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Dynamical Casimir-Polder interaction between a chiral molecule and a surface
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We develop a dynamical approach to study the Casimir-Polder force between an initially bare molecule and
a magnetodielectric body at finite temperature, valid for arbitrary magnetodielectric properties and also in the
presence of chiral effects. Switching on the interaction between the molecule and the field at a particular time,
we study the resulting temporal evolution of the Casimir-Polder interaction. The dynamical self-dressing of the
molecule and its population-induced dynamics are accounted for and discussed. In particular, we find that the
Casimir-Polder force between a molecule and a surface oscillates in time with a frequency related to the molecular
transition frequency. We verify that the dynamical force converges to the static result for time much larger than
the inverse of the transition frequency, and it is particularly strong around the back-reaction time t = 2d/c, the
time needed for the molecule to emit and reabsorb a photon reflected by the surface.
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I. INTRODUCTION

Casimir and Casimir-Polder (CP) forces are electromag-
netic interactions between neutral macroscopic bodies and/or
molecules due to the quantum fluctuations of the electromag-
netic field [1–3]. The presence of perfect boundaries (perfect
conductors) modifies the possible wavelengths of vacuum
fluctuations and leads to changes of observable effects like
the lifetime and frequency shift of an atom in an excited state
[4], the interatomic potential between two atoms [5], and the
anomalous gyromagnetic ratio [6,7], which are all different
from the vacuum case. The interaction between a ground-state
molecule and a perfect electric mirror is always attractive while
the interaction between an excited molecule and a perfect
electric mirror shows an oscillating distance dependence. This
has been confirmed in measurements of the force between an
excited ion and a metallic mirror [8,9].

Recently, the attention in the literature has been directed to-
wards chiral or optically active molecules, which are molecules
without any center of inversion nor plane of symmetry. The
chiral molecule cannot be superposed with its mirror image,
even if we perform a series of rotations and translations,
similarly to the left and right human hands which are not
superimposable but can be readily distinguished. Two types
of each chiral molecule hence exist, and they are called
enantiomers or “right-handed” and “left-handed” molecules.
These molecules posses distinctive optical properties. A gas of
chiral molecules is an optical active medium which can rotate
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the plane of polarization of light (optical rotation) [10–12] and
also have differential absorption of left- and right-circularly
polarized light (Circular dichroism) [13,14].

The unusual interaction of chiral molecules with light also
leads to new contributions to the Lamb shift and Casimir-
Polder force, which depend on the rotatory strength of the
molecule, defined in terms of electric and magnetic dipole
elements [15]:

Rnk = Im(dnk · mkn). (1)

If a molecule has a point symmetry we can choose energy
eigenstates which have definite parity. For these systems the
rotatory strength is strictly zero, because the odd electric
dipole moment connects states with opposite parity and the
even magnetic dipole moment connects states with the same
parity. Instead, chiral molecules can undergo mixed electric
and magnetic transitions. This happens because the electrons,
due to the spin-orbit coupling, are delocalized over the chiral
nuclear structure and the system is for this reason asymmetric.

The two distinct mirror images of a chiral molecule
are called enantiomers. Many of the processes crucial to
life involve chiral molecules the chiral identity of which
plays a central role in their chemical reactions; the wrong
enantiomer reacts in a different way and does not produce the
required result. Spectroscopically, enantiomers have identical
properties and distinguishing between them is a nontrivial
task when using normal spectroscopy. A frequently used
method to separate enantiomers in an industrial setting is
chiral chromotography [16]. Recently, several laser schemes
have been proposed to separate mixtures of enantiomers,
and the effect of molecular rotation on enantioseparation has
been studied [17]. Furthermore Casimir-Polder forces between
chiral molecules in an absorptive and dispersive chiral medium
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have shown discriminatory effects, which might be used to
separate enantiomers [18–23].

In this paper, we consider the dynamical Casimir-Polder
interaction between a chiral molecule and a metal or dielectric
body at finite temperature using a dynamical approach, with
the molecule exhibiting electric, magnetic, and chiral polariz-
abilities. The dynamical CP force between an enantiomer and
a perfect chiral mirror is a possible system for distinguishing
and separating enantiomers, because the dispersion energy
between these systems depends on the relative handedness of
the molecule with respect to that of the molecules constituting
the chiral mirror. Therefore, enantiomers that pass at low
speeds near the chiral mirror will be attracted or repelled
in opposite directions and will be separated based on their
chirality. While the static force is generally weak, the dynam-
ical force around the back-reaction time t = 2d/c is several
orders of magnitude bigger than the static force and could be
a more suitable system to separate enantiomers. In addition
for fast-moving molecules, like in a gas of chiral molecules
in thermal equilibrium, the position of the molecules changes
rapidly and the resulting dynamical CP force can be described
only with time-dependent models.

