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1050 Brussels, Belgium

2Department of Physics, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000,
Republic of Kazakhstan

(Received 1 December 2015; revised manuscript received 8 February 2016; published 22 March 2016)

Currently available separability criteria for continuous-variable states are generally based on the covariance
matrix of quadrature operators. The well-known separability criterion of Duan et al. [L. M. Duan et al., Phys. Rev.
Lett. 84, 2722 (2000)] and Simon [R. Simon, Phys. Rev. Lett. 84, 2726 (2000)], for example, gives a necessary
and sufficient condition for a two-mode Gaussian state to be separable, but leaves many entangled non-Gaussian
states undetected. Here we introduce an improvement of this criterion that enables a stronger entanglement
detection. The improved condition is based on the knowledge of an additional parameter, namely, the degree
of Gaussianity, and exploits a connection with Gaussianity-bounded uncertainty relations [A. Mandilara and
N. J. Cerf, Phys. Rev. A 86, 030102 (2012)]. We exhibit families of non-Gaussian entangled states whose
entanglement remains undetected by the Duan-Simon criterion.
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I. INTRODUCTION

Quantum entanglement is nowadays considered a central
resource in the field of quantum information and computa-
tion [1]. It is therefore crucial to be able to determine whether
a quantum state is separable or entangled, which is provably
a hard decision problem when it comes to mixed states. In the
context of continuous-variable systems, such as bosonic modes
or collective atomic spins (in the limit of large ensembles), a
necessary criterion for the separability of any two-mode state
has been derived by Duan et al. [2] and Simon [3], which even
turns into a necessary and sufficient criterion in the special
case of Gaussian states. This criterion results from translating
to continuous-variable (infinite-dimensional) systems the pos-
itive partial transpose (PPT) condition, which had been estab-
lished for finite-dimensional discrete systems [4,5]. Following
the notation of Duan et al. [2], the criterion expresses that
if a two-mode state is separable, then its so-called Einstein-
Podolsky-Rosen (EPR) variance complies with the inequality

� ≡ 1

2
(〈(�û)2〉 + 〈(�v̂)2〉) � 1

2

(
α2 + 1

α2

)
(1)

for any real (nonzero) α, where the operators

û = |α|x̂1 + 1

α
x̂2, v̂ = |α|p̂1 − 1

α
p̂2 (2)

are functions of the quadratures components x̂ and p̂ of modes
1 and 2. Thus, if a state violates inequality (1) for at least
one value of α, it is entangled [6]. Simon’s version of this
criterion [3] is based on expressing the partial transposition
as a mirror reflection operation p̂2 → −p̂2, which can be
viewed as time reversal on mode 2. The PPT criterion
expresses that following such a reflection, any separable
state remains physical (its density operator is positive
semidefinite). Conversely, an entangled state will be detected
if the corresponding reflected state is nonphysical (its density
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operator admits a negative eigenvalue). Remarkably, this
separability condition becomes necessary and sufficient in the
case of Gaussian states and can even be extended to (N+M)-
mode Gaussian states [7]. However, for any other state, this
criterion may very often leave entanglement undetected.

Earlier work has aimed at improving the Duan-Simon
separability criterion for arbitrary states. In particular, Walborn
et al. [8] reported on a separability condition using Shannon
entropy, which was later extended by Huang [9]. Shchukin and
Vogel [10] also derived a hierarchy of inequalities involving
higher-order moments of the quadrature components (the
previous criterion only depends on the first- and second-order
moments). In the present work we investigate an improvement
of the Duan-Simon separability criterion that enables a
stronger entanglement detection for non-Gaussian two-mode
states by taking into account an additional parameter, namely,
the degree of Gaussianity g. It is natural to expect that a
stronger criterion can be obtained with more information on the
state, but the additional parameter should be chosen carefully.
For example, the purity of the state is not a good candidate,
since the Duan-Simon criterion is necessary and sufficient for
every Gaussian state of arbitrary purity. As we shall show, the
degree of Gaussianity g is indeed a good choice.

