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The two-photon 1s22s2p 3P0 → 1s2s2 1S0 transition in berylliumlike ions is investigated theoretically within
a fully relativistic framework and a second-order perturbation theory. We focus our analysis on how electron
correlation, as well as the negative-energy spectrum, can affect the forbidden E1M1 decay rate. For this purpose,
we include the electronic correlation via an effective local potential and within a single-configuration-state
model. Due to its experimental interest, evaluations of decay rates are performed for berylliumlike xenon and
uranium. We find that the negative-energy contribution can be neglected at the present level of accuracy in
the evaluation of the decay rate. On the other hand, if contributions of electronic correlation are not carefully
taken into account, it may change the lifetime of the metastable state by up to 20%. By performing a fully
relativistic jj -coupling calculation, we find a decrease of the decay rate by two orders of magnitude compared
to nonrelativistic LS-coupling calculations, for the selected heavy ions.

DOI: 10.1103/PhysRevA.93.032502

I. INTRODUCTION

Two-photon decay has been studied experimentally and
theoretically for many atomic systems since it was originally
discussed by Göppert-Mayer [1]. In low-Z atomic systems,
the 2s-1s transitions in hydrogenlike and heliumlike ions
occur primarily by two electric dipole photons (E1E1) and
the respective decay rates provided by theory and experiment
are in good agreement. These works focused not only on
the total and energy-differential decay rates [2–4], but also
on the angular and polarization correlations of the two
emitted photons [5–9]. Detailed analysis of these two-photon
properties has been used to reveal unique information about
electron densities in astrophysical plasmas and thermal x-ray
sources, as well as highly precise values of physical constants
[10]. The study of two-photon decay in high-Z ions has
also provided a sensitive tool for exploring the relativistic
and quantum electrodynamic effects that occur in the strong
atomic fields of those systems. As in the case of low-Z ions,
predictions for two-photon decay rates are in good agreement
with experimental data [11–14].

Few investigations have been performed so far for other
atomic systems with more than two electrons. In the case
of lithiumlike ions, this lack of research might be attributed
to almost all two-photon transitions being in direct compe-
tition with dominant allowed (single E1) transitions, thus
reducing the importance of the former processes in practical
applications. However, this is not the case for beryllium-
like ions with zero nuclear spin (I = 0). Owing to the
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0 → 0 selection rule, the first excited state 1s22s2p 3P0 is
metastable and its transition to the ground state 1s22s2 1S0

is strictly forbidden for all single-photon multipole modes.
The most dominant decay process is a rare two-photon
transition with magnetic and electric dipole modes (E1M1)
that is very sensitive to relativistic and electronic correlation
effects and can have lifetimes from a few decades to a few
minutes, depending on the atomic electromagnetic field of the
nucleus.

Knowledge of metastable decay rates is essential in
collision-radiative modeling of astrophysical low-density plas-
mas that occur in stellar coronae [15]; thus many studies
have been dedicated to the measurement and the calculation
of higher-order (M1 and E2) and hyperfine-induced E1
transitions modes [16–18]. Measurements of the metastable
hyperfine-induced decay rate in N3+ was first performed at
the Hubble Space Telescope with important implications to
the isotopic abundance in an observed nebula [19]. The value
of the E1M1 decay rate in berylliumlike sulfur can also play
an important role, specially because the majority of stable
isotopes (32S and 34S) have nuclei with I = 0 and have
observable quantities in the solar coronae [18,20,21].

Besides this astrophysical interest, there is also motivation
for calculating the E1M1 two-photon decay mode coming
from experiments aimed at testing the standard model via
the observation of parity nonconservation in berylliumlike
uranium [22,23]. Moreover, some unusual x-ray lines com-
ing from an electron cyclotron resonance plasma might be
attributed to charge state mechanisms involving the berylli-
umlike metastable state 1s22s2p 3P0 [24]. More recently, the
1S0 → 3P0 E1M1 transition in group-II-type atoms has also
attracted attention as a possible way to design an atomic clock
with advantages of portability and a Doppler-free excitation
scheme [25].
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There are no experimental results for the E1M1 decay
rates in zero-spin berylliumlike ions available. Only recently,
several dielectronic recombination resonances were clearly
identified as coming from a parent 1s22s2p 3P0 metastable
state in xenon (136Xe+50 with I = 0), which should lead to a
measurement of the respective E1M1 decay rate [26,27]. In
these works, the need of fully relativistic calculations for this
decay rate is emphasized.