We assume to switch on the interaction between the
molecule and the field at a particular time and study the
resulting time evolution of the Casimir-Polder interaction.
Even if the interaction with the free field is always present,
our assumption to switch on suddenly the interaction with the
body-assisted field at t0 = 0 can be a good approximation of
the more realistic cases of a rapid change of some parameter
characterizing the strength of the atom-field interaction or
of putting the atom at some distance from the macroscopic
body, obtaining a partially dressed atom or molecule [24]. The
Casimir-Polder forces can be experimentally measured from
the position-dependent energy shift of the electronic levels.
Time-resolved spectroscopy [25] could be used to resolve time
scales of the time-dependent CP forces, which are typical fem-
toseconds for typical molecules and nanoseconds for Rydberg
atoms. It is worth noting that related dynamical effects in
Casimir forces were observed in recent experiments including
superconducting circuits [26], Josephson metamaterials [27],
and Bose-Einstein condensates [28].

The dynamical self-dressing has been considered for an
electric ground-state atom near an electric perfect conductor
[29], or for a partially dressed atomic state [30]. Also, the
dynamical CP interaction between a neutral atom and a real
surface has been recently investigated [31]. The CP force of a
chiral molecule near a body has so far been considered only in
the static case [21]. In this paper, we consider the dynamical
self-dressing for a chiral molecule near a body; our approach
includes finite temperature, arbitrary geometries of the body,
and arbitrary internal molecular states. As a simple application,
we consider the CP interaction between an initially bare
ground-state chiral molecule and a perfect chiral plate at zero
temperature. We will show that the Casimir-Polder interaction
at large times can be attractive or repulsive depending on the
chiralities of the molecule and the medium. This differs from
the stationary CP interaction between an electric molecule and
an electric perfect plate, which is always attractive [2,32]. Fur-
thermore, the time-dependent approach allows us to follow the
temporal evolution of the CP force due to the initial conditions.

The paper is organized as follows. In Sec. II, we consider the
Heisenberg dynamics of the molecule and the body-assisted
field, mutually coupled. Then, in Sec. III, we consider the
dynamical Casimir-Polder interaction between a molecule
with electric, magnetic, and chiral responses and a body of
arbitrary shape at finite temperature. In Sec. IV, we apply
these results to a particular case: the dynamical CP interaction
between an initially bare chiral ground-state molecule and a
perfectly reflecting chiral plate at zero temperature. We close
with some conclusion in Sec. V.

II. DYNAMICS OF THE MOLECULE AND THE
BODY-ASSISTED FIELD

We consider the mutually coupled temporal evolution of
a single molecule and the body-assisted field. The body-field
system is prepared at uniform temperature T and the molecule
in an arbitrary incoherent superposition of internal energy
eigenstates. The dynamics of the molecule can be described
with time-dependent flip operators, defined by Amn = |m〉〈n|,
where |n〉 is an energy eigenstate.

In order to evaluate the dynamical CP force between the
molecule and the body, we must first solve the molecule-field
dynamics to obtain the flip operators and the field operators
in the Heisenberg picture. The total Hamiltonian is the sum
of three terms, the molecule and the field Hamiltonians and
the interaction term in the dipole approximation: H = HA +
HF + HAF , where

HA =
∑

n

EnAnn,

HF =
∑

λ=e,m

∫
d3r

∫ ∞

0
dω�ωf†λ(r,ω) · fλ(r,ω),

HAF = − d · E(rA) − m · B(rA), (2)

where fλ(r,ω) is the annihilation operator for the elementary
electric and magnetic excitations of the system [21]; d and m
are, respectively, the molecule’s electric and magnetic dipole
moments; and rA is the position of the molecule.

We assume that the interaction of the chiral molecules
is governed by electric and magnetic dipole coupling. In
fact for large nonchiral molecules, like the Rydberg atoms,
we can see deviation from the dipole interaction at small
distances; in this case the inclusion of higher-order multipoles
is necessary [33]. In what follows we will assume that chiral
molecules have electric quadrupole polarizabilities much
smaller than the chiral polarizability, which is a justified
assumption for not too large molecules and not too small
distances.

We introduce the Fourier component of the electric field
E(r,ω), E(r) = ∫ ∞

0 dωE(r,ω) + H.c.
The commutators between electromagnetic fields read [21]

[E(r,ω),E†(r′,ω′)] = �μ0

π
ImG(r,r′,ω)ω2δ(ω − ω′),

[E(r,ω),B†(r′,ω′)] = − i�μ0

π
ImG(r,r′,ω) × ←−∇ ′ωδ(ω − ω′),

[B(r,ω),E†(r′,ω′)] = − i�μ0

π
∇ × ImG(r,r′,ω)ωδ(ω − ω′),
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[B(r,ω),B†(r′,ω′)] = −�μ0

π
∇ × ImG(r,r′,ω) × ←−∇ ′

× δ(ω − ω′), (3)

where G is the classical Green tensor of the electromagnetic
field and [G × ←−∇ ′]ij = Gikεjkl

