t ). (19)

According to Eq. (5), the interaction energy between the atom pair and the surface can be calculated by

Eint = 〈Ĥint〉 = −
∑
a=1,2

∑
ij

∑
kλ

Akλda
ij · E(kλ,ra)C∗

i Dj,kλ + c.c. = i�(A11C
∗
1C1 + A22C

∗
2C2 + A12C

∗
1C2 + A21C

∗
2C1) + c.c.

(20)

The total interaction energy can be divided into two parts: the
atom-surface resonance Casimir–Polder interaction (RCPI)
energy

ERCPI-a = i�Aaa|Ca|2 + c.c., (21)

and atom-atom RI energy

ERI = i�(A12C
∗
1C2 + A21C

∗
2C1) + c.c. (22)

After calculating coefficients Aaa and Aab (a,b = 1,2) and
using them in Eqs. (19)–(22), the behavior of the atom pair
can be fully described. According to Eq. (21), ERCPI-a is
proportional to the population of state |a = 1,2〉, while the
interatomic RI is proportional to the coherence between state
|1〉 and |2〉. Different from the Van de Waals interaction and
the Casimir–Polder interaction, the lifetime of RI and RCPI
is not infinite because of spontaneous emission. Our results
reflect this feature of RI and RCPI.

In next section, we define the mode function E(kλ,r) and
the normalization constant Akλ which are needed in calculating
the detailed expressions of Aaa and Aab (a,b = 1,2).

III. QUANTIZATION OF ELECTROMAGNETIC FIELD
NEAR DIELECTRIC SURFACE

In the previous section, we briefly reviewed the formulas
describing the interatomic RI. To calculate the detailed expres-
sions of Aaa and Aab (a,b = 1,2), we need to define the mode
functions of the electromagnetic field near the surface. In this
section, we introduce the method of quantization and present
the mode function E(kλ,r) as well as the normalization
constant Akλ. The total electric field can be expressed as

E(r) =
∑
kλ

Ekλ E(kλ,r) + c.c., (23)

in which E(kλ,r) is the mode function. The mode function
can be divided into incident wave and reflected waves:

E(kλ,r) = W (kλ,r) + S(kλ,r).

The incident light is a plane wave,

W (kλ,r) = êkλe
ik·r ,
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and the reflected wave can be written as

S(kλ,r) = gλ(k)êk′eik′ ·r ,

where gλ(k) are the reflection coefficients and λ refers to the
polarization of light. k is the wave vector of the incident wave,
k′ refers to the reflected light, and i is the imaginary unit. Then
we obtain the electric wave mode function

E(kλ,r) = êkλe
ik·r + gλ(k)êk′λe

ik′ ·r . (24)

êkλ are the unit vectors perpendicular to the wave vector k.
The expressions of gλ(k) are decided by the properties of the
reflecting surface and the coordinate system we choose. To
quantize the electric field, we replace the amplitude Ekλ in
Eq. (23) with Akλâkλ to obtain Eq. (6). According to Eq. (24),
the normalization constant

Akλ = 1

κkλ

(
�ωk

2ε0V

)1/2

, (25)

in which

κkλ =
√

1 + |gλ(k)|2. (26)

Having specified the normalization constant and the mode
function, we can calculate the expressions of Aaa and Aab

(a,b = 1,2) which characterize the behavior of the two
interacting atoms.

IV. DAMPING RATES AND ATOMIC LEVEL SHIFTS

According to Eqs. (21) and (22), Aaa describes the behavior
of one single atom while Aab refers to the collective properties
of the two atoms. Since the mode function E(kλ,r) and the
normalization constant Akλ have been specified, their detailed
expressions will be calculated in this section.