In isotopes with nonzero I the importance of the E1M1
mode is reduced: The hyperfine mixing between the term
3P0 and the closely lying above term 3P1 produces states
with total angular momentum F �= 0, thus circumventing the
0 → 0 selection rule. This drastically reduces the lifetime
of the metastable 1s22s2p 3P0 state since it opens an E1
single-photon channel. Decay rates for this hyperfine-induced
E1 mode have been known theoretically for years [18,28–30]
and the first measurements were performed recently, both in
laboratory [31,32] and in a planetary nebula [19]. A review
of this topic can be found in Ref. [33]. External magnetic and
electric fields also induce the E1 mode [23,34].

From the theoretical point of view, the calculation of this
two-photon decay rate offers a challenge not only because
berylliumlike ions have energy states separated by few percent
of ionization energies, which makes electronic correlation of
paramount importance, but also due to relativistic effects, such
as the presence of the negative-energy continuum. Figure 1
illustrates the atomic structure in berylliumlike uranium,
where the initial, (some) intermediate, and final states are
drawn. Previous studies about two-photon decay with an M1
component have shown that the negative-energy continuum
contribution is mandatory for both low-Z and high-Z ions
[35,36]. Furthermore, similar investigations in one-photon M1
transitions have also shown an important contribution for high-
Z ions [37] and concluded that the inclusion of the negative-
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FIG. 1. Energy atomic structure of berylliumlike uranium relative
to the final state 2s2 1S0. The four paths composed of the blue (M1)
and thicker green (E1) arrows connect the initial state to the final state,
through the first intermediate states of S1/2(2,1), S3/2(2,1), S1/2(1,2),
and S3/2(1,2) of Eq. (2), which are allowed by selection rules.
Solid and dashed arrows show the Sjn (1,2) and Sjn (2,1) amplitudes,
respectively.

energy continuum gives better agreement with experimental
data [38] as well as improvements in gauge invariance [39–41].
Electronic correlation and relativistic effects (including a
negative continuum) have to be efficiently incorporated in
the second-order summation over the intermediate states that
characterizes two-photon transitions.

Up to now, only two estimations of the E1M1 decay rate
for berylliumlike systems have been available [42,43], both
assuming a nonrelativistic approximation and LS-coupling
scheme, which for high-Z ions may lead to significant
deviations. Moreover, the summation over the intermediate
states was restricted only to the first terms, 1s22s2p 3P1 and
1s22s2p 1P1.

In this work we calculate the two-photon decay rate of the
metastable 1s22s2p 3P0 state in berylliumlike ions by consid-
ering a relativistic evaluation of the second-order summation
in a jj -coupling scheme and single-configuration model.
Negative-energy states are thus included and their effect is
investigated. In order to take into account the electronic
correlation, we perform the evaluation of the second-order
summation via a finite basis set and an effective local potential,
with a few key intermediate-state energies calculated using
the multiconfiguration Dirac-Fock (MCDF) method. For these
evaluations, we consider berylliumlike xenon and uranium,
following the reasoning above. For elements lighter than
xenon, we notice that the strong electronic correlation prevents
the present method from obtaining a reliable decay rate.