←−
∂ /∂x ′

l ; the Heisenberg equa-
tions for the coupled molecule-field dynamics read

Ȧmn = iωmnAmn + i

�
Kmn · E(rA) + i

�
Qmn · B(rA),

Ė(r,ω) = −iωE(r,ω) + iμ0

π
ω2ImG(r,rA,ω) · d

+ μ0

π
ωImG(r,rA,ω) × ←−∇ ′ · m,

Ḃ(r,ω) = −iωB(r,ω) + μ0

π
ω∇ × ImG(r,rA,ω) · d

− iμ0

π
∇ × ImG(r,rA,ω) × ←−∇ ′ · m, (4)

where Kmn = [Amn,d] and Qmn = [Amn,m]. ∇ and
←−∇ ′ opera-

tors act only on the first and second arguments of the Green ten-
sor; for example, G(r,rA,ω) × ←−∇ ′ = G(r,r′,ω) × ←−∇ ′|r′=rA

.
Note that an electric dipole moment can produce a magnetic
field and a magnetic dipole moment can create an electric field;
these cross contributions are the relevant ones for the chiral
part of the Casimir force.

In order to include the Lamb shifts and the dissipation
of the molecular system we require the master equations
for the populations pn(t) = 〈Ann(t)〉 and the coherences
σnm(t) = 〈Anm(t)〉, where the expectation value is taken over
the field thermal state and the molecular internal state. The
evolution of the populations is governed by the decay rates
and the oscillations of the coherences are governed by the
molecular transition frequencies. The electric field at the
position of the molecule consists of two terms: the radiation
reaction and the free field. As shown in the literature for a
purely electric atom, the radiation reaction field gives rise to
frequency shifts and spontaneous decay for molecule [34,35].
We thus renormalize the field by splitting off the radiation
reaction:

〈Ȧmn〉 = [iω̃mn − (	n + 	m)/2]〈Amn〉

+ i

�
〈Kmn · E(0)(rA)〉 + i

�
〈Qmn · B(0)(rA)〉, (5)

where m �= n and the expectation value is taken over the field
thermal state and the molecular internal state. ω̃mn are the
Lamb-shifted molecular frequencies and 	k are the decay rates,
which have electric, magnetic, and chiral contributions. Our
model hence takes into account the dissipation of the molecular
system; in this case there is only one channel of decay due to
the interaction of the molecule with the bath of electromagnetic
modes.

We integrate these equations of motion with respect
to the time, starting from the initial time t0 = 0 at
which the molecule and the field are uncoupled, to ob-
tain the free and induced flip operator and electromagnetic

fields:

〈Amn(t)〉 = 〈
A(0)

mn(t)
〉 + i

�

∫ t

0
dt1fmn(t − t1)

×〈
Kmn(t1) · E(0)(rA,t1) + Qmn(t1) · B(0)(rA,t1)

〉
,

E(r,ω) = E(0)(r,ω) +
∑
m,n

∫ t

0
dt1e−iω(t−t1)Amn(t1)

×
[
iμ0

π
ω2ImG(r,rA,ω) · dmn

+μ0

π
ωImG(r,rA,ω) × ←−∇ ′ · mmn

]
,

B(r,ω) = B(0)(r,ω) +
∑
m,n

∫ t

0
dt1e−iω(t−t1)Amn(t1)

×
[
μ0

π
ω∇ × ImG(r,rA,ω) · dmn

− iμ0

π
∇ × ImG(r,rA,ω) × ←−∇ ′ · mmn

]
, (6)

where dmn, mmn are the matrix elements of the electric and
magnetic dipole operators between the states |m〉 and |n〉. We
will consider time-reversal symmetric systems, where dmn is
real and mmn is purely imaginary [36] (dmn = dnm, mmn =
−mnm). Furthermore, we have defined the function

fmn(t) = e[iω̃mn−(	n+	m)/2]t . (7)

The flip operator and the fields are the sum of the free terms,
as they would be in the absence of coupling, and induced
terms. The molecule and field systems depend on their history
because of their coupling.

III. DYNAMICAL CASIMIR-POLDER FORCE

We consider the electromagnetic force due to the interac-
tion of a molecule exhibiting electric, magnetic, and chiral
polarizabilities with the body-assisted field. The field is in a
thermal state with temperature T , while the molecule is in a
generic internal state.

The CP force between the molecule and the body (bodies)
is due to the exchange of a single photon: it is emitted, reflected
by the body (bodies), and reabsorbed by the molecule (Fig. 1).
The respective Feynman diagram must contain two interaction
vertices which represent the emission and reabsorption of
one photon. The electric contribution involves two electric-
dipole interactions and the magnetic contribution involves two
magnetic-dipole interactions. The chiral interaction involves
one electric-dipole interaction and one magnetic-dipole in-
teraction, in other words the interaction must depend on cross
terms with one electric dipole moment and one magnetic dipole
moment.

The dynamical CP force for a fixed molecule is

F = ∇〈d(t) · E(r,t)〉|r=rA
+ ∇〈m(t) · B(r,t)〉|r=rA

, (8)

where all operators are obtained by solving the Heisenberg
equations and the expectation value is taken over the thermal
field state and the internal molecular state.
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FIG. 1. Casimir-Polder force: exchange of a single photon be-
tween the chiral molecule and the body.