A. Behavior of one single atom

We first calculate Aaa in this section. Considering the atom
pair to be located in a free half space, the continuum limit is

∑
k

→ V

(2π )3

∫
d3k = V

(2π )3

∫ ∞

0
k2dk

∫
�

d�,

where
∫
�

d� represents angular integration. The coefficient
Aaa can be divided into two parts,

Aaa = Aaa,free + Aaa,r , (27)

in which

Aaa,free ≡ −γfree + iδfree, (28)

Aaa,r ≡ −γs,r-a + iδs,r-a, (29)

where γj and δj (j = free or s,r) are real parameters. We use γ

and δ in Eqs. (28) and (29) because the real and imaginary part
of Aaa are respectively related to the spontaneous radiation rate
and the atomic level shift. The subscripts of the parameters are
chosen according to their physical meaning. Aaa,free refers to
the interaction of a single atom with free vacuum field, while
Aaa,r describes the interaction between the atom and surface.
Substituting Eqs. (24) and (25) into Eq. (17), we obtain

γfree = π

2�ε0(2π )3

∫ ∞

−∞
k3δ(k − k0)dk

∫
�

d�
∑

λ

1

κ2
kλ

da · [êkλ êkλ + |gλ(k)|2 êk′λ êk′λ] · da,

δfree = 1

2�ε0(2π )3

∫ ∞

−∞

k3

k − k0
dk

∫
�

d�
∑

λ

1

κ2
kλ

da · [êkλ êkλ + |gλ(k)|2 êk′λ êk′λ] · da. (30)

Before calculating the integrals, we must first choose a
coordinate system and characterize the reflection coefficients.
As shown in Fig. 2, we set the x-y plane on the dielectric
surface, and the z direction is just the normal direction. The
homogeneous, isotropic, dielectric half space is a bulk of
continuum material, on which the reflection of light can be
treated classically. In this coordinate system, for a plane-
dielectric surface with permittivity n(ωk), it is not difficult
to calculate the Fresnel reflection coefficients by classical
Maxwell theory,

g⊥(k) = cos θ − n(ωk) cos θ ′′

cos θ + n(ωk) cos θ ′′ ,

g‖(k) = n(ωk) cos θ − cos θ ′′

n(ωk) cos θ + cos θ ′′ , (31)

where θ is the incident angle in vacuum while θ ′′ is the refrac-
tion angle in the dielectric material, satisfying n(ωk) sin θ ′′ =
sin θ . ωk is the angular frequency of the incident light. g⊥

and g‖ are, respectively, the reflection coefficients of light
with electric components polarized perpendicular and parallel

FIG. 2. The reflection of an electromagnetic wave from the
dielectric surface with refraction index n(ωk) is shown schematically.
The surface is in the x-y plane and the normal direction is the z

direction. θ is the incident angle, θ ′ is the reflection angle, and θ ′′ is
the refraction angle.
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to the incident plane. The properties of the surface are
described by Eq. (31), which are decided by the dielectric
permittivity of the surface n(ωk). Making use of the reflection
coefficients given by Eq. (31), the detailed expression of
Aaa can be calculated. The angular integral can be written
as

∫
�

d� → ∫ π

0 sin θdθ
∫ 2π

0 dφ. For the surface rotationally
symmetric with the z axis as the symmetry axis, the reflection
coefficients gλ(k) are independent of φ. Given this, it is not
difficult to prove∫

�

d�
∑

λ

1

κ2
kλ

(êkλ êkλ + |gλ(k)|2 êk′λ êk′λ)

=
∫

�

d�
∑

λ

êkλ êkλ = 8

3
π I . (32)

By substituting Eq. (32) into Eq. (30), we obtain

γfree = 1

2
�0, (33)

δfree = 1

2πk3
0

�0

∫ ∞

−∞

k3

k − k0
dk, (34)

where �0 = |da|2k3
0/(3�πε0) is exactly the damping rate of a

single atom in free vacuum. Equation (33) exactly agrees with
the well-known result on spontaneous radiation of a single
atom in free vacuum [46]. According to Eq. (33),γfree is half
of the single-atom free spontaneous radiation rate. It is natural
that the damping rate of the probability amplitude is exactly
half that of the probability. δfree is the vacuum Lamb shift. The
expression (34) is obviously divergent, which can be dealt with
the Bethe’s method [47] and is given by

δfree = 1

2πk3
0

�0

∫ ∞

−∞

k3

k − k0
dk → 1

2π
�0 In

(
mc

�k0

)
.

