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Theoretical determination of the polarizability dispersion and the refractive index of helium
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The refractive index n of gaseous helium can be measured by optical interferometry so accurately that it can be
used to establish a pressure standard which is expected to be superior to the current standard based on the height
of a mercury column. The new standard requires knowledge of the dynamic polarizability of helium atom with
accuracy significantly higher than obtainable in the best experiments, but possible to achieve computationally.
Calculations of this quantity are presented at relativistic and quantum electrodynamics levels of theory including
relativistic nuclear recoil effects. The uncertainties of the results are carefully estimated. Our recommended value
of the dynamic polarizability at the He-Ne laser wavelength of 6329.908 Å, equal 1.39181197(14) a.u., has
uncertainty at least two orders of magnitude smaller than that of recent measurements and is sufficiently accurate
to establish a new pressure standard. Purely ab initio values of the refraction coefficient n are computed using
our polarizability, literature values of magnetic susceptibility, and dielectric virial coefficients. It is shown that
n − 1 can be predicted by theory as a function of density and temperature with uncertainty of 1 ppm for pressures
up to 3 MPa.
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I. INTRODUCTION

Future metrology standards are expected to be partly based
on physical quantities computed from first principles since
some observables, such as properties of the helium atom
and properties of bulk helium resulting from interactions
between helium atoms, can now be theoretically predicted with
accuracy rivaling and sometimes exceeding the best experi-
mental determinations. Examples include the ionization and
excitation energies [1] as well as the static polarizability of the
helium atom [2], or the virial coefficients describing departures
of helium from the ideal gas behavior [3]. High accuracy
theoretical values can also be used to calibrate experimental
apparatuses. An example of a possible metrology standard
utilizing theory input is the standard of temperature based on
acoustic gas thermometry [4]. One of the metrology standards
scheduled to be replaced in the near future is the current
standard of pressure which employs a mercury column, i.e.,
the pressure p is obtained from the measurement of the column
height h: p = ρgh, where ρ is the density of mercury and g

is the gravitational acceleration. Replacement of this standard
is desirable for several reasons: the toxicity of mercury, the
possibility of improving the accuracy [although the uncertainty
of the current standard is a fairly high 2.6 parts per million
(ppm)], and finally one would prefer a more portable equip-
ment than the current 3 m tall instrument containing 250 kg of
mercury [5]. It has been recently proposed [5,6] that a pressure
standard can be based on optical interferometry measurements
of the refractive index n of helium gas. For the ideal gas,
n = 1 + 2π (α + χ )ρ, where α is the polarizability and χ is
the diamagnetic susceptibility (also called magnetizability) of
the helium atom, whereas ρ is the particle density (number
of particles per unit volume). Combining this expression with
the ideal gas equation p = kTρ, where k is the Boltzmann
constant and T is temperature, we obtain

p = (n − 1)
kT

2π (α + χ )
. (1)

The quantities n, α, and χ depend on the radiation wavelength
λ, which is close to 6330 Å for the envisaged apparatus [7].
For a nonideal gas, one has to add small terms to the
right-hand side of Eq. (1) containing the second and possibly
third power of n − 1 and appropriate dielectric and density
virial coefficients [8].

The quantity n − 1 can be measured directly via optical
interferometry. The simplest apparatus consists of a Fabry-
Perot cavity of length L. One first performs a measurement
when the cavity is empty and the laser is tuned to achieve the
resonance condition 2L = mλ = mc/f0, where m is an integer
number and f0 denotes frequency. Then the measurement is
repeated with the cavity filled with helium. The wavelength
required for the resonance remains the same, which means
that the laser has now been tuned to another frequency
fp = v/λ = c/(nλ), where c and v are the speeds of light
in vacuum and in helium, respectively. Thus, n is determined
by the frequency ratio. One can also interpret this experiment
as measuring the apparent (optical) length of the cavity
L′ = mc/(2fp) equal to nL. This problem is equivalent to the
measurement of the displacement L′ − L = (n − 1)L, which
needs to be determined to within at least 1 ppm to achieve
a useful standard. Since n − 1 ≈ 3 × 10−5 and L ≈ 0.15 m,
the distance (n − 1)L = 4.5 μm has to be determined to
4.5 pm uncertainty, which is achievable using Fabry-Perot-
based metrology [9]. Actually, the envisaged apparatus will
use variable length cavities, one pressurized and three empty,
constructed in such a way that the end of each cavity can be
displaced by exactly the same amount. Measurements will be
performed at the same time for the filled and empty cavities,
one for the initial length of the cavities and another one for
the extended cavities. This eliminates the problem of the
change of length under pressure. Several factors contribute
to uncertainties, but can be controlled so that this method
does allow one to reach a better than 1 ppm accuracy in the
determination of n − 1 [6].

The product kT in Eq. (1), also needed to determine
pressure, is currently known with an uncertainty of 0.9 ppm
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near the triple point of water [10] and is the subject of
active research in the metrology community which may further
improve its accuracy.

The realization of the new standard requires also the
knowledge of α and χ . The static value of α can be measured
with an accuracy of about 9 ppm [8], clearly insufficient for
the projected accuracy of the standard and the only option at
the present time is to obtain this quantity from theory. Since
χ is five orders of magnitude smaller than α, it does not need
to be known very accurately and it can be computed using the
nonrelativistic ground-state wave function from the expression
χ = −e2〈r2〉/3mec

2, where e and me are the electron charge
and mass and 〈r2〉 is the expectation value of the square of
the electron-nucleus distance. The virial coefficients needed
when Eq. (1) is extended beyond the ideal gas case are known
accurately enough from theory [3,11]. The goal of the present
work was to compute the dynamic polarizability of helium
with an accuracy of 0.2 ppm which is sufficient for the initial
implementation of the standard and for its improved future
versions. We also analyze the values of the refractive index
determined purely from theory as functions of ρ and T . Such
values can be used to calibrate gas refractometers or to correct
errors in interferometric length measurements [12].

An abridged account of our work has recently been
published [13]. In the present paper we provide details of
the derivations of the formulas used, discuss convergence of
our calculations in basis set size, and demonstrate how the es-
timates of uncertainties were obtained. We also present results
for the 3He isotope to enable corrections of measurements
for such impurity. We have computed some new contributions
relative to Ref. [13], representing the QED correction to the
polarizability dispersion at the order 1/c3. These contributions
turned out to be larger than we have estimated in Ref. [13]
and therefore our new value of α(λ) at λ = 6329.908 Å
is slightly outside the uncertainty range given in Ref. [13].
Finally, we discuss in detail the expansion of n in powers of
ρ, investigating several terms that are usually not considered
but might give nonnegligible contributions at 0.1 ppm level.

Many calculations of the helium atom polarizability have
been published, but none of them has achieved the required
accuracy of 0.2 ppm. In order to discuss literature results we
start with defining the various contributions to this quantity.
Since the angular frequency ω of the laser radiation used in
the envisaged pressure standard is about 10 times smaller
than the first resonance of the helium atom, the frequency
dependence of α can be efficiently calculated from the power
series expansion:

α(ω) = α0 + α2 ω2 + α4 ω4 + · · · , (2)

where α0 is the static dipole polarizability. We will later
see that this series indeed converges so quickly that only
a few lowest terms are needed even with our very high
accuracy goal in mind. The coefficients αk , k > 0, describing
the dispersion of the dynamic polarizability, will be referred
to as the polarizability dispersion coefficients, or dispersion
coefficients for short. We shall use the atomic unit a3

0 , where a0

is the Bohr radius a0 = �
2/(mee

2), as the unit of polarizability,
and the inverse of the atomic unit of time t0 = �

3/(mee
4), as

the unit of frequency. For comparison with experiments, it is

convenient to convert the frequency to the wavelength, so that

α(λ) = A0 + A2 λ−2 + A4 λ−4 + · · · , (3)

where Ak = (2πc)k αk , c being the velocity of light. When
the wavelength is measured in Å, and time in atomic units t0,
then the conversion factor 2πc can be conveniently written
as f Å/t0, where f is a dimensionless constant which can
be expressed in terms of the very accurately known Rydberg
constant R∞ [10], namely f = 5 × 107 R−1

∞ cm−1. In this
work we used the value f = 455.633525275.

For the light systems like helium, each αk can be expanded
in powers of the fine structure constant e2/(�c),

αk = α
(0)
k + α

(2)
k + α

(3)
k + · · · , (4)

α
(l)
k being proportional to the lth power of this constant. Since

the fine structure constant is equal to c−1 expressed in atomic
units, to avoid notational clash with polarizability, we will
use c−1 to denote the fine structure constant and from now
on c will be treated as a dimensionless parameter equal to
137.0359991 [10]. Thus, each α

(l)
k is proportional to c−l . We

shall refer to α
(2)
k as the relativistic corrections. The corrections

α
(3)
k , α

(4)
k , etc., are due to radiative as well as higher-order

relativistic effects predicted by quantum electrodynamics
(QED), and will be referred to as the QED effects.