In Sec. II we start by introducing the parameter g and
providing some of its useful properties (more details are given
in Appendix A). In Sec. III we introduce a criterion for a
better detection of entangled states employing this degree of
Gaussianity, thus improving the Duan-Simon criterion for
non-Gaussian states. In Sec. IV we provide explicit examples
of entangled non-Gaussian states that are left unnoticed by
the Duan-Simon criterion, demonstrating the advantage of
our criterion (the analytical computation of parameter g is
detailed in Appendix B). The examples are produced from
non-Gaussian states belonging both to the set of classical
states (with positive Glauber P -function) and to the set of
genuinely quantum states (Fock states), reflecting the general
applicability of our method. Finally, we conclude and discuss
possible extensions of our work in Sec. V.
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II. DEGREE OF GAUSSIANITY

Gaussian states play a prominent role in continuous-
variable quantum information [11]. However, several protocols
necessarily require the use of non-Gaussian states, such as
entanglement distillation [12–14] or quantum error correc-
tion [15,16]. With the increasing importance of non-Gaussian
states, the question of measuring the Gaussian character of a
state has naturally arisen. Several Gaussianity measures have
been introduced (see, e.g., [17–20]), but we find it more conve-
nient here to use the degree of Gaussianity g introduced in [21].

Consider a two-mode state ρ. Its first- and second-order
moments, denoted, respectively, by d and γ , are expressed
from the vector of quadrature components r̂ = (x̂1,p̂1,x̂2,p̂2).
The elements of the coherent vector are given by dj = 〈r̂j 〉,
while the elements of the covariance matrix are defined
as γij = 〈r̂i r̂j + r̂j r̂i〉 − 2didj . We assume, with no loss of
generality, that all states considered in the following have
vanishing coherent vectors (dj = 0) since first-order moments
are irrelevant as far as entanglement detection is concerned.
The degree of Gaussianity g of state ρ is defined as

g = Tr(ρρG)

Tr(ρGρG)
, (3)

where ρG is the Gaussian state characterized by the covariance
matrix γ of state ρ.

One may easily verify that g = 1 for Gaussian states (note
that the converse is not true, as shown in Appendix A).
In addition, the degree of Gaussianity g is invariant under
Gaussian unitary transformations, transposition, and partial
transposition. The proofs are provided in Appendix A. These
properties are essential for the derivations in this work. We
will also exploit the fact that the knowledge of g gives a tighter
bound in the uncertainty relations [21], which in turn translates
into a stronger condition for detecting entanglement.

III. IMPROVED SEPARABILITY CONDITION BASED ON
GAUSSIANITY-BOUNDED UNCERTAINTY RELATIONS

Let us investigate the separability of an arbitrary two-mode
state ρ. As mentioned earlier, the PPT criterion consists
in verifying the physicality of the partially transposed state
ρT2 (which must hold for any separable two-mode state).
Then an entangled state ρ will be detected if ρT2 is not
physical (it exhibits a negative eigenvalue). Applying a partial
transposition (acting on the second mode) in state space is
equivalent to a mirror reflection p̂2 → −p̂2 in phase space.
Thus, in order to detect entanglement, we need to check the
physicality of ρT2 in phase space, which can be achieved based
on the symplectic eigenvalues of its covariance matrix.