II. THEORY

A. General two-photon decay rate

The evaluation of two-photon related quantities have been
discussed several times in the literature [11,12,44,45], there-
fore, we present here only a short compilation of expressions
that are essential for further discussion of the influence of
the relativistic and electronic correlation effects. Two-photon
processes are evaluated following a second-order perturbation
theory, which overall contains a summation over the complete
spectrum of a given Hamiltonian. The differential decay rate
of two-photon spontaneous emission between (many-electron)
atomic states �i → �f , obtained after summing over the
photons polarizations and integrated over all possible emission
directions, is given by

dW

dω1
= ω1ω2

(2π )3c2(2Ji + 1)

×
∑

L1M1λ1
L2M2λ2
Mi ,Mf

∣∣∣∣∣
∑

n

〈�f |T (λ2)∗
L2M2

|�n〉〈�n|T (λ1)∗
L1M1

|�i〉
En − Ei + ω1

+ 〈�f |T (λ1)∗
L1M1

|�n〉〈�n|T (λ2)∗
L2M2

|�i〉
En − Ei + ω2

∣∣∣∣∣
2

, (1)

where the indices i, f , and n stand for the initial, final, and
intermediate states. The one-body transition operator T (λj )

Lj Mj
=∑4

i ′ ã
(λj )∗
Lj Mj

(r i ′ ) (j = 1,2) contains the interaction between each
i ′ electron (with vector position r i ′) and the radiation field.
Here ã

(λj )
Lj Mj

(r i ′ ) is the relativistic multipole of rank Lj of the
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spherical-tensor expansion of the electron-photon interaction
[11,46]. The values of λ are restricted to λj = ±1 and to
λj = 0, which addresses to electric ELj and magnetic MLj

multipole types, respectively. The quantities ω1 and ω2 are the
energies of the two emitted photons and c is the speed of light.
Note that, differently from Eq. (1) in Ref. [45], there is an extra
third power in ω1 and ω2. This is a consequence of the electric
dipole transition operator used in Ref. [45] being of length
gauge type in a nonrelativistic limit (details in Ref. [46]).

Atomic states �q ≡ �q(JqMq) (q = i,f,n) are usually
given as a linear combination of (antisymmetrical) jj -coupled
configuration-state functions (CSFs) �klop(JqMq) within a
MCDF or configuration interaction (CI), where the four
subscripts k, l, o, and p identify the orbitals, Jq is the
total angular momentum, and Mq is its projection along the
quantization axis. We hereby define an intermediate state
with major contribution of a CSF with a spectator-orbital
excitation (1s or 2s) as �exc(JnMn). Here �nonexc(JnMn) are
intermediate states where the major contribution addresses to
a CSF �1s22sn′l′ (JnMn) with nonexcitation of the spectator
orbitals. From now on we omit 1s2 in configurations for
brevity.

B. Single-configuration model

In this work, only CSFs with variations of the active
electron’s quantum numbers n′l′j ′ that participates in the
transition �2s2p(00) → �2sn′l′

j ′ (1Mn) → �2s2 (00) are taken
into account in the initial, intermediate, and final states, for
the evaluation of Eq. (1). Other CSFs with excitation of the
spectator electron are thus not taken into account. This is
accomplished by considering the dominant single CSF in all
states, as well as orthogonal orbitals. In order to better justify
this model, we give in Fig. 2 a diagram of the allowed matrix
elements involving one �exc(1Mn) and one �nonexc(1Mn). Path
(a) involves a state �nonexc(1Mn) with major contribution of
�2s2p(1Mn). This path is also represented in Fig. 1. Because
the radiative operator T (λ)

Lj Mj
is a one-body operator, �exc(1Mn)

states give non-null matrix elements only by considering either
path (b) or path (c) of Fig. 2.

Path (b). Electron orbitals are almost orthogonal between
all states, thus if the radiative operator connects the active
orbitals, there is a small contribution of �exc(1Mn) due to
〈3sn|2sf 〉 �= 0, where 3sn and 2sf are spectator orbitals in the
�exc(1Mn) and final state.

Path (c). The final and initial states can have a rea-
sonable contribution of a configuration with the same
spectator orbital as �exc(1Mn) due to configuration mix-
ing, i.e., �i(00) ≈ ci

0�2s2p(00) + ci
1�3s2p(00) and �f (00) ≈

c
f

0 �2s2 (00) + c
f

1 �2s3s(00). The configuration coefficients can
be obtained either by MCDF or CI methods.