The nuclear mass dependence of the nonrelativistic polar-
izability α

(0)
k can be taken into account exactly, but for the

relativistic and QED corrections one has to use an expansion
in powers of the ratio of the electron mass me to the nuclear
mass mα , i.e., in powers of 1/M = me/mα . Apparently no
derivation of these effects has been published, so it will be
included in the present paper. Since 1/M is of the order of
10−4, keeping the linear term is entirely sufficient and the
relativistic corrections can be represented in the form

α
(l)
k = α

(l0)
k + α

(l1)
k , l � 2, (5)

where α
(l0)
k are computed with the infinite nuclear mass and

α
(l1)
k are corrections of the order of 1/(Mcl), referred to as

the recoil corrections. These recoil corrections are expected
to be negligible except for the static ones α

(21)
0 and α

(31)
0 and,

possibly, for the leading relativistic recoil correction α
(21)
2 to

the polarizability dispersion.
The most recent, high-accuracy theoretical determination of

the static polarizability of helium has been reported in Ref. [2].
The nonrelativistic value α

(0)
0 = 1.383809986 a3

0 obtained in
this reference agrees with an earlier result of Pachucki and
Sapirstein [14] and is accurate up to nine digits, which is more
than sufficient for our 0.2 ppm accuracy goal.

Calculations of the relativistic correction α
(2)
0 have been

reported in Refs. [2,14–17]. The earlier calculations of
Refs. [15,16] are now known to be insufficiently accurate,
whereas the values from Refs. [2,14,17] are mutually con-
sistent and accurate up to 0.03 μa3

0 (μa3
0 ≡ 10−6 a3

0). This
uncertainty contributes only 0.02 ppm to the total error budget
of α. One should point out, however, that the calculations of
Refs. [2,14,17] neglected the recoil correction α

(21)
0 , i.e., the

nuclear mass dependence of α
(2)
0 . This recoil effect has been

estimated in Ref. [2] to amount to −0.07(2)μa3
0 (the last one
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or two digits in parentheses will always denote the uncertainty
estimate of the quoted result).

The QED correction α
(30)
0 was calculated by Pachucki and

Sapirstein [14] neglecting the electric-field dependence of the
Bethe logarithm. The neglected effect, relatively small but hard
to compute, was considered in Ref. [2] and found to contribute
only 0.193(2) μa3

0 to the static polarizability. This value,
resulting from cancellations of much larger terms, represents
only about 0.6% of the total QED correction α

(30)
0 . Since

the computed effect, i.e., the second electric-field derivative
of Bethe logarithm, was unexpectedly small (Pachucki and
Sapirstein [14] estimated its contribution to α

(30)
0 at 10%

of α
(30)
0 ) we decided to verify the result of Ref. [2] by an

independent calculation [18]. The result of this calculation,
equal to 0.183(1) μa3

0 , confirms that the considered effect
is indeed very small. The change in the total polarizability
resulting from using the improved value of the second electric
field derivative of Bethe logarithm amounts to −0.010 μa3

0 (or
0.007 ppm of the total value) and is practically negligible.

An accurate calculation of the next order QED correction
α

(40)
0 would be extremely complicated and was not reported

in the literature. In Ref. [2] α
(40)
0 was approximated by

the electric-field derivative of the one-loop contribution to
the Lamb shift [2,19]. The error of this approximation was
assumed to be at 40% level [2]. Later, Pachucki found [1] that
the error of an analogous approximation, applied to excitation
energies of helium atom, is only about 5%. Therefore, in the
present work we reduced the estimated error of α

(40)
0 from 40%

to 25%, which we believe is still conservative. This results in
a contribution to the total uncertainty amounting to 0.14 μa3

0
or 0.1 ppm, which dominates our uncertainty budget.

The dispersion coefficients αk (k = 2,4,6) were calculated
thus far only by Bhatia and Drachman (BD)—first at the
nonrelativistic level [20] and then with the inclusion of the
leading relativistic correction [16]. These authors did not
provide any estimates of the uncertainty of the obtained results.
Their relativistic corrections do depend on the nuclear mass but
the recoil effect α(21)

k was not correctly taken into account (also
for k = 0) since the form of the Breit-Pauli Hamiltonian used
by Bathia and Drachman did not have the proper (complete
through the 1/M terms) dependence on the nuclear mass. In
Ref. [16], Bhatia and Drachman reported also the values of the
Ak coefficients from Eq. (3). These coefficients were, however,
incorrectly converted from the reduced Rydberg units used in
the calculations. The mass dependent factor (1 + me/mα)k ,
appearing in the correct conversion formula, was erroneously
replaced by its square (1 + me/mα)2k .

The plan of this paper is as follows. In Sec. II we review
theory of helium dynamic polarizability at the nonrelativistic
level. In Sec. III we derive the relativistic corrections to
this quantity, in particular their nuclear mass dependence
(relativistic nuclear recoil effects). In Sec. IV we define an
approximate QED correction to the polarizability dispersion
computed in this work. The numerical details such as the
functionals used to optimize wave functions and the choice
of basis sets are discussed in Sec. V. Section VI A presents our
results for the polarizability and in Sec. VI B we compare these
results with experiment. Section VI C presents expressions
defining the virial expansion for the refractive index, while

in Sec. VI D we compare such first-principles expansion to
experimental data.

II. NONRELATIVISTIC LEVEL OF THEORY

The frequency-dependent dipole polarizability α(ω) of an
atom in a quantum state ψ is defined by the expression

α(ω) = 〈ψ |zR(ω)zψ〉 + 〈ψ |zR(−ω)zψ〉, (6)

where z is the operator of the dipole coupling with the external
electric field oscillating with the frequency ω, R(ω) is the
frequency dependent reduced resolvent of the Hamiltonian H

(possibly relativistic),

R(ω) = Q (QH − E + ω)−1, (7)

Q = 1 − |ψ〉〈ψ |, and E is the energy of the state ψ . For
the helium atom, z = z1 + z2, where zi is the z coordinate of
the vector pointing from the nucleus to the ith electron. The
frequency-dependent resolvent satisfies the identity

R(ω) = R − ωRR(ω), (8)

where R = Q (QH − E)−1 is the static reduced resolvent of
H . Iterating Eq. (8), one obtains the power series expansion

R(ω) =
∞∑

k=0

(−ω)k Rk+1, (9)

which converges for ω smaller than the first resonance
frequency. When this expansion is inserted into the defini-
tion (6), one obtains the following expression for the dispersion
coefficients αk:

αk = 2 〈ψ |zRk+1z|ψ〉, k = 0, 2, 4, . . . . (10)

At the nonrelativistic level of theory the resolvent R in
Eq. (10) is replaced by the reduced resolvent

R0 = Q0 (Q0H0 − E0)−1, (11)

of the nonrelativistic Hamiltonian

H0 = −1

2
∇2

1 − 1

2
∇2

2 − 1

2M
(∇1 + ∇2)2 − 2

r1
− 2

r2
+ 1

r12
,

(12)

and the wave function ψ by the eigenfunction ψ0 of this
Hamiltonian corresponding to the eigenvalue E0. The projector
Q0 in Eq. (11) is defined as Q0 = 1 − |ψ0〉〈ψ0|. The resulting
nonrelativistic expression for α

(0)
k ,

α
(0)
k = 2 〈ψ0|zRk+1

0 z|ψ0〉, (13)

includes the finite nuclear mass effect exactly, i.e., to infinite
order in 1/M . In Eq. (12) and in all further equations we use
atomic units unless otherwise stated.

The basis-set-independent formula (13) corresponds to the
matrix definition of Eq. (5) from the paper of Bhatia and
Drachman [16], based on pseudospectral expansion and given
in the reduced Rydberg units. Atomic structure calculations are
often performed in such units obtained by replacing the elec-
tron mass me with the reduced mass μe = me/(1 + me/mα) in
the definition of the reduced bohr or reduced hartree. However,
when the mass-dependent term −(∇1 + ∇2)2/(2M) in the
nonrelativistic Hamiltonian is included, there is no advantage
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of using the reduced units. Moreover, when relativistic and
QED corrections are considered, the use of the reduced units
may easily lead to misunderstandings. Therefore, we never use
the reduced units in the present work.

III. RELATIVISTIC CORRECTIONS

To account for the leading relativistic corrections of the
order of 1/c2, we add to the nonrelativistic Hamiltonian of
Eq. (12) the perturbation consisting of appropriate terms from
the Breit-Pauli Hamiltonian [21,22]. For singlet states, this
perturbation can be taken in the form

B = B1 + B2, (14)

where

B1 = − 1

8c2

(∇4
1 + ∇4

2

) + π

c2
[δ(r1) + δ(r2)] + π

c2
δ(r12)

+ 1

2c2

[∇1r
−1
12 ∇2 + (∇1r12)r−3

12 (r12∇2)
]

(15)

is the infinite-nuclear-mass Breit-Pauli operator [21], and

B2 = 1

Mc2

[∇1r
−1
1 ∇1 + (∇1r1)r−3

1 (r1∇1) + ∇1r
−1
1 ∇2

+ (∇1r1)r−3
1 (r1∇2) + ∇2r

−1
2 ∇1 + (∇2r2)r−3

2 (r2∇1)

+∇2r
−1
2 ∇2 + (∇2r2)r−3

2 (r2∇2)
]

(16)

is the electron-nucleus Breit (orbit-orbit) interaction of the
order of 1/(Mc2) [22]. Note that we wrote the last term in B1

and the whole B2 in a manifestly Hermitian form. Commuting
the appropriate operators, one can show that these forms are
equivalent to those used in Refs. [21,22]. The complete Breit-
Pauli Hamiltonian contains also terms of the order of 1/(M2c2)
and 1/(M3c2), but these are completely negligible for helium
polarizability at the current accuracy goals and need not be
considered in this work.