Suppose that the two-mode state ρ has a covariance matrix
γ . According to the Williamson theorem, there always exists
a unitary transformation US mapping the state ρ onto σ such
that the associated symplectic transformation S maps γ onto

γσ = Sγ ST =
(

ν+1 0
0 ν−1

)
, (4)

where ν+ (ν−) is the largest (smallest) symplectic eigenvalue
of γ and 1 is the 2 × 2 identity matrix. Note that if ρ is
a Gaussian state, then σ is a tensor product of two thermal

FIG. 1. Entanglement analyzing box. A partial transposition T
and symplectic transformation S are applied to state ρ, giving access
to the symplectic eigenvalues ν± of the partial transposed state. Note
that this circuit is not physical since T is antiunitary.

states; otherwise σ is a two-mode non-Gaussian state that
has the same covariance matrix γσ . The uncertainty principle
implies that the inequality ν+ � ν− � 1 must be respected for
any physical state [11]. Applying this condition to the partially
transposed state ρT2 , we understand that the entanglement
of states ρ is detected whenever the smallest symplectic
eigenvalue of ρT2 is strictly smaller than 1, which is the core
of the Duan-Simon criterion.

Let us now introduce our improved criterion. In order
to detect the entanglement of state ρ, we apply a partial
transposition on the second mode (which may lead to an
unphysical state) followed by a symplectic transformation,
which gives access to the symplectic eigenvalues ν± of
the partially transposed state ρT2 . This is the entanglement
analyzing box shown in Fig. 1.

A key observation is that the inequality ν+ � ν− � 1 boils
down to expressing the uncertainty relation for the two modes
making σ at the output of the entanglement analyzing box.
Indeed, we have det(γσ1 )= (ν+)2 �1 and det(γσ2 )= (ν−)2 �1,
where γσ1 (γσ2 ) refers to the covariance matrix of the first
(second) mode of σ . Furthermore, a tighter lower bound on the
uncertainty det(γ ) of a mode can be obtained if the degree of
Gaussianity g of this mode is known [21] [we use definition (3)
for a single mode]. Combining these elements, we can detect
the nonphysicality of ρT2 whenever the lowest symplectic
eigenvalue ν− lies under the lower bound corresponding to
the degree of Gaussianity g2 of σ2, as shown in Fig. 2. This
lower bound is equal to 1 for g2 = 1, but is strictly larger than
1 for non-Gaussian states with g2 �= 1.

Hence, we obtain an improved separability criterion that
works as follows. After applying the entanglement analyzing
box of Fig. 1 to state ρ, we detect its entanglement if the
symplectic eigenvalue of the reduced state σ2 is smaller than a
bound, which is a function of the degree of Gaussianity g2 of
σ2. In other words,

ν− < νth(g2) ⇒ entanglement, (5)

where νth(g2) is the threshold given by the curve in Fig. 2. If
g2 � 1, the curve is given by νth = g2/(2 − g2). If g2 < 1, the
parametric equations of the curve are given by

νth = 2n + 3 − 2r,

g2 = 2νth(νth − 1)n

(νth + 1)n+1

(
(νth − 1)(1 − r)

νth + 1
+ r

)
,

(6)

where n ∈ N and r ∈ [0,1[. The latter curve consists of con-
secutive segments, each corresponding to a binary mixture of
nearest-neighbor Fock states |n〉 and |n + 1〉. In the examples
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FIG. 2. Plot of νth, the threshold (minimum allowed) value for
ν−, as a function of the degree of Gaussianity g2 (details are given
in [21]). All physical states lie on or above this curve. Note that for
g2 < 1, the curve exhibits some discontinuities (see main text).

that we will discuss in Sec. IV, the degree of Gaussianity
always lies in the segment where n = 0, which corresponds to

νth(g2) = 2 − g2 + 2
√

1 − g2

g2
for 3/4 � g2 � 1. (7)

In order to exploit condition (5), the last step is thus
to compute the degree of Gaussianity g2 as given by
Eq. (3). The analytical computation of g2 is not trivial for
an arbitrary two-mode state (although we give an explicit
method for some class of states in Appendix B), but at
least a numerical computation is always feasible based on
the Wigner function. First, we remark that the denominator
of g2 is simply equal to 1/ν− since it corresponds to the
purity of a Gaussian state [see Eq. (B1) in Appendix B].
To express the numerator of g2, we use the Wigner function
W̃2(x2,p2) of the second mode σ2 at the output of the
entanglement analyzing box. Starting from W (x1,p1,x2,p2),
namely, the Wigner function of the initial two-mode state ρ,
we find WT2 (x1,p1,x2,p2) = W (x1,p1,x2,−p2) after partial
transposition and then W̃ (x1,p1,x2,p2) after symplectic trans-
formation, corresponding to a change of variable 
r → S
r .
Finally, we integrate over x1 and p1 to have the Wigner function
of the second mode σ2, which gives