These two cases show how a multiconfiguration approach
and fully relaxed orbitals can play a role in two-photon pro-
cesses by allowing �exc(1Mn) states beyond the assumption
of only using CSFs with variations of the active electron
participating in the transition.

For the present elements of xenon and uranium, MCDF
calculations made for the initial, intermediate, and final states
with fully relaxed orbitals and excited CSFs (all excitations
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FIG. 2. Diagram of paths, or allowed matrix elements, connecting
the initial state to the final state through �nonexc(1Mn) and �exc(1Mn)
possible intermediate states. Blue and green arrows represents M1
and E1 multipoles, respectively. Path (a) (solid arrows) corresponds
to an intermediate state �nonexc(1Mn) with a dominant contribution of
�2s2p(1Mn). Path (b) (dashed arrows) connects an intermediate state
�exc(1Mn) to the final and initial states via the nonorthogonality
of the spectator electrons. Path (c) (dot arrows) connects correlation
configurations of the initial and final states to �exc(1Mn). The dashed
line means a link between the configurations with higher c0 and minor
c1 contributions in the jj expansion.

of orbitals up to a principal number of 3) show results that
justifies the use of single CSFs with variations of the active
electron. First, due to the strong field of the nucleus, even for
xenon, the radial orbitals obtained for the spectator electrons
are reasonably orthogonal in all initial, final, and intermediate
states (residues of 2%). Second, the CSF mixing coefficients
of both initial (99% 2s2p1/2) and final states [98% 2s2 + 2%
(2p2

1/2)0] are well represented by a single CSF. Intermediate
states have also a major contribution of a single CSF. For
example, the two states (2s2p)J=1 have 99%2s2p1/2 and
99%2s2p3/2, respectively.

For low-Z ions or neutral beryllium, on the other hand,
strong electron correlation does not allow the application of
a single CSF for the atomic states. The intermediate-state
summation can be done either via an inhomogeneous four-
electron Dirac Hamiltonian (as in Ref. [12] for heliumlike
ions) or by the introduction of �exc(1Mn), which requires a
careful analysis of the configuration mixing coefficients and
orthogonality.

For the present case of the E1M1 two-photon decay
between the initial 2s2p 3P0 and final 2s2 1S0 states (terms
are given for state identification), the differential decay rate
within a single CSF model is given by (in a.u.)

dW

dω1
= ω1ω2

(2π )3c2

∑
λ=−1,1

∣∣∣∣∣∣
3/2∑

jn=1/2

[Sjn(2,1) + Sjn (1,2)]

∣∣∣∣∣∣
2

, (2)

where jn is the total angular momentum of the active
electron performing the transition 2p → n′l′jn → 2s. The
sum of both photon energies is equal to the 2s2p 3P0–2s2 1S0

energy difference to ensure energy conservation, E2s2p 3P0 −
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E2s2 1S0 = ω1 + ω2 = ωt . The two-photon amplitudes Sjn (2,1)
and Sjn (1,2) contain the summation over the reduced matrix
elements of the E1 and M1 multipole components, which are
given by

Sjn (2,1)

=
∑

n

〈2s 1S0||M1(ω2)||nνjν〉〈nνjν ||Eλ
1 (ω1)||2p 3P0〉

En − E2s2p 3P0 + ω1
, (3)

with the multipole components, electric dipole and magnetic
dipole, being given by the relativistic radiative operators
ã

(λ)∗
1 (r) ≡ Eλ

1 (ω) and ã
(0)∗
1 (r) ≡ M1(ω), respectively. Explicit

expressions of the reduced matrix elements are given in the Ap-
pendix. Here Sjn (1,2) is given by an equation similar to Eq. (3)
by interchanging Eλ

1 (ω1) with M1(ω2) in the numerator and
ω1 with ω2 in the denominator. We represent in Fig. 1 the first
state of the summation allowed by selection rules for the four
two-photon amplitudes S1/2(2,1), S3/2(2,1), S1/2(1,2), and
S3/2(1,2), which are the 2s3s1/2

1S0, 2s3d3/2
1D1, 2s2p1/2

3P1,
and 2s2p3/2

1P1 states, respectively.