The total atomic Hamiltonian in the Breit-Pauli approxima-
tion can now be written as

HBP = H0 + H1 + B1 + B2, (17)

where H0 is the Hamiltonian of Eq. (12) with M = ∞, i.e., it
is the infinite nuclear mass Hamiltonian, and

H1 = −(∇1 + ∇2)2/2M. (18)

From now on H0 will always denote the infinite nuclear mass
Hamiltonian. The infinite-nuclear-mass relativistic correction
α

(20)
k is obtained from the Hamiltonian H0 + B1 by considering

the contribution linear in B1, while the recoil correction α
(21)
k ,

of the order of 1/Mc2, is obtained from the full Hamiltonian
of Eq. (17) by considering the contribution linear in B2 and
the contribution bilinear in H1 and B1.

A. Infinite nuclear mass

To obtain expressions for α
(20)
k , we start from Eq. (10) with

R interpreted as the reduced resolvent of the Hamiltonian
H = H0 + B1 and ψ as an eigenfunction of this Hamiltonian,
and subsequently extract terms linear in B1. Expanding R and
ψ redefined in such a way in powers B1 (or 1/c2) one obtains

ψ = ψ0 − R0B1ψ0 + O(1/c4) (19)

and

R = R0 − R0B1R0 + R2
0B1P0 + P0B1R2

0 + O(1/c4),

(20)

where ψ0 is the ground-state wave function of H0, R0 is the
reduced resolvent of H0, B1 = B1 − 〈ψ0|B1ψ0〉, and P0 =
|ψ0〉〈ψ0|.

When Eqs. (19) and (20) are inserted into Eq. (10), the last
two terms in Eq. (20) do not contribute and after extracting the
terms linear in B1 one obtains

α
(20)
0 = −4 〈ψ0|B1R0zR0zψ0〉 − 2 〈ψ0|zR0B1R0zψ0〉,

(21)

α
(20)
2 = −4

〈
ψ0

∣∣B1R0zR3
0zψ0

〉 − 4
〈
ψ0

∣∣zR0B1R3
0zψ0

〉
− 2

〈
ψ0

∣∣zR2
0B1R2

0zψ0
〉
, (22)

α
(20)
4 = −4

〈
ψ0

∣∣B1R0zR5
0zψ0

〉 − 4
〈
ψ0

∣∣zR0B1R5
0zψ0

〉
− 4

〈
ψ0

∣∣zR2
0B1R4

0zψ0
〉 − 2

〈
ψ0

∣∣zR3
0B1R3

0zψ0
〉
,

(23)

α
(20)
6 = −4

〈
ψ0

∣∣B1R0zR7
0zψ0

〉 − 4
〈
ψ0

∣∣zR0B1R7
0zψ0

〉
− 4

〈
ψ0

∣∣zR2
0B1R6

0zψ0
〉 − 4

〈
ψ0

∣∣zR3
0B1R5

0zψ0
〉

− 2
〈
ψ0

∣∣zR4
0B1R4

0zψ0
〉
, (24)

where we used the fact that all integrals are real. Relativistic
corrections α

(20)
k , k � 8, give a negligible contribution for the

relevant frequencies.

B. Recoil corrections

The relativistic recoil corrections can be calculated directly
as the 1/(Mc2) term in the perturbation expansion based on
the Hamiltonian partitioning of Eq. (17). Since the perturbation
operators H1, B1, and B2 are proportional to 1/M , 1/c2, and
1/(Mc2), respectively, each recoil correction α

(21)
k is the sum

of the part linear in B2, denoted by α
(21)
k (B2), and of the bilinear

term α
(21)
k (H1B1),

α
(21)
k = α

(21)
k (B2) + α

(21)
k (H1B1). (25)

The linear part α
(21)
0 (B2) can be derived in the same way

as the term α
(20)
0 . We interpret Eq. (10) as based on the

Hamiltonian H = H0 + B2, expand R and ψ in powers of
B2, and extract terms linear in B2. In this way we obtain

α
(21)
0 (B2) = −4 〈ψ0|B2R0zR0zψ0〉 − 2 〈ψ0|zR0B2R0zψ0〉.

(26)

To obtain the bilinear part α(21)
0 (H1B1), we proceed in a similar

way. We interpret Eq. (10) as based on the Hamiltonian H =
H0 + B1 + H1, expand R and ψ in powers of B1 and H1,
and extract terms bilinear in B1 and H1. It is convenient to do
this in two stages. First we expand in powers of B1 keeping
H0 + H1 together. One obtains then the expression of the form
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of Eq. (21) with R0 and ψ0 interpreted as the resolvent and
wave function of the Hamiltonian H0 + H1. Expanding this

formula in powers of H1 and retaining the linear part in H1

one obtains the desired expression for α
(21)
0 (H1B1):

α
(21)
0 (H1B1) = 4〈ψ0|zR0zR0H 1R0B1ψ0〉 + 4 〈ψ0|zR0zR0B1R0H1ψ0〉 + 4〈ψ0|zR0H 1R0zR0B1ψ0〉

+ 4 〈ψ0|zR0B1R0zR0H1ψ0〉 + 4〈ψ0|zR0H 1R0B1R0zψ0〉 + 4 〈ψ0|H1R0zR0zR0B1ψ0〉
− 4〈ψ0|zR0zψ0〉

〈
ψ0

∣∣H1R2
0B1ψ0

〉 − 4
〈
ψ0

∣∣zR2
0zψ0

〉〈ψ0|H1R0B1ψ0〉, (27)

where H 1 = H1 − 〈ψ0|H1ψ0〉.
The sum of Eqs. (26) and (27) represent the rigorous

definition of the recoil correction α
(21)
0 . However, since H1

is small, α
(21)
0 (H1B1) can be obtained with sufficient accuracy

from the finite difference expression

α
(21)
0 (H1B1) ≈ α

(20)
0 (H0 → H ) − α

(20)
0 , (28)

where α
(20)
0 (H0 → H ) denotes the expression of Eq. (21) in

which the resolvent and wave function are computed with the
full nonrelativistic Hamiltonian H = H0 + H1. The difference
between this approximate expression and the exact expression
of Eq. (27) is of order of 1/(M2c2) and is negligible for
our purposes. In practice we computed α

(21)
0 (H1B1) from

Eq. (28).
We also considered the relativistic recoil correction to

the polarizability dispersion α
(21)
2 . Its linear part α

(21)
2 (B2)

can be obtained from the formula of Eq. (22) with B1

replaced by B2. Instead of the exact expression for the
bilinear part α

(21)
2 (H1B1), which is quite complicated, it is

more convenient to use the finite difference formula similar to
Eq. (28),

α
(21)
2 (H1B1) ≈ α

(20)
2 (H0 → H ) − α

(20)
2 , (29)

where now α
(20)
2 (H0 → H ) denotes the expression of Eq. (22)

in which the resolvent and wave function are computed
with the full nonrelativistic Hamiltonian H = H0 + H1. The
right-hand side of Eq. (29) is of infinite order in H1 and differs
from α

(21)
2 (H1B1) by negligible terms of the order of 1/(M2c2).

The correction α
(21)
2 turned out to be so small that recoil

corrections to higher dispersion coefficients can be assumed
to be negligible.

IV. QED AND FINITE NUCLEAR SIZE CORRECTIONS

An accurate calculation of the QED contribution α
(30)
2

to the dispersion coefficient α2 is very complicated and
is beyond the scope of this work. An estimate of the
size of this correction can be obtained, however, using the
approximation employed by Pachucki and Sapirstein [14] in
their calculations of the QED correction to the polarizability.
In this approximation, the electric-field dependence of the
Bethe logarithm is neglected and the QED correction to the
polarizability is calculated in the same way as the leading
relativistic correction of the order of 1/c2, except that the 1/c2

components of the Breit-Pauli operator are replaced by the
effective QED operators of the order of 1/c3. These operators

are [14]

C1 = 1

c3

8

3

(
19

30
− 2 ln

1

c
− ln k0

)
[δ(r1) + δ(r2)], (30)

C2 = 1

c3

(
164

15
+ 14

3
ln

1

c

)
δ(r12), (31)

C3 = − 1

c3

7

6π
P

(
r−3

12

)
, (32)

where ln k0 is the atomic (electric-field independent) Bethe
logarithm and P (r−3

12 ) is the operator distribution defined via
its matrix elements as [23,24]

〈φ1|P
(
r−3

12

)
φ2〉 = lim

a→0
〈φ1|[θ (r12 − a)r−3

12 + 4π (γ + ln a)

× δ(r12)]φ2〉, (33)

with γ denoting the Euler-Mascheroni constant and θ (x) the
Heaviside step function.