Because the free Lamb shift does not lead to any mechanical
force in this problem, we ignore it in the following.

Furthermore, according to Eq. (27), Aaa,r can be calculated
by

γs,r-a = π

2�ε0(2π )3

∫ ∞

−∞
k3δ(k − k0)dk

∫ π

0
sin θdθ

∫ 2π

0
dφ

∑
λ

1

κ2
kλ

da · [gλ(k)êkλ êk′λe
−i2kza cos θ + g∗

λ(k)êk′λ êkλe
i2kza cos θ ] · da,

δs,r-a = 1

2�ε0(2π )3

∫ ∞

−∞

k3

k − k0
dk

∫ π

0
sin θdθ

∫ 2π

0
dφ

∑
λ

1

κ2
kλ

da · [gλ(k)êkλ êk′λe
−i2kza cos θ + g∗

λ(k)êk′λ êkλe
i2kza cos θ ] · da. (35)

Substituting Eq. (31) into Eq. (35), we get

γs,r-a = 3�0

8
d̂a ·

⎡
⎢⎢⎢⎣

(x̂ x̂ + ŷ ŷ)
∫ π/2

0 sin θ cos2 θ−n2(k0) cos2 θ ′′
cos2 θ+n2(k0) cos2 θ ′′ cos (2k0za cos θ )dθ

− (x̂ x̂ + ŷ ŷ)
∫ π/2

0 sin θ cos2 θ n2(k0) cos2 θ−cos2 θ ′′
n2(k0) cos2 θ+cos2 θ ′′ cos (2k0za cos θ )dθ

+ 2ẑ ẑ
∫ π/2

0 sin3 θ n2(k0) cos2 θ−cos2 θ ′′
n2(k0) cos2 θ+cos2 θ ′′ cos (2k0za cos θ )dθ

⎤
⎥⎥⎥⎦ · d̂a, (36)

δs,r-a = 3�0

8
d̂a ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x̂ x̂ + ŷ ŷ)
[− 1

2k0za
− ∫ π/2

0 sin θ cos2 θ−n2(k0) cos2 θ ′′
cos2 θ+n2(k0) cos2 θ ′′ sin (2k0za cos θ )dθ

]
− (x̂ x̂ + ŷ ŷ)

[
2

(2k0za )3 − ∫ π/2
0 sin θ cos2 θ n2(k0) cos2 θ−cos2 θ ′′

n2(k0) cos2 θ+cos2 θ ′′ sin (2k0za cos θ )dθ
]

+ 2ẑ ẑ
[− 1

2k0za
− 2

(2k0za )3 − ∫ π/2
0 sin3 θ n2(k0) cos2 θ−cos2 θ ′′

n2(k0) cos2 θ+cos2 θ ′′ sin (2k0za cos θ )dθ
]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

· d̂a. (37)

By checking the expression of γs,r and δs,r , we find that they depend on za . When the distance between atom a (a = 1,2) and the
dielectric surface changes, both the radiation rate and level shift of atom a must be modified. γs,r and δs,r respectively represent
the change of the single-atom spontaneous radiation rate and the atomic level shift due to the surface. γs,r is the origin of the
Purcell effect, and δs,r brings about the RCPI between the atom and the surface. Our results agree with the former well-known
expressions [46].

B. Collective behavior of two atoms

Aab describes the collective behavior of two atoms. Using notation similar to that in Eq. (27), we have

Aab = Aab,d + Aab,r, (38)

in which

Aab,d ≡ −γc,d + iδc,d, (39)

Aab,r ≡ −γc,r + iδc,r, (40)

where Aab,d describes the interaction of two atoms by directive exchange of virtual photons, while Aab,r refers to the exchange
of virtual photons with reflection on the surface. The letter “c” in the subscript represents the “collective behavior” and “d” is
for the “directive photons exchange between atoms.” Similarly, “r” in Eq. (40) is for the “photon exchange by reflection on the
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surface.” We first calculate Aab,d, and it is not difficult to obtain

