
PHYSICAL REVIEW A 93, 032337 (2016)

Controllable single-photon transport between remote coupled-cavity arrays
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We develop an approach for controllable single-photon transport between two remote one-dimensional
coupled-cavity arrays, used as quantum registers, mediated by an additional one-dimensional coupled-cavity
array, acting as a quantum channel. A single two-level atom located inside one cavity of the intermediate channel
is used to control the long-range coherent quantum coupling between two remote registers, thereby functioning
as a quantum switch. With a time-independent perturbative treatment, we find that the leakage of quantum
information can in principle be made arbitrarily small. Furthermore, our method can be extended to realize
a quantum router in multiregister quantum networks, where single-photons can be either stored in one of the
registers or transported to another on demand. These results are confirmed by numerical simulations.
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I. INTRODUCTION

Quantum networks are fundamental for quantum infor-
mation science [1,2]. An elementary quantum network is
composed of spatially separated quantum nodes for quantum
information manipulation and storage, with these nodes
connected by quantum channels for quantum information
distribution [3]. Thus, the implementation of such a quantum
network relies upon the ability to realize the reliable transport
of quantum states through these quantum channels. To this
end, in the form of flying qubits, photons serve as an optimal
choice for carrying information for long-distance quantum
communications [4–8]. Another approach to connect distant
qubits is to utilize solid-state systems [9]. Such solid-state
devices include electron spins of nitrogen-vacancy (NV)
color centers in diamond [10–15], nuclear spins in nuclear
magnetic resonance (NMR) [16,17], flux qubits in supercon-
ductors [18–21], cold atoms in optical lattices [22–24], and
even magnons in ferromagnets [25–28]. Moreover, in recent
decades, coupled-cavity arrays (CCAs) are currently being
explored, for example, in superconducting transmission line
resonators [29–33], photonic crystal resonators [34–36], or
toroidal microresonators [37–39]. The CCAs offer an inherent
advantage because each cavity can be individually addressed.
Indeed, both coherent optical information storage and transport
can be achieved in such arrays, and at the same time the need
for an external interface between the quantum register and
the quantum channel is eliminated because they use the same
fundamental hardware.

In addition to simulating quantum many-body phenomena
[40–42], these CCAs also demonstrate promising applications
in controlling photon coherent transport by using single con-
trollable two-level or three-level atoms [31,43–49]. Photons
are transmitted or reflected based upon tuning the photon-atom
scattering. In this case, the atom behaves as a quantum switch.
Despite having been extensively studied [50–56], prior work
on the coherent transport of photons has typically focused on
the nearby CCAs via the photon-atom scattering. However, in
order to carry out quantum network operations, information
needs to be controllably transported between distant quantum
registers. Thus, a detailed understanding of controllable

quantum channels which could connect these distant registers
is of both fundamental and practical importance.

Here we theoretically introduce a method for controllable
coherent transport of single-photons upon making use of a
CCA, one cavity of which contains a two-level atom, as a
quantum channel to connect two remote CCAs as quantum
registers. The key element underlying our method is that
the atom is harnessed to control the long-range coherent
interaction between the two boundary registers. Specifically,
within the weak-coupling regime, the registers are resonantly
coupled by a specific collective eigenmode of the bare channel,
yielding an effective photon transport channel, such that time
evolution results in a swap operation of the two registers.
However, when this eigenmode is coupled to the atom, it will
be dressed and split into two dressed modes. If the splitting
between the two dressed modes is significantly detuned from
the registers, photons will thus be reflected back and, as a
result, the time evolution functions as an identity operation.
Furthermore, we directly extend this approach to the case of
multiregister quantum networks, where a single-photon can
be redirected to different registers at will, in an analogous
manner to a quantum router. As opposed to previous work, the
proposed model can be applicable to controlling the coherent
transport of a single-photon being in an arbitrary quantum state
between two remote quantum registers over an arbitrarily long
range.