When the operator B1 in Eqs. (21) and (22)–(24) is replaced
by the sum of the operators C1, C2, and C3 one obtains the
expressions for approximate values of the corrections α

(30)
0

and α
(30)
k , k > 2. Pachucki and Sapirstein assumed [14] that

the error of their approximation applied to α
(30)
0 is 10%. We

now know [2,18] that this error is actually much smaller and
amounts to only about 0.6%. We conservatively assume that
the error of the Pachucki-Sapirstein approximation applied to
α

(30)
k , k = 2,4,6, is also less than 10%. In view of the smallness

of this QED effect, this level of accuracy is more than sufficient
for the purpose of the present work.

Although the static relativistic recoil correction α
(21)
0 is

already quite small (it enters at the 0.1 ppm level) we also
considered the static QED recoil correction α

(31)
0 , since the

smallness of the former results from some cancellations of
large contributions, see Sec. VI A. This correction can be
computed by differentiating the corresponding energy expres-
sion [25,26] with respect to the electric field. We performed
calculations of approximate value of α

(31)
0 neglecting the

electric field dependence of Bethe logarithm and found it to
be about 10 times smaller than the effect of relativistic recoil
α

(21)
0 . We have not added this preliminary value of α

(31)
0 to our

recommended value of the static polarizability but included it
in the total error budget of our calculation.

We have also computed the correction for finite nuclear size.
This is a nonrelativistic effect but it can be easily obtained
as a byproduct of the relativistic or QED calculation. This
correction is defined as the second electric-field derivative
of the following expression for the corresponding energy
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shift [27]:

δEf.s. = 4π

3
r2
α 〈ψ | δ(r1) + δ(r2) |ψ〉, (34)

where rα = 1.676 fm [28] is the nuclear charge radius of 4He.

V. COMPUTATIONAL DETAILS

To evaluate the expressions for the nonrelativistic polar-
izabilities α

(0)
k and the relativistic corrections α

(2i)
k , i = 0,1,

we need an accurate representation of the helium ground-state
wave functions ψ0 and ψ of H0 and H0 + H1, respectively.
These functions were obtained by minimizing the conventional
Rayleigh-Ritz functional for the Hamiltonians H0 and H ,
respectively. We also need several auxiliary functions. The
functions φ

(k)
0 = Rk

0zψ0, k = 1, . . . ,7, were obtained recur-
sively by minimizing the following Hylleraas functionals:

J
(k)
0 [φ̃] = 〈φ̃|H0 − E0|φ̃〉 − 2

〈
φ̃
∣∣φ(k−1)

0

〉
, (35)

whereas the functions ξ
(k)
0 = R0zφ

(k)
0 , k = 1, . . . ,7, were

obtained using the functionals

K
(k)
0 [̃ξ ] = 〈̃ξ |H0 − E0 + P0 |̃ξ〉 − 2

〈̃
ξ
∣∣Q0zφ

(k)
0

〉
. (36)

The analogous functions φ(k) = Rkzψ and ξ (k) = Rzφ(k), k =
1, . . . ,7, defined with the full nonrelativistic Hamiltonian H =
H0 + H1, were computed using the functionals obtained from
Eqs. (35) and (36), respectively, by dropping the subscripts 0.

The trial functions used in all minimization processes
were expanded as linear combinations of the so-called Slater
geminals

(1 + P12) Y (r1,r2)
N∑

i=1

ci exp(−αi r1 − βi r2 − γi r12),

(37)

where P12 is the electron permutation operator while Y (r1,r2)
is equal to z1 in the calculations of φ

(k)
0 or φ(k) and to 1 in

the calculations of ξ
(k)
0 or ξ (k). The functions ξ

(k)
0 contain both

S- and D-symmetry components since φ
(k)
0 have P symmetry.

However, the D-wave component does not contribute to the
matrix elements needed to evaluate α

(l0)
k or α

(l1)
k . Therefore,

we expanded the trial functions ξ̃ in a basis of S symmetry
only. We included the projector P0 in the quadratic term of
Eq. (36) to make the optimized functions orthogonal to ψ0.
This projector would impose exact orthogonality if ξ̃ and ψ0

were expanded in the same basis. In practice, orthogonality
violation is so small that there is no need to perform projection
after optimization. We have chosen the basis of Slater geminals
as it leads to higher accuracy and shorter expansions, when
compared to the Gaussian-geminal basis [29], and simpler
integral expressions [30–32] when compared to the Hylleraas
basis set.

The linear coefficients ci were obtained using standard
linear algebra algorithms, while to determine the nonlinear
parameters we employed two strategies: the full optimization
(FO), when all nonlinear parameters defining the basis set are
fully optimized, and the stochastic optimization (SO), when
the nonlinear parameters for basis function are chosen in a
quasistochastic way.

In each step of the FO procedure, parameters of one basis
function were optimized using the Powell method [33], while
other functions were kept fixed. After all functions were
optimized in this way, the process was repeated and many
passes over all functions were done until the convergence
was reached. Using this procedure we obtained a 600-term
basis set of S symmetry resulting in the ground-state en-
ergy E0 = −2.903724377034119574 for the infinite nuclear
mass Hamiltonian, differing only by 2.4 × 10−17 from the
most accurate literature value [34]. The wave function ψ0

corresponding to this energy, and the nuclear mass dependent
function ψ expanded in the same basis set, were used in full
optimizations of all auxiliary functions and in calculations
of the relativistic corrections. The basis sets for auxiliary
functions optimized with infinite nuclear mass were used
without further reoptimizations in calculations with finite
nuclear masses, except as noted later.

The SO approach [35–38] generates nonlinear parameters
pseudorandomly from intervals whose positions and sizes are
optimized. In the simplest implementation, the parameters
αi , βi , γi of each basis function are pseudorandomly gen-
erated with a uniform distribution from a three-dimensional
box [A1,A2] × [B1,B2] × [C1,C2]. The parameters were con-
strained by αi + βi > ε, βi + γi > ε, γi + αi > ε, with ε =√

2 I , where I is the ionization potential of helium. This
ensures that the wave function for r1,r2 → ∞ falls off
sufficiently rapidly to represent a bound state. If a randomly
generated geminal fails to fulfill these requirements, it is
rejected and another one is generated until the conditions
are met. One can achieve a considerably higher accuracy
by using two boxes with 50% of parameters in each box.
While the 12 parameters characterizing these boxes, i.e., A

j

i ,
B

j

i , C
j

i , i,j = 1, 2, were optimized without any restrictions
(negative values of A

j

1, B
j

1 , C
j

1 were allowed), the two
boxes optimized to ranges modeling the short-range and
medium-range asymptotics of the helium wave functions.
Unlike the case of calculations involving the FO procedure,
the ground-state functions used in the SO optimizations and in
the calculations of polarizability components were expanded
in basis sets of varying size, with the basis sets, used for
auxiliary functions, always 50% larger than the basis sets used
for the ground-state functions. The best ψ0 function obtained
by the stochastic approach with 800 basis functions gives the
energy E0 = −2.90372437703411927 differing from that of
Ref. [34] by about 3 × 10−16.

While the optimizations of the basis sets for the auxiliary
functions in the FO method were performed separately for each
such function, in the SO approach we optimized the nonlinear
parameters using the functionals of Eqs. (35) and (36) only
for φ

(1)
0 = R0zψ0 and ξ

(1)
0 = R0zφ

(1)
0 . The same nonlinear

parameters were then used in the evaluation of all functions
with k > 1. After φ

(1)
0 was optimized, the Hamiltonian H0 was

diagonalized in the basis set obtained in this optimization. The
resulting eigenvectors ψ̃i (pseudostates) and energies Ẽi were
used to construct powers of the resolvent

R̃k
0 ≡

∑
i �=0

|ψ̃i〉〈ψ̃i |
(Ẽi − E0)k

, (38)
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where E0 is still the eigenvalue of ψ0 obtained from Rayleigh-
Ritz minimization. The functions φ

(k)
0 for k > 1 were obtained

directly from φ
(k)
0 = R̃k−1

0 φ
(1)
0 and the resolvent power of

Eq. (38), rather than from Eq. (35). We proceeded similarly
in the case of functions ξ

(k)
0 , i.e., the basis expanding ξ

(1)
0

was nonlinearly optimized using Eq. (36) and then ξ
(k)
0 were

obtained directly from ξ
(k)
0 = R̃0 z R̃k−1

0 φ
(1)
0 .

The full optimization allowed us to use smaller basis
sets than the stochastic one, however it was more time
consuming. All nonlinear optimizations were performed with
infinite nuclear mass, except for the FO calculations with 600
basis functions, when the finite mass was used. To eliminate
possibilities of numerical errors, the FO and SO programs were
written completely independently by different authors of this
work. Also the integral and linear algebra subroutines adopted
in the SO and FO programs were different.

For the ratio of alpha particle and electron masses, we
assumed the recent CODATA value [10]: M = mα/me =
7294.2995361.