γc,d = 3�0

4
d̂b ·

⎡
⎣I

( sin k0rab

k0rab
+ cos k0rab

k2
0r2

ab

− sin k0rab

k3
0r3

ab

)
+ r̂ab r̂ab

(− sin k0rab

k0rab
− 3 cos k0rab

k2
0r2

ab

+ 3 sin k0rab

k3
0r3

ab

)
⎤
⎦ · d̂a, (41)

δc,d = 3�0

4
d̂b ·

⎡
⎣I

( cos k0rab

k0rab
− sin k0rab

k2
0r2

ab

− cos k0rab

k3
0r3

ab

)
,

+ r̂ab r̂ab

(− cos k0rab

k0rab
+ 3 sin k0rab

k2
0r2

ab

+ 3 cos k0rab

k3
0r3

ab

)
⎤
⎦ · d̂a, (42)

where r̂ab = (ra − rb)/rab is the unit vector pointing from atom a to atom b (a �= b). γc,d and δc,d respectively represents the
atomic collective spontaneous radiation rate and the level shift in boundaryless space. Equations (41) and (42) exactly agree with
the former result obtained in the free vacuum [25].

The most important and interesting part in this paper is the change in atomic collective behavior because of the nearby surface,
which is described in Eq. (40). According to Eq. (17), we have

γc,r = 3�0

4
d̂b ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x̂ x̂ − ŷ ŷ)
∫ π/2

0 dθ sin θ cos2 θ−n2(k0) cos2 θ ′′
cos2 θ+n2(k0) cos2 θ ′′

J1(k0xab sin θ)
k0xab sin θ

cos[k0(za + zb) cos θ ]

+ ŷ ŷ
∫ π/2

0 dθ sin θ cos2 θ−n2(k0) cos2 θ ′′
cos2 θ+n2(k0) cos2 θ ′′ J0(k0xab sin θ ) cos[k0(za + zb) cos θ ]

+ (x̂ x̂ − ŷ ŷ)
∫ π/2

0 sin θ cos2 θdθ n2(k0) cos2 θ−cos2 θ ′′
n2(k0) cos2 θ+cos2 θ ′′

J1(k0xab sin θ)
k0xab sin θ

cos[k0(za + zb) cos θ ]

− x̂ x̂
∫ π/2

0 sin θ cos2 θdθ n2(k0) cos2 θ−cos2 θ ′′
n2(k0) cos2 θ+cos2 θ ′′ J0(k0xab sin θ ) cos[k0(za + zb) cos θ ]

+ ẑ ẑ
∫ π/2

0 sin θ sin2 θdθ n2(k0) cos2 θ−cos2 θ ′′
n2(k0) cos2 θ+cos2 θ ′′ J0(k0xab sin θ ) cos[k0(za + zb) cos θ ]

+ ( ẑ x̂ − x̂ ẑ)
∫ π/2

0 sin2 θ cos θdθ n2(k0) cos2 θ−cos2 θ ′′
n2(k0) cos2 θ+cos2 θ ′′ J1(k0xab sin θ ) sin[k0(za + zb) cos θ ]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

· d̂a, (43)

δc,r = 3�0

4
d̂b ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(x̂ x̂ − ŷ ŷ)
∫ π/2

0 sin θ cos2 θ−n2(k0) cos2 θ ′′
cos2 θ+n2(k0) cos2 θ ′′

J1(k0xab sin θ)
k0xab sin θ

sin[k0(za + zb) cos θ ]dθ

− ŷ ŷ
∫ π/2

0 sin θ cos2 θ−n2(k0) cos2 θ ′′
cos2 θ+n2(k0) cos2 θ ′′ J0(k0xab sin θ ) sin[k0(za + zb) cos θ ]dθ

− (x̂ x̂ − ŷ ŷ)
∫ π/2

0 sin θ cos2 θ n2(k0) cos2 θ−cos2 θ ′′
n2(k0) cos2 θ+cos2 θ ′′

J1(k0xab sin θ)
k0xab sin θ

sin[k0(za + zb) cos θ ]dθ

+ x̂ x̂
∫ π/2

0 sin θ cos2 θ n2(k0) cos2 θ−cos2 θ ′′
n2(k0) cos2 θ+cos2 θ ′′ J0(k0xab sin θ ) sin[k0(za + zb) cos θ ]dθ