g2 = Tr
(
σ2σ

G
2

)
Tr

(
σG

2 σG
2

) = 2πν−
∫

W̃2(x2,p2)W̃G
2 (x2,p2)dx2dp2,

(8)

where W̃G
2 (x2,p2) is the Wigner function of the Gaussian state

with covariance matrix ν−1.
Figure 3 enables us to visualize how entanglement detection

is improved by our method. Three distinct zones are repre-
sented, delimited by the curve of Fig. 2 and by the constant line
ν− = 1. If a state lies in the red (lower) zone, it is an entangled
state that is detected by the Duan-Simon criterion (ν− < 1),
hence it is uninteresting for our purposes here. If it lies in the

x x
xx

xx

x xxxxxxx
xx

xx

xx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx

X   Fock states
+   PDC states

0.985 0.990 0.995 1.000 1.005
g2

1.0

1.1

1.2

Ν

FIG. 3. Examples of non-Gaussian entangled states generated
from Fock (×) or phase-diffused coherent (PDC) (+) states, which are
detected by our improved criterion but not otherwise. In general, all
entangled states detected by the Duan-Simon criterion (ν− � 1) lie in
the red (lower) zone, while the entangled states that are detected by
our criterion but remain undetected by the Duan-Simon criterion lie in
the blue (intermediate) zone. The white (upper) zone contains either
separable or undetected entangled states. The curve νth(g2) separating
the blue and white zones corresponds to the lower bound on ν− for a
fixed degree of Gaussianity g2 (see Fig. 2).

white (upper) zone, no conclusion can be made because the
partially transposed state is physical. However, interestingly, if
it lies in the blue (intermediate) zone, we detect entanglement,
which was otherwise unnoticed.

We remark that, since partial transposition and symplectic
transformation conserve the Gaussian character of a state (see
Appendix A), if ρ is a Gaussian state, then σ and the reduced
states σ1 and σ2 are also Gaussian. Then νth(1) = 1 and we
recover the (necessary and sufficient) Duan-Simon separability
criterion for Gaussian states, as expected.

Let us also mention that our criterion does not improve
entanglement detection when the covariance matrix of ρ is
diagonal, since the partially transposed state then necessarily
remains physical. For example, the NOON states of the form
(|N0〉 + |0N〉)/√2 have a diagonal covariance matrix for
N � 2. Thus, even though those states are always entangled,
we cannot do any better than the Duan-Simon criterion and
entanglement is undetected by our criterion. However, there
exist many other interesting cases where our method is useful,
as shown in the next section.

IV. EXAMPLES OF NON-GAUSSIAN ENTANGLED STATES
DETECTED BY THE IMPROVED CRITERION

In this section we apply our criterion to two types of
non-Gaussian states. Those examples have in common that
entanglement is not detected on the sole basis of the covariance
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FIG. 4. Quantum circuit used to prepare the non-Gaussian states
ρ with covariance matrix γ . The entanglement of ρ is analyzed by
the red box (see Fig. 1), which pictures our improved criterion.

matrix (using the Duan-Simon criterion), but is detected
exploiting the degree of Gaussianity.