VI. NUMERICAL RESULTS AND DISCUSSION

A. Polarizability

Table I shows the basis set convergence of the nonrela-
tivistic polarizability coefficients α

(0)
k for k = 0,2,4,6, using

basis sets up to N = 600 (1200) for the FO (SO) approach.
As expected, the full optimization gives a faster convergence.
This happens despite the fact that the auxiliary basis sets were
50% larger for the stochastic optimizations. Note also that
the two approaches used a different strategy concerning the

TABLE I. Basis set convergence of the nonrelativistic polariz-
ability dispersion coefficients α

(0)
k for 4He (in atomic units a3

0 t
k
0 ). The

basis sets were optimized with infinite nuclear mass, except as noted.

N a,b FO SO

200 1.383809986297 1.383809985180
α

(0)
0 400 1.383809986406 1.383809986360

600 1.383809986408 1.383809986406
800 1.383809986408

200 1.543210818712 1.543210804681
α

(0)
2 400 1.543210818742 1.543210818331

600 1.543210818814 1.543210818782
800 1.543210818816

200 2.042655014893 2.042654953070
α

(0)
4 400 2.042655014971 2.042655012581

600 2.042655014972 2.042655014745
800 2.042655014989

200 2.930406844 35 2.930406814988
α

(0)
6 400 2.930406997915 2.930406988863

600 2.930406997989c 2.930406996551
800 2.930406997993

aIn the FO calculations N -term basis set was used for auxiliary
functions. For ψ0 a 600-term basis was always used.
bIn the SO calculations N -term basis was used for ψ0. For auxiliary
functions 3N/2 terms were used.
cThe nonlinear optimization with the 4He nuclear mass.The opti-
mization with the infinite nuclear mass gives 2.930406997918.

TABLE II. Comparison of the recommended values of the
nonrelativistic polarizability dispersion coefficients α

(0)
k for 4He (in

a3
0 t

k
0 ) with the results of Bhatia and Drachman [20,39] converted from

the reduced Rydberg to atomic units. The numbers in parentheses
denote uncertainties at the last digit estimated as described in the
text.

BD Present

α
(0)
0 1.383809991a 1.383809986408(1)

α
(0)
2 1.543210859a 1.54321081882(1)

α
(0)
4 2.04257748b 2.0426550150(1)

α
(0)
6 2.9304058b 2.9304069980(7)

aReference [39].
bReference [20].

ground-state functions used in the optimization: always of
size 600 in FO, but variable and equal to 2/3 of the size of the
auxiliary basis in SO. In the iterative process, the size of all
auxiliary basis sets was the same for all functions φ

(k)
0 and ξ

(k)
0 ,

k = 1,2, . . . ,7. The largest basis sets in both approaches give
about the same number of convergent digits, ranging from 13
for k = 0 to about 10–11 for k = 6. The recommended values
of α

(0)
k are listed in Table II together with their uncertainties

taken as half of the difference between the results in the two
largest SO basis sets (we will use the same method for all other
uncertainties resulting from basis set incompleteness in the
remainder of this paper). The comparison with the FO results
shows that these estimates are very conservative and the true
uncertainties are likely an order of magnitude smaller.

In Table II our recommended values of the nonrelativistic
polarizability dispersion coefficients α

(0)
k are compared with

the data obtained by Bhatia and Drachman [20,39] with Hyller-
aas bases of up to 525 functions [39]. These authors did not
provide any estimations of uncertainties of their results. Our
values, being significantly more accurate, confirm generally
good, seven to nine significant digits accuracy of the calcula-
tions of Bhatia and Drachman. An exception is their value of
α

(0)
4 , which is accurate only to about four digits. Using the SO

procedure, we also calculated the next four coefficients: α(0)
8 =

4.39500532(1), α
(0)
10 = 6.7725956(1), α

(0)
12 = 10.622083(1),

and α
(0)
14 = 16.86118(1) a.u., where the numbers in parentheses

are estimated uncertainties at the last digit. These coefficients
will not be needed for the experiments that motivated the
present work, but may be of interest for other applications.

Table III presents the basis set convergence of the relativistic
corrections α

(20)
k for k = 0,2,4,6. As can be seen, the conver-

gence is much slower than in the case of the nonrelativistic
calculations. This is due to the fact that the relativistic
corrections contain the operator B1 and the functionals used
by us to optimize wave functions do not. Therefore, the
functionals are not sensitive to wave function values in
some areas of the configuration space relevant for α

(20)
k .

Since the relativistic operators are highly singular, we cannot
use them to optimize auxiliary functions. Table III shows that
the SO procedure leads now to a faster convergence than
FO. This can be explained by the fact that the randomly
chosen exponents cover space more uniformly and are less
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TABLE III. Basis set convergence of the relativistic corrections
α

(20)
k to the polarizability of helium in units of 10−6 × a3

0 t
k
0 . All results

correspond to infinite nuclear mass.

N a FO SO

200 − 80.36522 − 80.36069
α

(20)
0 400 − 80.35895 − 80.35988

600 − 80.35992 − 80.35990
800 − 80.35991

200 − 33.05372 − 33.06922
α

(20)
2 400 − 33.06159 − 33.06601

600 − 33.06535 − 33.06572
800 − 33.06576

200 5.16633 5.04608
α

(20)
4 400 5.02018 5.04504

600 5.05884 5.05114
800 5.05105

200 63.04596 62.85627
α

(20)
6 400 62.86418 62.79715

600 62.82590 62.85095
800 62.85003

aSee Table I for details on sizes of basis sets.

biased towards an accurate representation of the nonrelativistic
auxiliary functions than the FO exponents. Consequently, SO
bases can also be effective in describing those parts of the wave
function that are important for the evaluation of the expectation
values of relativistic operators. One should, however, also take
into account that in each row of Table III the SO auxiliary
bases were 50% larger than the FO ones. Thus, we used the SO
results to propose the recommended values of the relativistic
corrections and to estimate the corresponding uncertainties.
Nevertheless, the agreement between FO and SO results is
still very good, to about six, five, three, and three digits for
k = 0,2,4,6, respectively, more than sufficient for the accuracy
goals of the present work. Also, for k = 0 the FO result is
within the estimated uncertainty of the SO result.

In Table IV our recommended values of the terms α
(20)
k are

compared with substantially less accurate results of Bhatia and
Drachman [16] published without error bars. The BD values
agree with ours to two, two, and one digit for k = 0,2,4,

TABLE IV. Comparison of our recommended values of the
relativistic corrections α

(2i)
k to the polarizability of 4He with the

results of Bhatia and Drachman [16] converted from the reduced
Rydberg to the atomic units. All values in units of 10−6 × a3

0 t
k
0 .

BD Present

α
(20)
0 − 80.062 − 80.35991(1)

α
(21)
0 − 0.0935(1)a

α
(20)
2 − 32.629 − 33.06576(2)

α
(21)
2 − 0.144(1)a

α
(20)
4 4.814 5.05105(5)

α
(20)
6 62.8500(5)

aUncertainties are due to approximations made in Eqs. (28) and (29).

respectively. Several accurate calculations of the relativistic
corrections to the static polarizability have been recently
reported in the literature [2,14,17]. The results of these
calculations, amounting to −80.34(2) [17], −80.358(27) [14],
and −80.35(2) [2], are consistent with our more accurate value
−80.35991(1). Units of 10−6 × a3

0 t
k
0 (or μa3

0 t
k
0 ) are used here

and in subsequent discussions when we refer to relativistic
corrections.

Table IV also presents the relativistic recoil corrections α
(21)
0

and α
(21)
2 . The recommended value of the static correction

α
(21)
0 = −0.0935 μa3

0 results from some cancellation of its
components α

(21)
0 (H1B1) and α

(21)
0 (B2), equal to 0.1559 and

−0.2494, respectively. The recoil correction α
(21)
2 to the

leading dispersion coefficient is equal to −0.144 μa3
0 t

2
0 . Also

in this case, we observe a cancellation of the components
α

(21)
2 (B2) = −0.463 and α

(21)
2 (H1B1) = 0.319. Since for the

frequency of interest the correction α
(21)
2 is multiplied by

ω2 ≈ 0.005 t−2
0 , its contribution to α(ω) is negligible at the

current accuracy goal.
It should be pointed out that the relativistic corrections

computed by Bhatia and Drachman [16] depend on the nuclear
mass and, strictly speaking, should not be compared with
our, nuclear-mass-independent values of α

(20)
k , k = 0,2,4. This

mass dependence results from the fact that BD incorrectly
assumed that the individual terms in the Breit-Pauli Hamil-
tonian are proportional to (inverse) powers of the reduced
electron mass rather than the real mass. Therefore, although
the nuclear-mass-dependent component of their relativistic
corrections is of the order of 1/(Mc2), it differs from the
α

(21)
k (H1B1) term of the true recoil correction. Additionally,

Bhatia and Drachman completely neglected the contributions
of the B2 operator α

(21)
k (B2), which were shown by us to

be as important as the α
(21)
k (H1B1) contributions. Thus, their

relativistic corrections cannot be viewed as approximations
to α

(20)
k + α

(21)
k . However, since the effects of the order of

1/(Mc2) are very small, the differences between our relativistic
corrections and those of BD are mainly due to the differences
in the basis sets used in the calculations rather than to the
treatment of the nuclear mass dependence.