− ẑ ẑ
∫ π/2

0 sin θ n2(k0) cos2 θ−cos2 θ ′′
n2(k0) cos2 θ+cos2 θ ′′ J0(k0xab sin θ ) sin[k0(za + zb) cos θ ]dθ

+ ẑ ẑ
∫ π/2

0 sin θ cos2 θ n2(k0) cos2 θ−cos2 θ ′′
n2(k0) cos2 θ+cos2 θ ′′ J0(k0xab sin θ ) sin[k0(za + zb) cos θ ]dθ

+ ( ẑ x̂ − x̂ ẑ)
∫ π/2

0
n2(k0) cos2 θ−cos2 θ ′′
n2(k0) cos2 θ+cos2 θ ′′ J1(k0xab sin θ ) sin2 θ cos θ cos[k0(za + zb) cos θ ]dθ

− (I + ẑ ẑ)
[

1
2

1
k0(za+zb) + 1

k3
0 (za+zb)3

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

· d̂a, (44)

where J0 and J1 are the Bessel functions of zeroth order
and first order, respectively. xab = xa − xb is the distance
between the drop shadows of atoms a and b (a �= b) on
the surface (see Fig. 1). Without loss of generality, to get the
expressions (43) and (44), we assume that atom a and b are
located in the x-z plane, which means ya = yb = 0 and this
assumption brings simplicity to the calculation. The origin of
γc,r and δc,r is the exchange of virtual photons between the
two atoms by reflection from the surface. The value of γc,r

and δc,r depend on the distance between the drop shadows
of the two atoms xab as well as the sum of the distance
of the two atoms from the surface, za + zb; in other words,
the distance between one atom and the image of the other
atom [ra′b = [x2

ab + (za + zb)2]1/2]. The refraction index of the
surface is contained in the expressions of γc,r and δc,r, which

means the RI is affected by the properties of the dielectric
surface.

When the expressions of γc,r and δc,r depend on not only
the relative displacement of the two atoms but also the atom-
surface distance, we can say that they are three-body depen-
dent. As a consequence, the interatomic RI also becomes three-
body dependent. By changing the atom-surface distances, the
collective damping rates and atomic level shifts of the two
interacting atoms must be changed, and this effect provides one
method to control the RI between atoms. If the atoms are far
from the surface, k0(za + zb) � 1 and cos[k0(za + zb) cos θ ]
[or sin[k0(za + zb) cos θ ] ] oscillates very rapidly with respect
to θ . Because of the rapid oscillation of the integrands, the
value of integrals in Eqs. (43) and (44) will be small and δc,r

and γc,r tend to zero. On the other hand, when the atoms are
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close to the surface, k0(za + zb) � 1 and the integrals can be
sufficiently large, then the contribution from γc,r and δc,r must
be considerable. When the effect induced by the surface can
only be notable when the atoms are located close to it, we call
this effect the near-surface effect (NSE).

V. NEAR-SURFACE EFFECT

We calculated the expressions of coefficients Aaa and Aab

(a,b = 1,2), which characterize the behavior of two atoms
near one surface. Aaa describes the behavior of the single
atom a while Aab (a �= b) determines the collective properties
of the two atoms. We showed that coefficients Aaa and Aab

can be divided into two parts: the free-vacuum-field part and
the surface-reflection part. The latter part is traceable to the
reflection of virtual photons from the surface and brings about
the changes in the RCPI as well as in theRI. By using these
changes, one surface can be used to control the atom-surface
RCPI and the interatomic RI. Although the results given in
the last section generally describe the NSE on RI and RCPI,
the expressions are not directly perceived through the senses.
In this section, we consider some special cases and plot the
figures that can visually show the NSE exerted on the atoms.