We can express the electric field in terms of its free part and
the source field due to the molecule [see Eq. (6)]:

F(t) =
∫ ∞

0
dω

∑
m,n

∇〈Amn(t)dmn · E(0)(r,ω,t)〉|r=rA

+
∫ ∞

0
dω

∑
m,n

∇〈Amn(t)mmn · B(0)(r,ω,t)〉|r=rA

+ iμ0

π

∑
m,n

∑
p,q

∫ ∞

0
dω

∫ t

0
dt1e−iω(t−t1)〈Amn(t)Apq(t1)〉

×∇{ω2dmn · ImG(rA,rA,ω) · dpq

−mmn · ∇ × ImG(rA,rA,ω) × ←−∇ ′ · mpq

−iωdmn · ImG(rA,rA,ω) × ←−∇ ′ · mpq

−iωmmn · ∇ × ImG(rA,rA,ω) · dpq} + c.c. (9)

As already mentioned, ∇ and
←−∇ ′ operators act only on the

first and second arguments of the Green tensor, respectively:

∇G(rA,rA) = ∇G(r,rA)|r=rA
,

∇′G(rA,rA) = ∇′G(rA,r′)|r′=rA
. (10)

In the first two terms in Eq. (9), we use the dynamical equations
(6) for the flip operator:

F(t) = i

�

∫ ∞

0
dω

∫ ∞

0
dω′ ∑

m,n

∫ t

0
dt1fmn(t − t1)

×∇〈[E(0)†(rA,ω′,t1) · Kmn(t1)

+ B(0)†(rA,ω′,t1) · Qmn(t1)]

×[dmn · E(0)(r,ω,t) + mmn · B(0)(r,ω,t)]〉|r=rA

+ iμ0

π

∑
m,n

∑
p,q

∫ ∞

0
dω

∫ t

0
dt1e−iω(t−t1)〈Amn(t)Apq(t1)〉

×∇{ω2dmn · ImG(rA,rA,ω) · dpq

−mmn · ∇ × ImG(rA,rA,ω) × ←−∇ ′ · mpq

−iωdmn · ImG(rA,rA,ω) × ←−∇ ′ · mpq

−iωmmn · ∇ × ImG(rA,rA,ω) · dpq} + c.c. (11)

The thermal expectation value of two positive-frequency
electromagnetic fields is zero.

Next, we use the known formula for the field fluctua-
tions [21]:

〈E(0)†(r,ω)E(0)(r′,ω′)〉 = �μ0

π
ImG(r,r′,ω)ω2δ(ω − ω′)n(ω),

〈E(0)†(r,ω)B(0)(r′,ω′)〉 = i�μ0

π
ImG(r,r′,ω) × ←−∇ ′ω

×δ(ω − ω′)n(ω),

〈B(0)†(r,ω)E(0)(r′,ω′)〉 = i�μ0

π
∇ × ImG(r,r′,ω)ω

×δ(ω − ω′)n(ω),

〈B(0)†(r,ω)B(0)(r′,ω′)〉 = −�μ0

π
∇ × ImG(r,r′,ω) × ←−∇ ′

×δ(ω − ω′)n(ω), (12)

where n(ω) is the Bose-Einstein distribution:

n(ω) = 1

e�ω/kBT − 1
. (13)

We also perform the expectation value on the internal
molecular state, which is an incoherent superposition of
energy eigenstates |n〉, with probabilities pn. Furthermore, the
two-time correlation function can be simplified with the Lax
regression theorem [37,38] (t1 � t):

〈Amn(t)Apq(t1)〉 = fmn(t − t1)〈Amn(t1)Apq(t1)〉
= fmn(t − t1)δnp〈Amq(t1)〉. (14)

Approximating 〈Amn(t1)〉 � eiω̃mn(t1−t)〈Amn(t)〉, the CP force
is a weighted sum of the CP forces associated with each
eigenstate F(t) = ∑

n

pn(t)Fn(t):

Fn(t) = iμ0

π

∫ ∞

0
dω

∑
k

∫ t

0
dt1e

−iω(t−t1)

×{fnk(t − t1)[1 + n(ω)] − fkn(t − t1)n(ω)}
×∇{ω2dnk · ImG(rA,rA,ω) · dkn

−mnk · ∇ × ImG(rA,rA,ω) × ←−∇ ′ · mkn

−2iωmnk · ∇ × ImG(rA,rA,ω) · dkn} + c.c., (15)

where pn(t) = 〈Ann(t)〉 is the population of energy state |n〉.
To obtain this expression we have used the Green tensor
reciprocity theorem GT (r,r′) = G(r′,r), and for the chiral part

the property [G(rA,rA,ω) × ←−∇ ′]
T = −∇ × G(rA,rA,ω). The

term proportional to the Bose-Einstein distribution describes
the interaction between the molecule and the thermal field,
while the term independent of n describes the interaction with
the vacuum field.
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Now we introduce ∇A, which acts on both arguments of
the Green tensor. Exploiting Onsager reciprocity, the relation