Table V presents the nonrelativistic coefficients α
(0)
k com-

puted for 3He. The relativistic corrections α
(20)
k for 3He are the

same as for 4He, while the recoil corrections α
(21)
k are obtained

from α
(20)
k by scaling with the mass ratio m( 4He)/m( 3He).

These results are needed for the pressure standard to account
for possible 3He impurities.

In Table VI we compare our nonrelativistic and relativistic
Ak coefficients with the results of Bhatia and Drachman [16].
The uncertainties of our results are the same as in Tables II
and IV, i.e., were estimated from the convergence in basis set
size. The uncertainties of sums of corrections were obtained
as square roots of the sums of squares of the individual
uncertainties. Since, for k � 2, the Ak coefficients given in
Eq. (15) of Ref. [16] contain a unit conversion error, in
Table VI we compare our results with the coefficients obtained
from Eqs. (12) and (13) of Ref. [16] correctly converted to
atomic units. One can see that for the static polarizability the
nonrelativistic part of the BD result is much more accurate than
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TABLE V. Basis set convergence of the nonrelativistic po-
larizabilities for 3He (in atomic units a3

0 t
k
0 ). The mass of

5495.8852754(50) me was assumed for the 3He nucleus [10].

N a SO

200 1.384012178892
α

(0)
0 400 1.384012180127

600 1.384012180174
800 1.384012180176

200 1.543561452717
α

(0)
2 400 1.543561466826

600 1.543561467291
800 1.543561467326

200 2.043306592379
α

(0)
4 400 2.043306653740

600 2.043306655983
800 2.043306656229

200 2.931624071865
α

(0)
6 400 2.931624250938

600 2.931624258920
800 2.931624260374

aN is the basis set size used for ψ0, whereas for auxiliary functions
3N/2 functions were used.

TABLE VI. Coefficients Ak (in a3
0 Å

k
) in the expansion of the

polarizability of 4He in inverse powers of wavelength λ compared
to the values of Bhatia and Drachman [16]. The values listed in the
BD column were obtained from Eqs. (12) and (13) of Ref. [16] by
correctly converting to atomic units.

BD Present

nonrelativistic 1.383809991 1.383809986408(1)
A0 relativistic − 0.000080062 − 0.0000804534(1)a

total 1.383729929 1.3837295330(1)

nonrelativistic 3.2037352×105 3.20373512523(2)×105

A2 relativistic − 0.0000677×105 − 0.0000689439(3)×105 b

total 3.2036675×105 c 3.2036661813(3)×105

nonrelativistic 8.8032133×1010 8.8035474950(6)×1010

A4 relativistic 0.0000207×1010 0.000021769(2)×1010

total 8.8032341×1010 d 8.803569264(2)×1010

nonrelativistic 2.621934×1016 2.6219353156(6)×1016

A6 relativistic 0.0000562340(4)×1016

total 2.621934×1016 e 2.6219915496(7)×1016

aIncludes the recoil correction α
(21)
0 of the order of 1/(Mc2), equal to

−0.0000000935(1) a3
0 .

bIncludes the recoil correction α
(21)
2 of the order of 1/(Mc2), equal to

−0.0299(2) a3
0 Å

2
.

cThe coefficient at λ−2 given in Eq. (15) of Ref. [16] as equal to
3.204546×105 was incorrectly converted from the reduced Rydberg
to atomic units.
dThe coefficient at λ−4 given in Eq. (15) of Ref. [16] contains a
typographic error.
eThe coefficient at λ−6 given in Eq. (15) of Ref. [16] as equal to
2.624092×1016 was incorrectly converted from the reduced Rydberg
to atomic units.

TABLE VII. Dynamic polarizability of 4He (in a3
0 ) at λ =

6329.908 Å. The reported uncertainties are estimated based on the
convergence in basis sets, except as marked. When no error bar is
given the last digit is certain. In such case the full calculated value
with an error bar estimate can be obtained from the data given in
Tables II–IV and VI.

Static nonrelativistic 1.3838099864
1/c2 − 0.0000803599

1/(Mc2) − 0.0000000935(1)a

1/c3 − ∂2
E ln k0 term 0.0000304738(1)

∂2
E ln k0 termb 0.000000183(1)

1/c4 0.00000056(14)a

finite nuclear size 0.0000000217(1)
total 1.38376077(14)

λ−2 nonrelativistic 0.007995798
1/c2 − 0.000000171

1/(Mc2) − 0.000000001
1/c3 0.00000032(3)a

total 0.00799595(3)

λ−4 nonrelativistic 0.000054836
1/c2 0.0000000001
1/c3 0.0000000031(3)a

total 0.000054840

λ−6 nonrelativistic 0.000000408
λ−8 nonrelativistic 0.0000000032
α(λ) − α0 presentc 0.00805120(3)

BDd 0.008050871

Total present 1.39181197(14)
Ref. [13] 1.39181164(14)e

BDf 1.391780800

aThe uncertainty accounts for the neglected terms or a contamination
with terms higher order in 1/M , see text.
bContribution of the second electric-field derivative of Bethe loga-
rithm ∂2

E ln k0 from Ref. [18].
cThe contribution of the λ−10 term, amounting to 2.5 × 10−11, is
negligible.
dCalculated using correctly converted Ak constants. Equation (15) of
Ref. [16] gives 0.008052951, i.e., 0.03% error resulting in 1.7 ppm
error in the total value of α(6329.908 Å).
eTable I of Ref. [13]. Note that the value of α(6329.908 Å) given in
the abstract contains a typographical error.
fUsing the static value of BD equal to 1.383729929.

the relativistic one: it agrees with our result to nine significant
digits, while the relativistic part agrees only to two significant
digits. However, as we will discuss below, the main source of
error in the static polarizability of Bhatia and Drachman are
the 1/c3 and 1/c4 QED corrections neglected by these authors.

The total BD’s dynamic polarizability coefficients, A2,
A4, and A6, agree to six, four, and five significant digits,
respectively, with our values computed through the 1/c2 terms.
However, our results have about five more accurate digits than
BD’s results for each k. The relativistic contributions to A2

and A4 computed by BD are significantly less accurate than
the nonrelativistic ones: the agreement with our values is only
to two significant digits. Since these contributions are small,
this low accuracy does not appreciably affect the reasonably
good agreement of total BD coefficients with ours. As in the
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TABLE VIII. Individual contributions to α
(n0)
k in units of μa3

0 t
k
0 . The value of atomic Bethe logarithm ln k0, equal to 4.37016022306(2),

was taken from Ref. [40].

α
(20)
0 α

(20)
2 α

(20)
4 α

(20)
6

− 1
8 (∇4

1 + ∇4
2 ) − 987.87668 − 1924.5778 − 3595.712 − 6632.50

π [δ(r1) + δ(r2)] 864.68014 1773.3634 3367.181 6259.44

π δ(r12) 66.07068 150.5050 298.872 569.09
1
2 [∇1r

−1
12 ∇2 + (∇1r12)r−3

12 (r12∇2)] − 23.23406 − 32.3564 − 65.290 − 133.18

Total − 80.35991 − 33.0657 5.051 62.85

α
(30)
0 α

(30)
2 α

(30)
4 α

(30)
6

8
3 ( 19

30 − 2 ln 1
c

− ln k0)[δ(r1) + δ(r2)] 32.69114 67.0459 127.3034 236.65

( 164
15 + 14

3 ln 1
c
)δ(r12) − 1.84591 − 4.2049 − 8.351 − 15.90

− 7
6π

P (r−3
12 ) − 0.37142 − 0.9396 − 1.966 − 3.86

Total 30.47381 61.9014 116.988 216.89

α
(40)
0 α

(40)
2 α

(40)
4 α

(40)
6

4π ( 427
96 − 2 ln 2) [δ(r1) + δ(r2)] 0.563 89 1.156 5 2.196 4.08

case of A0, the main source of error in BD’s Ak coefficients
are the QED corrections α

(30)
k , k = 2,4,6, neglected by BD.

Table VII gives the components of the dynamic polarizabil-
ity of 4He computed at the wavelength of 6329.908 Å (close
to the one used in the proposed apparatus). Our final value
differs by 0.33 μa3

0 from the value published in Ref. [13],
i.e., about twice the uncertainty estimated in that work. The
main reason for this difference is the α

(30)
2 correction, equal

to 0.32 μa3
0 , neglected in Ref. [13] and included now. In

Ref. [13] we incorrectly assumed that this 1/c3 correction
should be at least a few times smaller than the relativistic 1/c2

correction α
(20)
2 . We did not realize that the value of α

(20)
2 was

accidentally very small due to strong cancellations among its
components, see Table VIII. Such cancellations do not occur
at the 1/c3 level, so the α

(30)
2 correction is actually greater

than α
(20)
2 and the α

(30)
2 ω2 contribution becomes significant.