C. Effective local potential

In the present model, the evaluation of the two-photon
amplitudes is performed by applying the finite-basis-set (FBS)
method to the representation of the active electron of the
(single CSF) �nonexc(1Mn) intermediate states. A B-spline
basis set [47,48] is considered for a cavity of radius 60 a.u.
and 50 positive-energy and 50 negative-energy states. A
degree of correlation is introduced in order to match the
respective orbitals obtained by the MCDF method. A local
electrostatic potential formed by the 1s and 2s spectator
orbitals, 2v0(1s,r) + v0(2s,r) [49], is considered in all active
orbitals, where v0(ν,r) is given by

v0(ν,r) =
∫

[Pν(r ′)2 + Qν(r ′)2]
1

r>

dr ′. (4)

Here Pν and Qν are the large and small components of
the radial wave functions of a spectator orbital ν and r> =
max(r,r ′). A comparison with the spectator orbitals of all
states obtained with the MCDF code shows differences of
the order of 5%, which can be neglected for the evaluation
of the electrostatic potential. The spectator orbitals of the
2s2p 3P0 state are chosen for v0(1s,r) and v0(2s,r). A local
statistical-exchange potential is also included in order to
approximate the nonlocal part of the Dirac-Fock equation.
We follow the original procedure of Cowan [50] that defines
this local potential for an orbital ν as

vexc(ν,r) = −k1φ(r)

[
ρ ′(r)

ρ ′(r) + 0.5/(nν − lν)

]

×
(

ρ ′(r)

ρ(r)

)(
24ρ(r)

π

)1/3

, (5)

where ρ is the many-electron total electron density and ρ ′(r)
is the modified total density without the contribution of the ν

orbital, i.e., ρ ′(r) = ρ(r) − min(2,eν)ρν(r), with ρν(r) being
the electron density of the orbital ν. The quantity eν is the
number of equivalent electrons at the orbital ν with principal
quantum number and orbital angular momentum nν and lν ,

TABLE I. Optimal values of k1 and energy differences (eV). The
energy of the initial state 2s2p 3P0 is relative to the final state 2s2 1S0

(ωt ), while the rest are relative to the initial state En − E2s2p 3P0
. We

list the energy differences obtained by the FBS method without k1

optimization (E∗
FBS) and with k1 optimization, which are equal (in the

quoted precision) to the ones obtained by the MCDF method (EMCDF).
Values provided by Ref. [51] are also listed.

State k1 E∗
FBS EMCDF Ref. [51]

Xe50+
3P0 − 1S0 0.79 118.5 104.1 104.5
3P1 − 3P0 0.64 0.0 23.9 22.8
1P1 − 3P0 0.62 400.8 430.1 428.3

U88+
3P0 − 1S0 0.69 252.7 258.1 258.3
3P1 − 3P0 0.58 0.0 41.6 39.9
1P1 − 3P0 0.72 4259.3 4245.3 4243.3

respectively. The function φ(r) takes into account the different
influence of the centrifugal potential to the various orbitals
as described in Ref. [50]. All the present wave functions
and densities necessary for calculating Eqs. (4) and (5) were
obtained by the MCDF method.

Next we identify the intermediate states with the most
relevant weight to the summations and calculate their most
accurate MCDF energies En. These intermediate states are
depicted in Fig. 1. While the parameter k1 is set to 0.7 in
Ref. [50] as the best empirical guess for the exchange potential,
we here consider it as a free parameter. Optimal values of
this parameter are obtained by comparing the values of the
transition energy ωt and the energy differences En − E2s2p 3P0

[denominators of Eq. (3)], obtained by the FBS method and
with the respective ones of the MCDF method. Table I lists the
optimal values of k1 that minimizes the differences between
the FBS and MCDF of the mentioned energy differences.

The MCDF calculations were performed using the general
relativistic MCDF code (MDFGME) [52].