∇AG(rA,rA) = ∇G(r,rA)|r=rA
+ ∇′G(rA,r′)|r′=rA

= ∇G(rA,rA) + ∇′G(rA,rA)

= ∇G(rA,rA) + ∇GT (rA,rA) (16)

holds. For a time-reversal symmetric molecule, we can hence
make the replacement

∇G(rA,rA,ω) → 1

2
∇AG(rA,rA,ω). (17)

After performing the time integrals we obtain

F(t) =
∑

n

pn(t)
[
Fe

n(t) + Fm
n (t) + Fc

n(t)
]
,

Fe
n(t) = μ0

2π

∫ ∞

0
dωω2

∑
k


kn(ω,t)

× ∇AdnkImG(rA,rA,ω)dkn,

Fm
n (t) = − μ0

2π

∫ ∞

0
dω

∑
k


kn(ω,t)

× ∇Amnk∇ × ImG(rA,rA,ω) × ←−∇ ′mkn,

Fc
n(t) = − iμ0

π

∫ ∞

0
dωω

∑
k


kn(ω,t)

× ∇Amnk∇ × ImG(rA,rA,ω)dkn, (18)

where


kn(ω,t) = 1 − e
−it

(
ω+ω

(−)
kn

)
ω + ω

(−)
kn

[1 + n(ω)]

− 1 − e
−it

(
ω−ω

(+)
kn

)
ω − ω

(+)
kn

n(ω) + c.c. (19)

and ω
(±)
kn = ω̃kn ± i(	n + 	k)/2. As explained before, for

time-reversal symmetric systems, the electric dipole elements
are real and the magnetic dipole elements are purely imaginary.
We have separated the electric, magnetic, and chiral contribu-
tions: the electric contribution contains two electric dipole
moments, the magnetic contribution contains two magnetic
dipole moments, and the chiral contribution contains cross
terms with one electric dipole moment and one magnetic dipole
moment.

We observe that the force depends on time in two ways: first,
the populations of the internal molecular states may depend
on time. For example, a molecule initially prepared in some
excited state will unavoidably decay to the ground state, so
the population of the excited state is one for short times but
zero for large times. The time scale of this population-induced
dynamics of the force is set by the lifetimes τn = 1/	n of
the initially populated states. For a ground-state molecule the
populations of the energy levels are constant in time and there
is no population-induced dynamics.

The time-dependent exponentials on the other hand de-
scribe the dynamical self-dressing of the molecule which is the
focus of this work. The self-dressing dynamics operates on the

much shorter time scales of the order of the inverse molecular
transition frequencies 1/ωnk . The dynamical self-dressing has
been considered for a single nonabsorbing electric molecule
in front of a plate [29]; our approach is generalized for finite
temperature and arbitrary geometry of the body and it accounts
for molecular absorption.

For times much larger than 1/ωnk , the exponential function
is rapidly oscillating and averages to zero. The electric part
of the CP force then converges to the value obtained in
the literature with a dynamical approach where the time
dependence is solely due to population-induced dynamics
[34,39]. Our results hence generalize the previous dynamical
approach to include the self-dressing of the molecule as well
as the magnetic and the chiral parts of the interactions. The
static limit of our result for the chiral contribution extends
previous results from time-independent perturbation theory to
finite temperature and absorbing molecules [21].

As a simple example, we consider an isotropic nonabsorb-
ing molecule. The electric, magnetic, and chiral parts of the
dynamical Casimir-Polder interaction are

Fn(t) = Fe
n(t) + Fm

n (t) + Fc
n(t),

Fe
n(t) = μ0

3π

∫ ∞

0
dωω2

∑
k

dnk · dkn

′
kn(ω,t)

× ∇ATr{ImG(rA,rA,ω)},

Fm
n (t) = − μ0

3π

∫ ∞

0
dω

∑
k

mnk · mkn

′
kn(ω,t)

× ∇ATr{∇ × ImG(rA,rA,ω) × ←−∇ ′},

Fc
n(t) = −2μ0

3π

∫ ∞

0
dωω

∑
k

Rnk

′
kn(ω,t)

× ∇ATr{∇ × ImG(rA,rA,ω)}, (20)

where


 ′
kn(ω,t) = 1 + n(ω)

ωkn + ω
(1 − cos[(ωkn + ω)t])

+ n(ω)

ωkn − ω
(1 − cos[(ωkn − ω)t]), (21)

Tr is the trace, Rnk = Im (dnk · mkn) is the rotatory strength,
and ωkn is the transition frequency between the state |k〉 and
|n〉.

If either the medium (Tr{∇ × ImG(rA,rA,ω)} = 0) or the
particle (Rnk = 0) is achiral there will be no chiral component
to the Casimir-Polder potential. This can be thought of as
an application of the Curie dissymmetry principle (originally
formulated for crystal symmetries): the CP potential cannot
distinguish between molecules of different handedness if the
medium does not possess chiral properties itself.