II. PHYSICAL MODEL AND CONTROLLABLE
TRANSPORT OF SINGLE-PHOTONS

The basic idea is to use two identical one-dimensional (1D)
CCAs to enact quantum registers connected by a quantum
channel consisting of an additional CCA and a two-level atom,
shown schematically in Fig. 1(a). Let ĉ

†
i (i = 1, . . . ,N) be the

creation operator of the ith cavity of the channel, and ĉ
†
lj /rj

(j = 1, . . . ,n) be that of the j th cavity of the left or right
register, assuming that all cavities have a common frequency
ω. The atom, characterized by a ground state |g〉 and an excited
state |e〉, is embedded in the mth cavity of the channel and is
resonantly coupled to the mode of this cavity with strength JI .
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FIG. 1. (a) A 1D CCA of having N cavities and a two-level
atom is employed as a quantum channel to connect two distant
quantum registers composed of two identical 1D CCAs, each contains
n cavities. In the limit of {g0,gI ,JI } � gc, the full dynamics can
be reduced to an effective model, only involving the two boundary
registers, the atom and the zero-energy mode of the bare channel.
(b) Effective coupling configuration in the no-atom case of JI = 0.
By ensuring {g0,gI } � gc, the boundary registers are resonant with a
single-boson mode (k = z), while the large detunings are eliminated,
so that unitary evolution will result in a swap operation between the
two registers. (c) Effective coupling configuration in the single-atom
case of {g0,gI } � JI � gc. Owing to the large detunings between the
registers and the dressed states, such registers are decoupled from the
intermediate channel. The incoming photon is thus reflected off this
channel, and the quantum state of the photon will remain unchanged
after time evolution.

We assume that the intrachannel coupling gc is fixed, and the
intraregister coupling,

gj = g0

√
j (2n + 1 − j )/2,

with g0 being a constant, is nonuniform [57,58], which reveals
that each register supports a linear spectrum of

λq = g0(2q − n − 1),

where q = 1, . . . ,n. In a frame rotating at ω, the Hamiltonian
governing the total system is

ĤT =
∑
d=l,r

n−1∑
j=1

gj

(
ĉ
†
dj

ĉdj+1 + ĉ
†
dj+1

ĉdj

)

+
N−1∑
i=1

gc(ĉ†i ĉi+1 + ĉ
†
i+1ĉi) + V̂1 + V̂2, (1)

with

V̂1 = gI

(
ĉ
†
ln
ĉ1 + ĉ†rn

ĉN + H.c.
)

and

V̂2 = JI (|e〉〈g|ĉm + H.c.),

where gI represents the register-channel coupling. Hereafter
d stands for {l,r}. The CCAs are initially prepared in their
vacuum states, containing no atom excitation. Then, a single-
photon is injected into the left register to have, for example,
an arbitrary input state

|φ〉l =
n∑

j=1

αj ĉ
†
lj
|vac〉l ,

where |vac〉l is the vacuum state of the left register. This
implies that the dynamics of the system is confined in a single-
excitation subspace spanned by the basis vectors {|d j 〉,|i〉,|e〉},
where we define

|d j 〉 = ĉ
†
dj

|vac〉|g〉, |i〉 = ĉ
†
i |vac〉|g〉, |e〉 = |vac〉|e〉,

and |vac〉 is the vacuum state of the three CCAs. The unitary
evolution under HT results in

|ϕ(t)〉 =
n∑

j=1

αj

[
fdj ,lj (t)|d j 〉 +

√
εd
j

∣∣εd
j

〉]
, (2)

where

fdj ′ ,lj (t) = 〈d j ′ |e−iĤT t |l j 〉
is the transition amplitude of an excitation between the cavities
lj and dj ′ ,εd

j = 1 − |fdj ,lj (t)|2, and |εd
j 〉 is a normalized linear

combination of all the basis vectors apart from |d j 〉.
We consider the limit

{g0,gI ,JI } � gc,

and work perturbatively in V̂1 and V̂2. Through an orthogonal
transformation ĉi = ∑N

k=1 ψi,kf̂k with

ψi,k =
√

2

N + 1
sin

(
ikπ

N + 1

)
,

one can find that the bare channel possesses a bosonic spectrum
of 
k = 2gc cos [kπ/(N + 1)] [57,59]. Consequently, V̂1 and
V̂2 are transformed to