Calculations of the decay rate were performed in both
length and velocity gauges. The quality of the evaluation
of the two-photon amplitudes is directly connected to the
gauge invariance, under the premise that the potential remains
local in all states [11,48]. Although we introduced different
local-exchange potentials in the states and MCDF energies,
we notice that the gauge invariance is still at a level of few
percent.

With the application of the present formalism to the decay
of 1s2p 3P0 to 1s2 1S0 in heliumlike ions, and with an effective
potential of v0(1s,r), we reproduce the results of Ref. [45]
within the respective accuracy.

III. RESULTS AND DISCUSSION

The results of our calculations for the 2s2p 3P0 →
2s2 1S0 E1M1 decay rate W are presented in Table II. The
lifetimes that we obtained, correspond to ∼ 3 min and 12 s for
Xe50+ and U88+ ions, respectively. Other allowed higher-order
multipole contributions to this transition, like the E2M2 or
E3M3, are severely reduced. The value obtained for the E2M2
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TABLE II. Decay rate (s−1) for the 2s2p 3P0 → 2s2 1S0 E1M1 transition in xenon and uranium. Relativistic calculations have been
performed in velocity V and length L gauges for several cases: with (W opt) and without (W nonopt) k1 optimization, with the summation carried
without negative energies (W+), having the energies provided by Ref. [51] (W ∗), and without the effective exchange potential (W noexc).

Ion W
opt
V W

opt
L W

nonopt
V W

nonopt
L W+

V W+
L W ∗

V W ∗
L W noexc

Xe50+ 4.78 × 10−3 4.97 × 10−3 4.05 × 10−3 4.05 × 10−3 4.78 × 10−3 4.98 × 10−3 5.20 × 10−3 5.40 × 10−3 5.30 × 10−3

U88+ 8.04 × 10−2 8.06 × 10−2 9.35 × 10−2 9.35 × 10−2 8.08 × 10−2 8.11 × 10−2 8.18 × 10−2 8.20 × 10−2 8.31 × 10−2

decay rate in beryliumlike uranium, 8.2×10−18 s−1 shows its
negligible impact on the total decay rate.

Calculations were performed in both velocity and length
gauges, showing differences of up to 4% due to the different
local-exchange potentials in the states. A calculation without
these effective exchange potentials (W no-exc) results in a gauge
invariance of 10−10%.

Differences between the values of the decay rate with (W opt)
and without k1-optimization (W non-opt) in Table III are mostly
due to the respective transition energies, on which the decay
rate depends quadratically, as well on the different between
3P1 and 1P1 energies. These values can also be compared with
the case of not considering the effective exchange potential
of Eq. (5). Differences of up to 20% and 16% in xenon and
uranium, respectively, shows how sensitive the decay of this
transition is to the electronic correlation, in particular to the
non-local part of the electron-electron interaction.

Residual differences of 0.5−2 eV between MCDF energy
values and those of Ref. [51] results in relative differences
of 8% in the decay rate (W ∗). Most of the experimental ob-
servations [27,53,54] and theoretical calculations [51,55–58]
of these energies are included in a energy range of 2 eV,
resulting in differences up to 10%.

In contrast to previous studies of the negative continuum,
where it was shown that its contribution has to be included in
relativistic calculations of two-photon decay rates [35,36] and
one-photon decay rates [37,38], they contribute by only a few
percent to the present case, even for berylliumlike uranium
ions. Following the semirelativistic approach of Ref. [45], the
estimation of the negative-continuum contribution to the decay
of p → sE1M1 transitions is proportional to ω5

t /Z
2. Previous

studies deal with transitions between principal quantum
numbers (e.g. [36]), for which the transitions energies scale
as Z4. In the present case, the transition addresses the same
quantum number and scales roughly as Z for berylliumlike
uranium. This explain the observed smaller contribution of the
negative energy continuum on the total decay rate.

To be conservative, we consider the uncertainty in the decay
rate as the combined uncertainty of the previous effects and
the final result having the k1 optimization. The final decay of

TABLE III. Comparison between our final value of the decay rate
W (s−1) and values provided by Refs. [26,43]. Reference [26] is an
extension of Ref. [43] by taking the energy splitting 3P0 − 3P1 into
account.