A. Non-Gaussian states generated from Fock states or
phase-diffused coherent states

The first example uses non-Gaussian states as generated
by the circuit of Fig. 4. The preparation of the states works
as follows. Initially, we have a Fock-diagonal state ρin =∑∞

n=0 φn|n〉〈n| of covariance matrix γin = a 1 in the first
mode, where a ∈ [1,∞), and the vacuum state in the second
mode. Both states are processed through a two-mode squeezer
(TMS) of parameter λ ∈ [0,1). Note that if ρin is a Fock state
|n〉, at this point of the circuit we have a photon-added EPR
state, which we know is always entangled (its entanglement is
monotonically increasing with n) [22]. Of course, if we have
the vacuum on both modes, the resulting state is simply an EPR
state. The next step in the circuit consists in processing each
mode of the state through two independent Gaussian additive-
noise channels N and N ′. The variance of the added noise on
the first (second) mode is denoted by η (μ). This construction
ensures that the resulting (not necessarily Gaussian) state will
always be physical provided a � 1, 0 � λ < 1, and η,μ � 0.

The state ρ at the output of this circuit has a covariance
matrix

γ =
((

a+λ2

1−λ2 + η
)
1 (a+1)λ

1−λ2 σz

(a+1)λ
1−λ2 σz

(
aλ2+1
1−λ2 + μ

)
1

)
, (9)

where σz is the third Pauli matrix. Note that this form for a
covariance matrix is actually quite general. Indeed, Duan et al.
have shown [2] that any covariance matrix of a two-mode state
can be transformed into the form

γ =

⎛
⎜⎝

n c

n d

c m

d m

⎞
⎟⎠ (10)

by applying local linear unitary Bogoliubov operations, i.e.,
combinations of squeezing transformations and rotations.
These operations do not influence the separability of the state
and are thus always allowed when studying entanglement. The
covariance matrix (9) depends on three parameters, while the
most general form (10) has only one additional parameter,
which reflects that (9) encompasses a wide class of two-mode
Gaussian states.

The entanglement of the resulting state ρ is now analyzed
as depicted by the red box of Fig. 1. The resulting state
σ has a covariance matrix of the form of Eq. (4) and the

symplectic eigenvalues of ρT2 can be expressed as a function
of the different parameters characterizing γ , namely,

ν± = 1

2

(
(a + 1)(1 + λ2)

1 − λ2
+ η + μ

±
√

(a − 1 + η − μ)2 + 4(a + 1)2λ2

(1 − λ2)2

)
. (11)

Note that this expression is valid regardless of whether ρ

is Gaussian or not. At this point, using the Duan-Simon
separability criterion – ignoring whether ρ is Gaussian or
not – would detect an entangled state only if ν− < 1. However,
we can improve on this by taking into account the degree
of Gaussianity g2 at the output of the circuit of Fig. 1, as
explained previously. The calculation of g2 could be done
through the computation of the Wigner function, but this would
require some numerical integrations. In Appendix B we give
a different way of calculating g2 for this specific example.
The final expression is not very elegant, but calculations are
performed completely analytically.

Now that we have defined a circuit to generate families
of non-Gaussian states and detect their entanglement, we will
focus on some explicit examples of such states in order to
illustrate the usefulness of our improved criterion. In the
circuit of Fig. 4, we start with Fock-diagonal states ρin,
which have a diagonal covariance matrix γin with variance
a = ∑∞

n=0 φn(2n + 1). We are interested in non-Gaussian
states ρin and will consider two rather extreme cases of such
states. The first case is a single Fock state |n〉 with n > 0,
the parameter of the covariance matrix being thus a = 2n + 1.
This state has clear quantum features, such as negative parts
in the Wigner function. Our second choice is a non-Gaussian
mixture of coherent states with a random phase, which can be
viewed as classical. This phase-diffused coherent (PDC) state
can equivalently be represented as a mixture of Fock states
following a Poisson distribution

ρin =
∞∑

k=0

e−(a−1)/2

(
a−1

2

)k

k!
|k〉〈k|. (12)

These two examples for ρin are simple at a theoretical level
and may also be implemented experimentally. For the state ρ

to be feasible experimentally, we will focus on values of the
parameter λ of the two-mode squeezer that are smaller than 0.8
(≈10 dB). The values of the noise variances η and μ will be
chosen smaller than 2 units of vacuum noise because otherwise
the state ρ is necessarily separable (regardless of whether it is
Gaussian or not). Indeed, each mode of ρ can be seen as the
output of a classical Gaussian additive noise channel and it is
known that such a channel is entanglement breaking if η � 2
(μ � 2) [23].