V̂1 = gI

N∑
k=1

ψ1,k

[
ĉ
†
ln
f̂k + (−1)k−1ĉ†rn

f̂k + H.c.
]
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and

V̂2 = JI

N∑
k=1

ψm,k(|e〉〈g|f̂k + H.c.),

respectively. To control the coherent transport of a single-
photon, we restrict our attention to odd N , which yields the
existence of a single zero-energy mode in the bare channel
corresponding to k = z ≡ (N + 1)/2. Thus, the registers
and the atom are resonantly coupled to this mode. In the
limit of g0 � gc, the width of the energy band of each
register,

�0 = |λ1 − λn|,
would be much smaller than the energy gap between the zth
and (z ± 1)th mode of the bare channel,

�1 = |
z±1 − 
z|;
that is, �0 � �1. In combination with

{gIψ1,z,JI |ψm,z|} � �1,

the registers and the atom are significantly detuned from
the nonzero-energy modes of the bare channel, thereby
neglecting these off-resonant couplings leads to an effective
Hamiltonian,

Ĥeff =
∑
d=l,r

n−1∑
j=1

gj

(
ĉ
†
dj

ĉdj+1 + ĉ
†
dj+1

ĉdj

)

+gIψ1,z

[
ĉ
†
ln
f̂z + (−1)z−1ĉ†rn

f̂z + H.c.
]

+JIψm,z(|e〉〈g|f̂z + H.c.), (3)

as also shown in Fig. 1(a). This dynamics can be used to
make a single-photon switch based upon the dressing of the
zero-energy mode by the atom.

If the atom is uncoupled to the cavity (JI = 0) [60], the two
spatially separated registers are coherently coupled by means
of the bare channel. It follows, on choosing gIψ1,z = gn [57],
that

ĉ
†
lj

(τ ) = (−1)n+z−1ĉ†rj

for a specific time τ = π/g0, which leads to

frj ,lj (τ ) = (−1)n+z−1.

We therefore have |ϕ(τ )〉 = ∑n
j=1 αj |r j 〉, implying that the

photon is transported from the left register to the right register,
and the time evolution is referred to as a swap gate between
the two registers [see Fig. 1(b)]. However, the zth mode of the
bare channel can, in the case when the atom is in the coupled
state, be split into a doublet of dressed states separated
by

�2 = 2JI |ψm,z|.
Under the assumption that g0 � JI , the two boundary
registers are significantly detuned from the two dressed states
if m is odd, and hence, the photon is reflected off the channel,
from which the left register is decoupled. In this case, the

effective Hamiltonian of Eq. (3) is reduced to

Ĥeff =
n−1∑
j=1

gj

(
ĉ
†
lj
ĉlj+1 + ĉ

†
lj+1

ĉlj

)

=
n∑

j,j ′=1

Âj,j ′ ĉ
†
lj
ĉlj ′ , (4)

where Â is an n × n coupling matrix. Furthermore, applying
the Heisenberg equations of motion for the operators gives

ĉ
†
lj

(t) =
n∑

j ′=1

[exp (iÂt)]j,j ′ ĉ
†
lj ′ .

Owing to

(λq+1 − λq)/2g0 = 1,

we find that

Â = 2g0P̂
−1ŜxP̂ ,

where Ŝx is the x component of a pseudoangular momentum
S = (n − 1)/2, and P̂ is a similarity transformation matrix.
In the Schwinger picture [61,62], Ŝx can be expressed in
terms of two bosons γ̂1, γ̂2, and therefore be thought of as a
fictitious Hamiltonian,

Ŝx = (γ̂ †
1 γ̂2 + γ̂

†
2 γ̂1)/2.

By calculating the time-evolution operator under this fictitious
Hamiltonian, we straightforwardly obtain

exp(i2g0Ŝxτ )γ̂ †
1 exp(−i2g0Ŝxτ ) = −γ̂

†
1 ,

and

exp(i2g0Ŝxτ )γ̂ †
2 exp(−i2g0Ŝxτ ) = −γ̂

†
2 ,

such that

exp (iÂτ ) = (−1)n−1Î ,

yielding

ĉ
†
lj

(τ ) = (−1)n−1ĉ
†
lj
.

The resulting transition amplitude is

flj ,lj (τ ) = (−1)n−1.

The final state of the system then becomes |ϕ(τ )〉 = |ϕ(0)〉,
and thus the quantum state of the input photon remains
unchanged after time evolution of functioning as an identity
operation [see Fig. 1(c)].