Ion W Ref. [43] Ref. [26]

Xe50+ (5 ± 1) × 10−3 3.4 × 10−2 5.2 × 10−2

U88+ (8 ± 1) × 10−2 2.6 × 101 4.9 × 101

the E1M1 decay rate is thus equal to (5 ± 1) × 10−3 s−1 and
(8 ± 1) × 10−2 s−1 for xenon and uranium, respectively.

We notice evident differences relative to previous calcu-
lations listed in Table III by factors from 10 to 300. The
differences can be attributed to our fully relativistic approach
in a jj -coupling scheme. The values of Refs. [42,43] were
obtained by considering only the 2s2p3P1 and 2s2p1P1 states
in the intermediate-state summation and were calculated
in a non-relativistic LS-coupling framework. Moreover, the
non-relativistic form of the electric and magnetic dipole
operators was also employed in Refs. [42,43], which forbids
intercombination transitions with a spin-flip of the total spin in
a LS-coupling. Therefore, spin-orbit and spin-spin interactions
were included in first approximation in order to mix the 3P1

and 1P1 terms. For highly charged ions, intercombination tran-
sitions are allowed in a jj -coupling scheme with relativistic
wavefunctions, as the spin-orbit interaction is already included
nonperturbatively. Other investigations of the E1E1 have
shown that relativistic effects increase the decay rate by 30%
[12,59] in heliumlike Xe. In the present case, the M1 mode
is even more sensitive to the LS-coupling scheme that is not
appropriate for highly charged ions, where the strong spin-orbit
interaction is included perturbatively. A similar factor of 300
was already obtained in a relativistic calculation [60].

IV. CONCLUSION

We have presented the results of the two-photon forbidden
E1M1 decay rate for two selected heavy elements obtained
with an effective potential. The limitations of the single
configuration model for this particular decay are investigated
and found that while this approach cannot be applied to low-
and middle-Z ions, for berylliumlike Xe and heavier elements,
each state is well described by a single CSF with orthogonal
orbitals. Therefore, excitations of the spectator electron that
forbid the use of this model can be neglected. We have found a
negligible contribution of negative-energy states to this decay
rate, which is in agreement with semirelativistic estimations.
Not unexpectedly, we observe significant relativistic effects
relative to previous non-relativistic calculations performed for
these transitions. These transitions in middle Z ions may have
been observed and their rates might be experimentally mea-
surable, or at least estimated approximately, in the near future.
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APPENDIX : REDUCED MATRIX ELEMENTS

Within the AEM, both initial, intermediate and final states
are described by a single CSF. With this assumption, and
following the treatment given in [11,14], we arrive at Eqs. (2)
and (3), with the reduced matrix elements between two orbitals
α and β being given by

〈α||R||β〉 =
√

4π [jα,jβ]√
3

(
jα 1 jβ

1/2 0 −1/2

)

×
{
Jα 1 Jβ

jβ 1/2 jα

}
M

R
(ω). (A1)

For the relativistic dipole magnetic multipole [R ≡ M1(ω)],
the radial part M is written as

M
M1 (ω) = 3√

2
(κα + κβ)I+

1 , (A2)

whereas for the relativistic electric dipole multipole, the two
radial part components [R ≡ E

λ=−1,1
1 (ω)] are given by

M
E−1

1 (ω) = G[3J (1) + (κf − κi)(I
+
2 + I+

0 )

−I−
0 + 2I−

2 ], (A3)

and

M
E1

1 (ω) = 1√
2

[(κf − κi)I
+
2 + 2I−

2 ]

−
√

2[(κf − κi)I
+
0 − I−

0 ]. (A4)

The quantum numbers j , J and κ refers to the electron
total angular momentum, state total angular momentum
and relativistic number. G is a gauge parameter that in
velocity and length gauges is equal to 0 and

√
2, respec-

tively. The radial integrals J (1) and I±
L are given as in
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