The individual contributions to α
(20)
k and α

(30)
k are presented in

Table VIII for k = 0,2,4,6. It can be seen that the cancellations
depend significantly on k and at k = 4 the total 1/c2 relativistic
correction becomes three orders of magnitude smaller than
its largest component and more than one order of magnitude
smaller than the 1/c3 QED correction. It is gratifying to
observe that the 1/c4 QED correction is always significantly
smaller than the total 1/c3 effect. It should be noted that due to
the neglect of the electric-field derivative of Bethe logarithm
the uncertainties of α

(30)
k , k = 2,4,6 are assumed to be 10%.

These uncertainties are much larger than those resulting from
the basis set convergence. The term α

(30)
0 is free from this error.

In Table VII we used its recent value [18] which is somewhat
more accurate than that of Ref. [2].

Most of the uncertainties in Table VII result from estimates
of basis set convergence. All uncertainties of this type are
completely negligible compared to the uncertainties resulting
from neglected terms. The largest one is from the neglected
1/c4 terms and is estimated at 0.14 μa3

0 , as discussed earlier.
The next in size is the uncertainty of α

(30)
2 ω2 amounting to

0.03 μa3
0 . The remaining uncertainties are expected to be

smaller. Since we add uncertainties in squares, the overall
uncertainty amounts also to 0.14 μa3

0 or 0.1 ppm, i.e., it is the
same as in Ref. [13].

Let us discuss other neglected terms that can possibly
change our result. Since α

(40)
0 is so small, 0.56 μa3

0 , it is unlikely
that higher order terms in powers of 1/c could be relevant.
The QED recoil correction α

(31)
0 of the order of 1/(Mc3) is

most likely negligible based on the size of α
(21)
0 = 0.093 μa3

0 ,
and on the observation that α

(21)
0 is not anomalously small due

to strong internal cancellations. We performed preliminary
calculations of α

(31)
0 (neglecting the electric field dependence

of Bethe logarithm), which show that this correction is indeed
about 10 times smaller than α

(21)
0 . Analogous dispersion

contribution α
(31)
2 can therefore be assumed negligible. In

order to reduce the present uncertainty estimate one should
first of all compute the other than one-loop contributions to the
correction α

(40)
0 . However, since the accuracy level achieved so

far is sufficient for the purpose of the new pressure standard,
such computation is not necessary at the present time.

Table VII compares also our final results to those of Bhatia
and Drachman [16] (after conversion errors are corrected).
The dispersion parts α(λ) − α0 agree to four significant digits
which means that BD’s error from this term would amount
to 0.2 ppm of the final result. The total polarizabilities
α(6329.908 Å) obtained by us and by BD differ much more
significantly, by 22 ppm, and this discrepancy originates
almost completely from the static polarizability, mainly due
to the QED effects neglected by these authors. The second
source of the discrepancy is our significantly improved value
of the static relativistic correction.

B. Comparison with experiment

Table IX compares our results with experimental data
from Refs. [8,41–43]. The comparisons are made in terms
of the molar polarizability Aε = 4πNAα/3, where NA is the
Avogadro constant. The decreased uncertainty of our value of
Aε(0) compared to Ref. [2] results mainly from the decrease
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TABLE IX. Comparison of theoretical and experimental molar
polarizabilities (in cm3/mol, wavelength in Å).

Aε(0) present 0.51725413(6)a

Ref. [2] 0.517 254 19(10)
expt. [8] 0.5172535(47)

Aε(6329.908) present 0.52026369(6)
expt. [41,42] 0.5213(1)b

expt. [43] 0.5220(3)c

aThe uncertainties from α, NA, and a0 equal to 0.05, 0.02, and
0.0004 cm3/mol × 10−6 are added in squares. The Avogadro constant
of 6.02214129(27) × 1023 mol−1 [10] was used.
bThe value listed in Refs. [41,42] is Aε(6329.9 Å) + Aμ(6329.9 Å) at
T = 323 K. Since Aμ(0) = −0.0000079224 cm3/mol, see text, the
quoted value is independent of this correction.
cWe took the polarizability listed in Table 1 of Ref. [43] (at the
wavelength of 6329.9 Å) and assumed it has the same relative
uncertainty as the refractivity in Table 2 of that reference.

of the uncertainty of NA, see footnote a of Table IX. The
agreement of our value with the experimental result of Schmidt
et al. [8], obtained using a microwave cavity resonator [44], is
very good, with the discrepancy of 0.6 × 10−6 cm3/mol, eight
times smaller than the experimental uncertainty and ten times
larger than the theoretical one. Thus, the current theory is two
orders of magnitude more accurate than the best experiment
in the static case.

We have not listed in the table older experimental results
determined from dielectric constant measurements since these
values are of low accuracy. In particular, the value obtained
by Kirouac and Bose [45], equal to 0.5210(2) cm3/mol, and
the one obtained by Huot and Bose [46], equal to 0.5196(2)
cm3/mol, agree to only two significant digits both with our
value and with the value of Ref. [8] and are incompatible with
either result. This comparison shows the scale of progress in
experimental determinations of polarizabilities.

In Table IX we also compare results of our calculations to
experimental dynamic polarizabilities. Whereas the theoretical
value is as accurate as for the static case, all the experiments are
now two orders of magnitude less accurate than the best exper-
iment for the static case. Thus, for the dynamic polarizabilities,
theory is about four orders of magnitude more accurate than
experiments. The experiments of Refs. [41,42] measured the
sum of the molar polarizability and the magnetizability Aμ =
4πNAχ/3. Since we compare to our values of Aε only, we
have subtracted Aμ from the experimental results. The static
nonrelativistic value of Aμ is −0.000007922 4(4) cm3/mol,
converted from χ = −0.000021194(1) a3

0 computed by Bruch
and Weinhold [47] with an account of the nuclear motion.
We assigned the uncertainty assuming that the relativistic
corrections enter at the fifth significant digit. As one can see,
the experimental results for dynamic polarizabilities are not
accurate enough to be sensitive to Aμ. The agreement with the
values of Achtermann et al. [41,42] is only to three significant
digits and the discrepancy between our and their result is
ten times larger than their uncertainty. The agreement with
the result of Birch [43] is even worse, but due to the larger
uncertainty assigned in this work, our result is now only five
times outside this uncertainty. These facts show how critical

theoretical results are for the new standard of pressure since
it requires the knowledge of the dynamic rather than static
polarizabilities.

C. Refractive index

In the low density limit, the dependence of p on n, α,
χ , and kT is given by Eq. (1) derived for an ideal gas. To
derive an equation accounting for the nonideality effects, we
can start from the density expansions for the relative dielectric
permittivity εr and relative magnetic permeability μr :

εr − 1

εr + 2
= 4π

3
α[ρ + bε(T )ρ2 + cε(T )ρ3 + · · · ], (39)

μr − 1

μr + 2
= 4π

3
χ [ρ + bμ(T )ρ2 + cμ(T )ρ3 + · · · ], (40)

where ρ is the particle density, expressed here in atomic units
a−3

0 . Equation (39) truncated at the term linear in ρ is the
well-known Clausius-Mossotti relation that is discussed in
most textbooks on electricity and magnetism. Its magnetic
analog, Eq. (40), is much less known, but can be found in
Ref. [48] and has been used in recent experimental work [8,49].
Equations (39) and (40) provide the definitions of the electric
(bε, cε, . . . ) and magnetic (bμ, cμ, . . . ) virial coefficients. Since
n2 =εrμr by definition, these virial coefficients determine also
the virial expansion of n,

n = 1 + an ρ + bn ρ2 + cn ρ3 + · · · . (41)

To find the relation between the refractivity virial coefficients
bn, cn, . . . and the dielectric bε, cε, . . . and magnetic virial
coefficients one first solves Eqs. (39) and (40) for εr and μr

by expansion in powers of density

εr = 1 + 4πα(ρ + bερ
2 + cερ

3) + (4π )2

3
α2(ρ2 + 2bερ

3)

+ (4π )3

9
α3ρ3 + O(ρ4), (42)

μr = 1 + 4πχ (ρ + bμρ2 + cμρ3) + (4π )2

3
χ2(ρ2 + 2bμρ3)

+ (4π )3

9
χ3ρ3 + O(ρ4), (43)

and then expands the square root of the product of the obtained
expansions. The result is

an = 2π (α + χ ), (44)

bn = 2π
(
αbε + 1

3πα2 + χbμ + 1
3πχ2 + 2παχ

)
, (45)

cn = 2π
(
αcε + 2

3πα2 bε + 10
9 π2α3), (46)

where we neglected all contributions to cn containing magnetic
quantities. This is a very reasonable approximation for helium
since χ is about five orders of magnitude smaller than α

and the magnetic permeability virial coefficients bμ and cμ

(unknown) can be expected to be also much smaller than the
dielectric ones bε and cε. Equation (41) can be used with the
polarizability, susceptibility, and virial coefficients computed
from first principles to predict the dependence of n on ρ which
can then be confronted with experiments.
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If Eq. (41) is squared, one obtains Eq. (4) of Schmidt
et al. [8] except for small terms neglected by these authors
and for a missing numerical factor in one of their terms. To see
this equivalence, one needs to note some differences between
the symbols used: our ρ denotes particle density, whereas that
of Ref. [8] molar density and Ref. [8] uses molar dielectric
virial coefficients b = NAbε and c = N2

Acε. Our derivation
shows that a factor of 2 is missing in front of the A2

ε b ρ2 term
on the right-hand side of Eq. (4) of Ref. [8].