We consider one scheme in which the interatomic axes are
parallel to the surface. We change the atom-surface distance
and show the effect exerted on the atoms by the surface. When
the distances from the surface to the two atoms are equal,
A11 = A22 and A12 = A21, Eq. (19) reduces to

C1(t) = e(A11+A12)t + e(A11−A12)t

2
,

C2(t) = e(A11+A12)t − e(A11−A12)t

2
. (45)

Moreover, we consider the atoms to be isotropically polarized
(dx = dy = dz = d/

√
3). When there is no external polar-

ization field, it is reasonable to treat the polarization to be
isotropic. The relative inductivity of the surface is set to 3.

Under the conditions discussed above, we assume that
atom 1 is initially excited. The interatomic distance is fixed
to be 5k−1

0 , while the atom-surface distance changes. In
Fig. 3 we plot P1 (=|C1|2) and P2 (= |C2|2) as functions of
dimensionless time �0t for different surface-atom distances.
P1 (P2) is used to represent the probability of atom 1 (2) in
the excited state. According to Fig. 3, when the atoms are
in free space, P1 decays alone and atom 2 can hardly be
excited. This behavior of the population shows there is no
interaction between the atoms. But if the atoms are located
very closed to the surface; for example, z1 = z2 = 0.2k−1

0 ,
the populations of states |1〉 and |2〉 oscillate rapidly and
damply. The oscillations of P1 and P2 are complementary,
which indicates that the interatomic RI is strong and the energy
of the electron exchanges between the two atoms. The damping
of P1 and P2 is due to the spontaneous emission of the atoms.
When the atoms are moved farther from the surface, those
oscillations become slower, which means the interatomic RI is
weakened. Figure 3 proves that NSE can sufficiently effect the
interatomic RI. In this example, the RI is strongly enhanced
when the atoms are close to the surface, and the strength of
the RI can be modified by changing the atom-surface distance.

FIG. 3. The probabilities P1 and P2 as functions of dimensionless
time �0t plotted for different surface-atom distances. Atom 1 is
initially excited. The interatomic distance is fixed at 5k−1

0 . If these
two atoms are in free space, atom 2 can hardly be excited and atom
1 just damps alone. But when the two atoms are very close to the
surface, the populations of states |1〉 and |2〉 oscillate rapidly, which
reveals a strong interatomic RI and energy transfer. Damping of P1

and P2 is due to the spontaneous emission of the two atoms.

This features is very useful in building quantum devices to
control energy and information transfer between qubits.

After studying the populations of the atomic excited states,
we consider the time evolution of the RI potential energy. In
the case of z1 = z2, Eqs. (21) and (22) can be rewritten as

ERI = −2� Im A12(C∗
1C2 + C1C

∗
2 ), (46)

ERCPI-a = −2� Im Aaa|Ca|2. (47)

Using Eqs. (46) and (47), we plot the interatomic RI potential
as a function of time for different atom-surface distances in
Fig. 4. Initially, there is no interatomic RI because light needs
time to propagate from one atom to the other. The speed of
light is finite so the two atoms cannot feel each other at the
very beginning. Then the RIs are built up between the two
atoms by exchanging virtual photons. ERI increases with time
and goes to one maximal value. But the lifetime of RI is finite
because of spontaneous radiation, so all curves in Fig. 4 finally
decay with time and tend to zero. According to Fig. 4, when
the atoms are in free space, the RI can hardly be built up
between the atoms. But if the atoms are moved close to the
surface (z1 = z2 = 0.2k−1

0 ), the RI becomes much stronger
than that of the case of large atom-surface distance. This result
agrees with the analysis we made in the previous paragraph.
Moreover, the time evolution of atom-surface RCPI potentials
are plotted in Fig. 5. Similar to the RI, the RCPI is stronger
when the atoms are close to the surface.