III. LEAKAGE OF QUANTUM INFORMATION

Having explicitly demonstrated eigenmode-mediated
single-photon transport, we now calculate its leakage of quan-
tum information by making use of perturbation theory. Such
a leakage arises only from the off-resonant couplings between
the registers and the channel. Upon performing a first-order
perturbative treatment, we find that the leakage of quantum
information results from the two cavities coupled directly
to the intermediate channel. Specifically, in the uncoupled
case, the full dynamics can be mapped onto an effective
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photon transport channel being perturbatively coupled to a
finite bosonic environment, whose Hamiltonian is

Ĥz =
∑
k �=z


kf̂
†
k f̂k.

The interaction between them is

V̂z = gI

∑
k �=z

ψ1,k

[
ĉ
†
ln
f̂k + (−1)k−1ĉ†rn

f̂k + H.c.
]
.

Up to second order, εr
j is modified as

εr
j � 4�rδn,j ,

where

�r =
∑
k<z

�r
k[1 − (−1)n+k+z cos(
kτ )] (5)

and

�r
k = (gIψ1,k/
k)2.

In the coupled case, the zero-energy mode of the bare channel is
the only state that is dressed by the atom owing to JI � gc. The
boundary registers are thus coupled to the two dressed states
in addition to the bosonic environment; however, the coupling
to this environment can be neglected so long as g0 � JI . With
a similar perturbative treatment as before, εl

j is given by

εl
j � 4�lδn,j ,

where

�l = �l
z[1 − (−1)n−1 cos(JIψm,zτ )] (6)

and

2�l
z = (gIψ1,z/JIψm,z)

2.

From these equations we conclude that encoding quantum
information into the cavities between d1 and dn−1 could be
more efficient.

In order to quantify quantum information leaking into the
off-resonant modes of the intermediate channel, we need to
employ two average fidelities, the reflection fidelity

Fl =
∫

dφ 〈φ|ρ̂l(τ )|φ〉

and the transmission fidelity

Fr =
∫

dφ 〈φ|ρ̂r (τ )|φ〉.

Here, ρ̂l/r (τ ) is the output reduced density matrix of the left or
right register, the integration is over all input pure states and∫
dφ is normalized to unity. The fidelity Fd (in combination

with Fl and Fr ) can, after a straightforward calculation, be
expressed in terms of the transition amplitudes,

Fd = 1

n(n + 1)

n∑
j,j ′=1

[|fdj ′ ,lj (τ )|2 + fdj ,lj (τ )f ∗
dj ′ ,lj ′ (τ )

]
. (7)

To demonstrate our theoretical results, we numerically simu-
late the transmission infidelity,

ξr = 1 − Fr

FIG. 2. Numerical simulation results of the transmission infi-
delity ξr in the uncoupled case (JI = 0) of either N = 7, n = 2 for
(a) or N = 101, n = 10 for (b). The analytic upper bound is shown
by the dashed red curve.

(see Fig. 2), and the reflection infidelity,

ξl = 1 − Fl

(see Fig. 3), for the N = 7, n = 2 and N = 101, n = 10 cases,
as two examples. Specifically, in finite channels of fixed length,
the infidelity ξd is plotted as a function of gI /gc along with
an analytic upper bound. Working within the weak-coupling
limit, ξd can be analytically expressed as ξd � 2�d , and has
the upper bound,

ξd � 8

n

(
�l

zδl,d +
∑
k<z

�r
kδr,d

)
. (8)

This upper bound is in excellent agreement with the numerical
results, shown in Figs. 2 and 3 [63]. In addition, we find
that decreasing gI /gc can suppress the leakage of quantum
information, so ξd can in principle be made arbitrarily small.