Under reflection, the electric dipole moment changes sign,
while the magnetic dipole moment does not. The electric
and magnetic parts of the dynamical interaction hence do
not change if the molecule is substituted with its enantiomer
(mirror image), but the chiral part of the CP force changes
sign. This shows the discriminatory effect for the chiral
part of the dynamical interaction. Furthermore, we will see
that the dynamical force can be considerably enhanced at
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the back-reaction time, or when the molecules “sees” itself.
The dynamical force is also more interesting than the static
force, because it exhibits oscillations in time, being attractive
or repulsive depending on time. A parametric excitation of
vacuum fluctuations may also lead to the emission of real
photons.

IV. CHIRAL MOLECULE IN FRONT OF A
PERFECT MIRROR

The interaction between a ground-state electric molecule
and a perfectly conducting electric plate at zero temperature
has been investigated in the literature [29]; the results can be
recovered with our model but we will not focus on this point
here. We consider instead the interaction between a ground-
state chiral molecule and a perfectly reflecting chiral plate at
zero temperature, n(ω) = 0. As the population of the ground
state is constant in time, the only dynamics of the Casimir-
Polder force arises due to self-dressing.

The Green tensor of the perfectly reflecting chiral plate is
known, and it depends only on the distance d between the
molecule and the mirror [21,40]:

∂

∂d
{ω∇ × ImG(rA,rA,ω)}

= ± 3c

8πd4

[
cos x + x sin x − 1

3
x2 cos x

]
x=2dω/c

, (22)

where the sign + or − refers to plates of positive and negative
chirality, respectively. Note that the trace of the Green tensor
scales differently for small and large distances leading to
different dependences of the force on the distance.

After inserting this expression into Eq. (20), we next need to
perform the frequency integrals for the three terms in Eq. (22).
This task can be simplified considerably by expressing the
Green tensor in terms of a differential operator:

∂

∂d

{
ω∇ × ImG(rA,rA,ω)

}

= ± 3c

8πd4
lim
m→1

[
1 − ∂

∂m
+ 1

3

∂2

∂m2

]
cos (mx)|x=2dω/c.

(23)

Inserting the Green tensor in this form, the chiral interaction
reads

Fc = ∓ 1

4π2ε0cd4
lim
m→1

[
1 − ∂

∂m
+ 1

3

∂2

∂m2

]

×
∑

k

R0k

∫ ∞

0
dx

cos (mx)

x + xk

(1 − cos [(x + xk)a])d̂,

(24)

where x = 2dω/c, xk = 2dωk/c, a = ct/(2d), and d̂ = d/d.

A. Stationary case: Large times

For times much larger than 1/ωk , the cosine function
oscillates rapidly and its contribution vanishes; this situation
corresponds to a totally dressed molecule.

FIG. 2. Stationary chiral Casimir-Polder interaction between a
ground-state dimethyl disulphide and a perfect mirror of negative
chirality.

We introduce the auxiliary functions, for m,y > 0:

F (m,y) =
∫ ∞

0
dx

sin (mx)

x + y

= sin (my) Ci (my) − cos (my)
[
Si (my) − π

2

]
,

G(m,y) =
∫ ∞

0
dx

cos (mx)

x + y

= − cos (my) Ci (my) − sin (my)
[
Si (my) − π

2

]
,

(25)

where Si and Ci are the sine and cosine integral functions.
For large times the CP force converges to the following static
force:

Fc
t→∞ = ∓ 1

4π2ε0cd4

∑
k

R0k lim
m→1

[
1 − ∂

∂m
+ 1

3

∂2

∂m2

]

×G(m,xk)d̂ = ∓ 1

3π2ε0cd4

∑
k

R0k[1 − 2 Ci(2kkd)

×f (kkd) + (2 Si(2kkd) − π )g(kkd)]d̂, (26)

where kk = ωk

c
is the molecular wave number and we have

introduced the auxiliary functions:

f (x) = 3x

4
sin(2x) +

(
3

8
− x2

2

)
cos(2x),

g(x) = 3x

4
cos(2x) −

(
3

8
− x2

2

)
sin(2x). (27)

This is an alternative slightly more explicit form for the result
known in the literature [21,40].

As an example of a chiral molecule, consider dimethyl
disulphide (CH3)2S2. The dipole and rotatory strengths for
each transition have been numerically calculated for various
orientations [41]. As an example, we have chosen the first
transition when the orientation between the two CH3-S-S
planes is 90◦. The transition frequency between the excited
state and the ground state is ω10 = 9.17 × 1015 Hz, the square
of the dipole moment |d01|2 = 8.264 × 10−60 (C m)2 and the
rotatory strength is R10 = 9.97 × 10−54 C2 m3 s−1. Figure 2
shows the chiral Casimir-Polder force for a ground-state
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dimethyl disulphide molecule above a perfect mirror of
negative chirality. The stationary chiral CP force between the
ground-state molecule and the medium is repulsive due to
the chosen opposite chiralities of molecule and mirror. This
differs from the CP interaction between an electric molecule
and a perfectly conducting electric plate, which is attractive
[2,29,32].