In Fig. 3 we exhibit explicit examples of non-Gaussian
states ρ that are generated from ρin being either a Fock state or
a phase-diffused coherent state. The corresponding numerical
values of the circuit parameters (a,λ,μ,η) are displayed in
Table I. We first choose sets of values of the circuit parameters
such that ν− = 1, implying that the Duan-Simon criterion
does not detect entanglement. In this case, entanglement
is detected as soon as g2 �= 1, so all these example states
are proven to be entangled with our improved separability
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TABLE I. Values of the circuit parameters used to generate the
examples of non-Gaussian entangled states that are detected by our
improved separability criterion. The corresponding values of ν− and
g2 are also given.

Type of ρin a λ η μ ν− g2

Fock 3 0.6 1/13 1 1 0.99541
Fock 3 0.3 0.1 228/757 1 0.99780
Fock 3 0.5 0.1 0.9 1.1 0.99492
Fock 3 0.5 0.1 0.8 1.04 0.99521
PDC 2 0.3 0.1 513/1271 1 0.99798
PDC 2 0.7 0.1 931/677 1 0.99850
PDC 3 0.6 1/13 1 1 0.99781
PDC 3 0.3 0.1 228/757 1 0.99893
PDC 3 0.5 0.1 0.9 1.1 0.99758
PDC 3 0.5 0.1 0.8 1.04 0.99771

criterion. We then extend our search to larger values of ν−.
An entangled state is then detected whenever ν− < νth(g2).
Since in our examples 3/4 � g2 < 1, the function νth(g2) is
given by Eq. (7). All points localized in the blue zone are thus
examples of non-Gaussian entangled states that are detected
by our improved separability criterion but not otherwise. We
remark that entangled states can be found with both choices
of ρin (either a highly nonclassical Fock state or a classical
mixture of phase-diffused coherent state).

Interestingly, for all states created with our circuit when
Gaussian noise is added on the first mode only (i.e., μ = 0),
we find out that the Duan-Simon separability criterion becomes
necessary and sufficient, even for non-Gaussian states. Indeed,
if η < 2, the symplectic eigenvalue ν− is smaller than 1 for all
values of a and λ, hence the state ρ is entangled. In contrast,
if η � 2, we have an entanglement breaking channel, so we
know that the state ρ is necessarily separable. This confirms
the validity of our method.

Finally, Fig. 5 illustrates how the different circuit param-
eters influence the separability of the state. Starting with
a Fock state (or with a phase-diffused coherent state) with
circuit parameters a = 3, λ = 0.5, η = 0.1, and μ = 0.7 (the
lowest points of the curves), we see that by varying one of
the parameters we can always create entangled states that are
unnoticed by the Duan-Simon criterion. (Note that there is no
curve corresponding to varying a for Fock states since a can
only take odd integer values in this case.)

B. Squeezed single-photon path-entangled state

As a second example, let us consider a squeezed single-
photon path-entangled state, i.e., the non-Gaussian state
created from the circuit of Fig. 6. A vacuum and single-photon
Fock states are both squeezed, with respective squeezing
parameters s− and s+, and are then coupled with a balanced
beam splitter. The wave function of the output (pure) state has
the form [8]

ψ(x,y) = (x + y)√
πs−s3+

exp

(
− (x + y)2

4s2+
− (x − y)2

4s2−

)
. (13)

This state is obviously entangled for all values of s±, but
the Duan-Simon separability criterion detects entanglement