To generalize Eq. (1), we first solve Eq. (41) for ρ by
expanding it in powers of n − 1,

ρ = 1

an

(n−1) − bn

a3
n

(n−1)2 +
(

2b2
n

a5
n

− cn

a4
n

)
(n−1)3 + · · · .

(47)

When n − 1 is measured and the remaining quantities entering
Eq. (47) are known from theory or experiment, the value of ρ

can be computed from this equation and then substituted into
the virial equation of state

p = kT [ρ + B(T )ρ2 + C(T )ρ3 + · · · ], (48)

again assuming that the virial coefficients B(T ) and C(T ) are
known, allowing the determination of pressure. Thus, Eqs. (47)
and (48) provide the required generalization of Eq. (1).

D. Comparison of refractivity virial coefficients
with experiment

The refractivity virial coefficients are compared with
experiments in Table X. In the case of the coefficient
an, experimental results are usually presented in terms of
ar ≡ 2

3an. If density is expressed in mol/cm3 and an in
cm3/mol, then ar = Aε + Aμ. We will use the conversion
factor 1 cm3/mol = 11.20587208 a3

0 .
Our recommended value of static Aε is 0.51725413(6)

cm3/mol, cf. Table IX. If we add to it Aμ =
−0.0000079224(4) cm3/mol from Ref. [47], we get ar listed
in Table X. Note that ar was actually the quantity measured
by Schmidt et al. [8]. These authors obtained then the value of
Aε that we compared with earlier by subtracting a theoretical
magnetic contribution of −0.0000080 cm3/mol (we added

TABLE X. Comparison of the theoretical virial expansion of the
refractive index with experimental results. The quantities ar = 2

3 an,
bn, and cn are in units of cm3/mol, cm6/mol2, and cm9/mol3,
respectively, whereas λ is in Å.

ar (0) present 0.51724620(6)
expt. [8] 0.5172455(47)

ar (6329.908) presenta 0.52025577(6)
expt. [41,42] 0.5213(1)

expt. [43] 0.5220(3)
bn(0) present, 273.16 K 0.0244(3)
bn(6329.908) present,a 273.16 K 0.0238(3)

present,a 303 K 0.0184(3)
present,a 323 K 0.0150(3)

expt. [42] 0.000(15)
cn(0) present, 273.16 K − 0.96(25)

aWe neglected the frequency dependence of χ , a negligible effect for
the helium atom [47].

back this term for the present comparisons). As can be expected
from the comparison presented in Table IX, Schmidt’s et al.
value of ar listed in Table X is in excellent agreement with our
result, as it differs from it by only 1.4 ± 9.1 ppm. One may add
that to achieve such agreement, Schmidt et al. had to measure
the refractive index n with an uncertainty of a few parts per
billion [8].

Similarly as in the case of static ar , we expect the
comparisons of frequency-dependent ar ’s with experiments to
follow those made for Aε. To compute our ar (6329.908 Å), we
neglected the frequency dependence of Aμ, which is negligible
for the helium atom [47]. Our value, listed in Table X,
can be compared with the experimental determinations of
Achtermann et al. [41,42] and Birch [43]. The values from
these papers, listed in Table X, are identical to those listed
in Table IX since Aμ, as noted earlier, does not affect the
significant digits. One may note that the poor agreement of
these measurements with older ab initio calculations was
discussed already by Bhatia and Drachman [16] and by Stone
and Stejskal [12]. In Ref. [13] we also compared values
published by Leonard [50], mistakenly taking from this paper
a theoretical value cited by this author.

In order to compute bn and cn from Eqs. (45) and (46),
we need in addition to the values of α and χ , the values of
the dielectric virial coefficients bε and cε. We will neglect the
term χbμ in Eq. (45) since χ is very small and bμ is expected
to be smaller than bε. Note that bn and cn are dependent on
temperature, in contrast to an.

The dielectric virial coefficients bε(T ) have been reported
in several papers [11,51–53], including their frequency de-
pendence [11,53]. To compute bε(T ), one needs the values
of the interaction induced polarizability of the helium dimer.
The most accurate values of this quantity have been computed
by Cencek et al. in Ref. [54]. These authors also used the
best available helium dimer potential. However, they used
only the classical statistical mechanics expression for bε(T ).
The estimated uncertainties of bε(T ) relative to the exact
classical value are 0.3% at T = 298.15 K. An earlier paper
by Rizzo et al. [11] used a quantum statistical mechanics
approach [51] for bε(T ). Although the quantum corrections
to the classical result are almost negligible for T > 77 K, we
used the values of bε from Ref. [11] since their classical limits
agree very well with the results of Ref. [54]. We assumed
an uncertainty of 0.4% in bε in view of this agreement
and the smallness of quantum corrections. Note that the
dielectric virial coefficients used in Ref. [11] are defined as
Bε = Aεbε. Interpolating between the values at T = 261 and
274 K, we get Bε(273.16 K) = −0.0506 cm6/mol2, which
leads to bε = −0.0978(4) cm3/mol and then to the value of
bn = 0.0244(3) cm6/mol2, listed in Table X. The uncertainty
of the latter value comes entirely for the uncertainty of bε. The
third and fourth term in Eq. (45) make negligible contribution
and there is a substantial cancellation between the first two
terms. At the wavelength λ = 6329.908 Å, the value of bn is
reduced to 0.0238(3) cm6/mol2 (we used here the value of
bε = −0.0996(4) cm3/mol, obtained from the dispersion data
published in Ref. [11]).

Our values of bn can be compared with the values inferred
from the measurements of Achtermann et al. [42], performed
at T = 303 and 323 K using the wavelength λ = 6329.9 Å.
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These authors determined the coefficient br defined as

br = 2
3 bn − 1

4 a2
r . (49)

Using their values of ar = 0.5213(1) cm3/mol and br =
−0.068(10) cm6/mol2, one finds that bn = 0.000(15) cm6/

mol2 for both temperatures considered (Achtermann et al.
noted that “the term 2bn/3 is zero”). We list in Table X our
values of bn for the two temperatures considered in Ref. [42].
We used the values of bε(303) = −0.1065(4) cm3/mol and
bε(323) = −0.1108(4) cm3/mol from the dispersion data
published in Ref. [11]. It is seen that our values of bn are only
very slightly outside the error bars of the zero result from the
experiment. The values of bn do decrease with temperature, but
our calculations indicate that they will cross zero only around
415 K.

Using the value cε = −1.38 cm6/mol2 computed by Heller
and Gelbart [55], we evaluated also the coefficient cn. We as-
sumed that this value has the uncertainty equal to the difference
between the theoretical value and the experimental result of
−1.7(9) cm6/mol2 (interpolated from the data of Ref. [46]).

Although the values of bn and cn are not very accurate,
the contributions involving these coefficients are rather small
around T = 273.16 K. Thus, the current accuracy of our first-
principles virial expansion is sufficient to predict n − 1 with
a 1 ppm uncertainty for pressures up to 3 MPa, i.e., for the
helium densities up to about 0.0015 mol/cm3. To extend this
range of pressure, more accurate values of the dielectric viral
coefficients as well as some information about the magnetic
coefficient bμ will be required.

VII. CONCLUSIONS

The frequency dependent polarizability of the helium
atom has been computed as the expansion in powers of
angular frequency ω. We conservatively estimate that the static
polarizability and the dispersion coefficients have uncertainties
better than 1 ppm. Results are given both for 4He and 3He
isotopes. For the wavelength of 6329.908 Å considered by us
the ω8 and higher terms give negligible contribution (below

0.01 ppm). The relativistic and QED effect were included up
to terms proportional to 1/c4. For the static polarizabilities this
inclusion was complete for the 1/c2 and 1/c3 terms, whereas
1/c4 terms were represented by the dominating component.
The effect of finite nuclear mass was taken into account exactly
at the nonrelativistic level, whereas at the relativistic level the
terms proportional to 1/(Mc2) were computed for the static
and leading dispersion terms.

Our final result is α(6329.908 Å) = 1.39181197(14) a3
0 . It

is different by 0.33 μa3
0 from our value published recently in

Ref. [13]. The difference is due to QED contribution to the
polarizability dispersion, which was neglected in Ref. [13].
The main source of uncertainty of our recommended value of
polarizability is coming from the neglected 1/c4 terms in the
static polarizability. We estimated that other terms neglected
by us contribute below the 0.1 ppm level.

For the static case, the uncertainty of our polarizability is
two orders of magnitude smaller than the uncertainty of the
experiment [8]. For the dynamic case, relevant for the pressure
standard, the uncertainty of our polarizability is the same as in
the static case, but experiments are four orders of magnitude
less accurate than the theoretical value [41–43].

Combining our values with literature calculations, we
constructed a first-principles virial expansion for the refraction
coefficient. We estimate that it can predict n − 1, to 1 ppm
accuracy up to the pressure of 3 MPa. To increase this limit,
more accurate ab initio values of the density and dielectric
virial coefficients will be needed.
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