The distance dependence of the chiral CP force can be
reduced to simple power laws in the retarded and nonretarded
limits. In the nonretarded limit d � λk or equivalently xk � 1,
we may approximate G(m,xk) → −γ − ln (mxk) where γ is
the Euler-Mascheroni constant. The force is then [21,40]

Fnon-ret = ± 1

4π2ε0cd4

∑
k

R0k ln

(
ωkd

c

)
d̂. (28)

In the retarded limit d  λk or equivalently xk  1, we
have G(m,xk) → 1

(mxk )2 and the force is [21,40]

Fret = ∓ 5c

16π2ε0d6

∑
k

R0k

ω2
k

d̂. (29)

As expected, the retarded interaction decreases more rapidly
due to the finite velocity of the light: during the time in which
the virtual photon has been exchanged, the molecule will
evolve. This associated loss of correlation leads to a more
rapidly decreasing force.

Due to the unusual ln (ωkd

c
)/d4 dependence of the force in

the nonretarded limit, the chiral potential grows more rapidly
than the electric and magnetic potentials when approaching
the surface. For plates exhibiting also electric properties, the
purely electric contribution should be included. While the
chiral contribution is proportional to the rotatory strength,

the electric contribution contains two electric dipole elements.
An electric dipole has the order of magnitude of eaB , where aB

is the Bohr radius and the magnetic moment is of the order of
magnitude of the Bohr magneton. The order of magnitude
of the ratio between the chiral and electric forces is then
approximately m/c

d
� α with α the fine-structure constant.

This shows that the chiral force is generally weaker than
the electric one. In comparison, the ratio between the electric
quadrupole interaction and the electric dipole contribution is
of the order of (a/d)2, where a is the mean radius of the
molecule and d is the distance between the molecule and
the plate; the quadrupole moment represents an important
contribution only for large molecules and small distances.
While the ratio between the electric quadrupole and dipole
contributions can be controlled using smaller molecules, the
ratio between the chiral contribution and the electric dipole
contribution is independent of the molecular size.

The chiral force changes sign if the molecule is substituted
with its entaniomer, or when the plate of negative chirality is
substituted with one of positive chirality. This discriminatory
effect is also observed in the dynamic case, which we will
consider in the next section.

B. Dynamical case

We now consider the dynamical situation in which the
interaction with the perfect chiral plate starts at the initial
time t0 = 0 and we ask for the dynamical Casimir-Polder
force between the chiral molecule and the mirror. In this
case, the bare molecular state is not an eigenstate of the
total Hamiltonian, and thus it evolves in time (dynamical
self-dressing), yielding a time-dependent force between the
mirror and the molecule.

To evaluate the force, we use the trigonometric relation

cos(mx)(1 − cos[(x + xk)a]) = cos(mx) − cos(axk)

2
{cos[(m + a)x] + cos[(m − a)x]}

+ sin(axk)

2
{sin[(m + a)x] − sin[(m − a)x]}. (30)

The force has two different expressions before and after the back-reaction time (t = 2d/c), which is the time needed for light
emitted by the atom to be reflected by the mirror and return to the molecule. For t < 2d/c and t > 2d/c the chiral dynamical CP
force is

Fc
t<2d/c = ∓ 1

4π2ε0cd4

∑
k

R0k lim
m→1

[
1 − ∂

∂m
+ 1

3

∂2

∂m2

]{
G(m,xk) − cos(axk)

2
[G(m + a,xk) + G(m − a,xk)] + sin(axk)

2

× [F (m + a,xk) − F (m − a,xk)]

}
d̂ = ∓ 1

3π2ε0cd4

∑
k

R0k

[
1 − 8d4 cos(ωkt)

(c2t2 − 4d2)2
+ 2d2 cos(ωkt) + d2ωkt sin(ωkt)

c2t2 − 4d2

− [2 Ci(2kkd) − Ci(2kkd − ωkt) − Ci(2kkd + ωkt)]f (kkd) + [2 Si(2kkd)

− Si(2kkd − ωkt) − Si(2kkd + ωkt)]g(kkd)

]
d̂, (31)

Fc
t>2d/c = ∓ 1

4π2ε0cd4

∑
k

R0k lim
m→1

[
1 − ∂

∂m
+ 1

3

∂2

∂m2

]{
G(m,xk) − cos(axk)

2
[G(a + m,xk) + G(a − m,xk)]

+ sin(axk)

2
[F (a + m,xk) + F (a − m,xk)]

}
d̂ = ∓ 1

3π2ε0cd4

∑
k

R0k

[
1 − 8d4 cos(ωkt)

(c2t2 − 4d2)2
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+ 2d2 cos(ωkt) + d2ωkt sin(ωkt)

c2t2 − 4d2
− [2 Ci(2kkd) − Ci(ωkt − 2kkd) − Ci(ωkt + 2kkd)]f (kkd)

+ [2 Si(2kkd) + Si(ωkt − 2kkd) − Si(ωkt + 2kkd) − π ]g(kkd)

]
d̂, (32)

where the functions f and g are defined by Eq. (27). It is
easy to show that F → 0 for t → 0; this is due to the fact that
we switch on the interaction at the initial time t0 = 0.