IV. EXTENSIONS

In direct analogy to a classical computer, the potential
power of a quantum computer exponentially increases with
the number of qubits, but increasing arbitrarily the number
of qubits is not easy to achieve. One approach to addressing
this challenge is to envision a quantum computer containing
a number of quantum registers [64], so the study of the
multi-register setups is important for making a powerful
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FIG. 3. Numerical simulation results of the reflection infidelity ξl

in the coupled case of either N = 7, n = 2, JI /gc = 0.05 for (a) or
N = 101, n = 10, JI /gc = 0.1 for (b). The analytic upper bound is
shown by the dashed red curve. Here, we choose m = 3.

future quantum computer. While we have focused on the
two-register case, the extension to the multiregister networks
is directly analogous. In such networks, the registers and
the channels are the same as mentioned in the description
above, except that a single register needs to be coupled
to multiple channels. The couplings of the channels to the
registers and to the atoms are also chosen as before. The
state of all the atoms in the coupled state decouples all
the registers from the channels; thus, quantum information will
be stored in the independent registers. However, in the situation
where one of the atoms is uncoupled, the corresponding bare
channel coherently couples two distant registers, which are
still decoupled from other channels, and therefore information
transport will be reliably achieved between them. Together
with individually addressable atoms, quantum information can
be redirected from one register to another, in direct analogy to
a quantum routing function. For simplicity, let us consider a
specific network of five registers R1, . . . ,R5 and eight channels
C1, . . . ,C8, and demonstrate a single-photon traveling along
the path R1 → R2 → R3 → R4 → R5, shown in Fig. 4(a).
Suppose now that a single-photon is initially prepared in the
register R1 with an arbitrary input state. To confirm this travel,
we numerically simulate the average fidelity Fθ (θ = 1, . . . ,5)
between the input state of the register R1 and the output state
of the register Rθ [see Fig. 4(b)]. These numerical results
show that the controllable single-photon transport in a network
can be achieved with very high fidelity. Despite the fact that

FIG. 4. (a) Schematic illustration of a network which is made up
of five registers and eight channels. Each register is coupled to at least
three channels. Depending upon the atomic state, a single-photon
can be stored in one of the registers or transported between them
as required. (b) The average fidelities plotted as functions of the
evolution time for a single-photon traveling along the network in
(a). We choose that all the atoms are in the coupled states during
the time intervals [0,τ ] and (5τ,6τ ], with JI /gc = 0.05; while the
atoms in the channels C1, C5, C6, and C7 are uncoupled during
the time intervals (τ,2τ ], (2τ,3τ ], (3τ,4τ ], and (4τ,5τ ], respectively.
The solid black curve in (b) corresponds to F1, the dashed red curve
to F2, the short dashed blue curve to F3, the dashed-dotted orange
curve to F4, and the dashed-double dotted violet curve to F5. Here,
gI /gc = 0.0001, N = 7, n = 2, and m = 3.

we elucidate only one of the paths in a simple network; in
principle, our method can enable any arbitrary path and more
complex networks.

V. CONCLUSIONS

We have proposed and analyzed single-photon controllable
transport using a 1D CCA to coherently couple two identical
spatially separated 1D CCAs, and a two-level atom, to control
the transport of single photons. We study the pure Hamiltonian
evolution in this hybrid system. In the case when the atom is
absent, a single-photon with an arbitrary unknown quantum
state (for example, initially in the left CCA) will be transported
to the right CCA, with a transmission fidelity arbitrarily close
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to unity. On the contrary, as a result of the coupling of
the atom to the intermediate CCA, this single-photon will
be reflected back into the left CCA and leave its quantum
state unchanged, with a reflection fidelity also arbitrarily close
to unity. The approach can also be directly generalized to
multiregister quantum networks, and thus due to its scalability,
applied to realize quantum information processing devices.
It should be noted that, in the no-atom case, this method
allows for arbitrary multiphoton state coherent transport
through the intermediate CCA, even in a thermal equilibrium
state. The proposed setup can be examined in the context
of circuit quantum electrodynamics with superconducting
circuits. For example, superconducting qubits act as two-level
atoms and transmission line resonators behave as cavities.
In this situation, two nearest-neighbor resonators can be
straightforwardly connected via a capacitor. The coupling
strength could experimentally reach 2π × 31 MHz [65] and
in fact this reachable strength can be markedly larger by
increasing the capacitance. Moreover, the coupling between

single superconducting qubits and transmission line resonators
has also been implemented in the strong-coupling regime and
even in the ultrastrong-coupling regime, with strengths of
up to 2π × 107 MHz [66] and 12% of the cavity frequency
[67], respectively. Hence, our theoretical model seems to be
experimentally accessible using current technologies. While
we have chosen to focus on the special case of a CCA system,
this framework can be employed to achieve controllable
quantum state transfer in a wide range of systems, including,
for example, coupled quantum spin chains.
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