Figure 4 shows the time evolution of the interatomic RI, and
we fix the time �0t = 1 and plot the RI versus the interatomic
distance x12 in Fig. 6. We find that, when the atoms are close
to the surface, the interatomic RI is sufficiently stronger than
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FIG. 4. The dimensionless RI energy ERI/��0 as a function of
dimensionless time �0t for different atom-surface distances. The
curves describe the process of the buildup, maximizing and decay
of interatomic RI. When the atoms are very close to the surface,
the RI is much stronger than that in the case of large atom-surface
distance. The RI is enhanced by the NSE.

that for large atom-surface distance. This result proves that
NSE can enhance the interatomic RI. We further define the
atom-exchange symmetry and antisymmetry states as

|+〉 = 1√
2

(|1〉 + |2〉), (48)

|−〉 = 1√
2

(|1〉 − |2〉), (49)

and the corresponding probability amplitudes

C+ = 1√
2

(C1 + C2) = 1√
2
e(A11+A12)t ,

C− = 1√
2

(C1 − C2) = 1√
2
e(A11−A12)t . (50)

FIG. 5. The upper (lower) figure describes the dimensionless
RCPI potential energy ERCPI-1/��0 (ERCPI-2/��0) between atom 1
(atom 2) and the surface as a function of dimensionless time �0t

for different atom-surface distances. Because the RCPI energy is
proportional to the population of the atomic excited state, the curves
in this figure are similar to those in Fig. 3.

FIG. 6. The dimensionless RI potential energy ERI/��0 at �0t =
1 plotted as a function of dimensionless interatomic distance k0x12

for different atom-surface distances. When the atoms are close to
the surface, the RI energy is much stronger than that for large atom-
surface distance.

According to Eq. (50), γfree + γs,r + γc,d + γc,r and γfree +
γs,r − γc,d − γc,r represent the damping rates of the atom-
exchange-symmetric and -antisymmetric states, respectively.
By changing the atom-surface distance, the damping rates of
the symmetric and -antisymmetric states can be modified, as
shown in Fig. 7. When the atoms are close to the surface,
the interatomic interaction is enhanced and the super-radiation
is suppressed. This result is physically reasonable and not
difficult to understand. The interatomic RI, as well as the
resonance energy transfer, is mediated by the virtual photon
exchange between the two atoms. If the radiation rate is large,
the spontaneous emission is enhanced, the atoms emit a photon

FIG. 7. The damping rates of atom-exchange-symmetric state
(γfree + γs,r + γc,d + γc,r) and -antisymmetric state (γfree + γs,r −
γc,d − γc,r) versus the dimensionless interatomic distance k0x12 for
different atom-surface distances. The distances from the two atoms
to the surface are equal (z1 = z2).
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very quickly, and then the excitation energy goes away. As a
consequence, the RI between atoms just vanishes. But when
the spontaneous radiation is suppressed, we can imagine that
a photon (or excitation energy, in other words) is “trapped” by
the atoms and can be exchanged many times. As a result,
the interatomic energy transfer and the RI are enhanced.
The control of the damping rate has potential applications
in quantum storage, building light sources and producing
entangled states.

With the examples given above, we show virtually the
change of the interatomic RI because of the NSE. These results
show that the effect of the surface can be notable when the
atoms are nearby, which agrees with the analysis in Sec. IV.

VI. CONCLUSION

Motivated by the development of research on the RI and
atom-chip technology, we investigate theoretically the NSE
exerted on the interatomic RI. We find that the surface
can sufficiently change the atomic damping rates and level
shifts. The change values are given by γc,r and δc,r, whose
values depend not only on the relative position of the two
atoms but also on the atom-surface distances. Because of
the contribution from Aab,r, the interatomic RI is tunable
by changing the atom-surface distance. When the atoms are

close to the surface, the interatomic RI can be sufficiently
enhanced. In this case, because of the strong interaction,
the energy exchange rate between the two atoms becomes
much larger than the decay rate of atomic excited states, so
the oscillation of the populations of atomic excited states
is observable. The frequency of population oscillation is a
function of atom-surface distance, which means the energy
exchange between two atoms is controllable by one surface.
This feature is very useful in production of the quantum
transmission devices. Furthermore, the spontaneous radiation
rates of atoms can be suppressed by the surface, which is
beneficial to produce quantum storage and entanglement. Our
results can help in understanding the dynamical evolution
of atoms near a surface and contribute to the production of
on-chip quantum devices.
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[7] M. Boström, S. Å. Ellingsen, I. Brevik, M. F. Dou, C. Persson,

and B. E. Sernelius, Eur. Phys. J. B 85, 377 (2012).
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