For subsequent times, the force increases, exhibiting an
oscillatory behavior in time. Depending on the time, the force
can be attractive and repulsive for a given distance, contrary to
the static case where it has a definite sign. This is illustrated in
Fig. 3, where we display the chiral CP force at fixed distance
from the mirror before the back-reaction time.

For large times, the force converges to the static force; this
corresponds to a totally dressed molecule. Figure 4 shows the
dynamics of the chiral force after the back-reaction.

To interpret our results, recall that the CP force is due
to the exchange of one virtual photon between the molecule
and the mirror. Different expressions for the force are needed
before and after the back-reaction time because the photon
needs a finite time in order to be reflected and absorbed by the
molecule. Note that the force is nonvanishing even before the
back-reaction time, because the molecule interacts with the
field modes which incorporate the presence of the conducting
wall and hence instantaneously feels the presence of the mirror.
This is because we are evaluating the force on the atom,
which responds to the local field at its position and thus it
is immediately influenced by a change of the atom’s physical
parameters. We expect that, if the force on the conducting
wall were evaluated, it would be influenced by a change of
the atomic parameters (or by a sudden switching on of the
atom-field interaction) only after the causality time t = d/c.

The force is divergent on the light cone t = 2d/c, because in
the frequency integral we include arbitrarily large frequencies:
this divergence is not surprising, being due to the assumption
of a pointlike molecule (related to the dipole approximation)
and to the idealized nature of the material. A real material is
transparent for large frequencies, providing a natural cutoff to
regularize the frequency integral; moreover, also the inclusion

FIG. 3. Chiral dynamical Casimir-Polder interaction between
a ground-state dimethyl disulphide and a negative perfect chiral
medium for d = 0.1 μm and t < 2d/c = 0.67 fs.

of a finite size of the atom/molecule would provide a natural
ultraviolet cutoff given by the appropriate atomic form factor.

V. CONCLUSIONS

Using a dynamical approach, we have obtained the electric,
magnetic, and the chiral parts of the time-dependent Casimir-
Polder interaction between an initially bare chiral molecule
and a body at finite temperature, the molecule initially being
prepared in a generic internal state. The force depends on
time because the populations of the excited states of the
molecule depend on time (population-induced dynamics), but
also because of the initial boundary condition (self-dressing
induced dynamics).

As an example we have considered the particular case
of the interaction between an initially bare ground-state
chiral molecule and perfectly reflecting chiral plate at zero
temperature. Here, the force is time dependent only because
of self-dressing. The dynamical CP force can be attractive or
repulsive depending on time, contrary to the static case where
it has a definite sign for a given distance.

The dynamical interaction is due to the exchange of one
virtual photon between the chiral molecule and the mirror. A
characteristic time scale of the dynamical CP force is the time
taken by the virtual photon to be emitted by the molecule,
reflected by the mirror, and reabsorbed by the molecule
(back-reaction time). The dynamical interaction oscillates in
time and the scale of these oscillations is related to the
molecular transition frequency. The dynamical effect we have
considered could in principle be measured by switching on
the interaction between the molecule and the field at the
initial time t0 = 0. Even if this is an idealized situation,
it could be approximated by the more realistic case of a
rapid change of some parameter characterizing the atom-
field interaction (strength and/or orientation of the atomic

FIG. 4. Chiral dynamical Casimir-Polder interaction between
a ground-state dimethyl disulphide and a negative perfect chiral
medium for d = 0.1 μm and t > 2d/c = 0.67 fs.
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dipole moments or atomic transition frequency by Stark shift,
for example) or putting the atom at some distance from
the macroscopic body [42]. Another possibility to obtain a
dynamical effect could be introducing the mirror at t0 = 0;
however, because in our formalism the presence of the mirror
is included in the boundary conditions and not in the system’s
dynamics, this would require a different approach based on
a transformation of field operators and modes relating old
and new ones (i.e., before and after switching on the mirror),
similarly to the dynamical Casimir effect. The use of chiral
Rydberg atoms, which have low transition frequencies and
large polarizabilities, could be a simpler system to measure the
dynamical Casimir force, because in this case the dynamical
force evolves on longer time scales [43] (τ = 10−9 s).

We have shown that the chiral Casimir-Polder interaction
shows a discriminatory effect because it changes sign if the
molecule is substituted by its enantiomer and the dynamical
force can hence allow us to distinguish different enantiomers.

Furthermore, the dynamical interaction with real surfaces
is particularly strong at the back-reaction time, opening an
interesting perspective on the separation of enantiomers.

We finally remark that in our approach the medium is
considered macroscopically with the electromagnetic Green
tensor. Our model can be generalized to different molecular
internal states and different geometries in which the Green
tensor is known.
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