--- Fock states
PDC states

Μ ΜΛ Λ Η Η

a

0.992 0.994 0.996 0.998 1.000
g2

0.95

1.00

1.05

1.10

1.15

Ν

FIG. 5. Evolution of symplectic eigenvalue ν− and degree of
Gaussianity g2 when varying the circuit parameters, illustrating how
they influence the separability of the states. For each curve, one of
the parameters varies while the others are fixed, starting from a = 3,
λ = 0.5, η = 0.1, and μ = 0.7 at the bottom of the curve. Increasing
ν− is achieved by increasing a, η, and μ and decreasing λ. The blue
curve is given by νth(g2).

only for s−/s+ >
√

3 or s−/s+ < 1/
√

3. However, similarly
to what Walborn et al. [8] have shown using their entropic
entanglement criterion, we can detect entanglement for all
values of s± with our improved criterion. Let us suppose that
s−/s+ � 1. Applying the entanglement analyzing box to this
state, we find that

ν− =
√

3
s+
s−

, g2 = 3

4

√
3

2
, (14)

where g2 is computed with the help of Wigner functions.
Therefore, according to Eq. (7), νth(g2) = 1.7986 and entan-
glement is detected if

ν− < νth(g2) ⇔ s−
s+

> 0.963. (15)

However, we supposed at the beginning that s−/s+ � 1.
Entanglement is thus always detected. The same analysis
can be done if s−/s+ < 1. Although the entropic criterion
of Walborn et al. also detects the entanglement of this state for
all s±, we believe that our method is easier to apply.

FIG. 6. Quantum circuit used to prepare a squeezed single-photon
path-entangled state ψ(x,y). The entanglement of the state is
analyzed by the red box (see Fig. 1).
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V. CONCLUSION

In this paper we have introduced a continuous-variable sep-
arability criterion exploiting the degree of Gaussianity of the
state, thereby allowing a stronger detection of two-mode non-
Gaussian entangled states. Our criterion works by verifying
the physicality of the symplectic eigenvalues of the partially
transposed state in terms of Gaussianity-bounded uncertainty
relations. We demonstrated the advantages of our method by
providing explicit examples of states whose entanglement is
detected by our criterion but left undetected by the Duan-
Simon criterion based on the EPR variance only. We proposed
an optical circuit for creating a family of such states and studied
the entanglement detection as a function of the parameters
of the circuit. The values of those circuit parameters were
chosen so that these example states could be experimentally
generated to demonstrate the method. The general applicability
of the method is witnessed by the fact that these example states
can be generated both from genuinely quantum non-Gaussian
states (Fock states) and from classical non-Gaussian mixtures
of phase-diffused coherent states (states with a positive P

function). We expect that many more examples of entangled
states could be found, first by testing different values of the
parameters a, λ, η, and μ, second by generalizing the circuit
(for example, at the very beginning of the circuit, one can insert
a thermal state instead of the vacuum), or simply by devising a
new circuit generating other types of non-Gaussian states such
as those of our second example.

As mentioned in the Introduction, a separability condition
such as inequality (1) cannot be rewritten with a tighter lower
bound that would solely depend on purity Tr(ρ2). This is
because the Duan-Simon criterion is necessary and sufficient
for all Gaussian states (of arbitrary purity). Hence, the lower
bound in inequality (1) cannot be moved upward without being
violated by some mixed Gaussian states that are known to be
separable. However, we expect that our separability criterion
may be further improved by taking into account both the
degree of Gaussianity and purity of the state and then mak-
ing use of the purity- and Gaussianity-bounded uncertainty
relations [24]. This topic is worth further investigation.
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APPENDIX A: PROPERTIES OF THE DEGREE
OF GAUSSIANITY

The degree of Gaussianity g defined by Eq. (3) holds for an
N -mode state (here we focus on N = 1 and N = 2). It obeys
the following properties.

(i) For a Gaussian state ρ = ρG this measure obviously
gives g = 1. However, g = 1 does not imply that state ρ is
necessarily Gaussian. Let us present some counterexamples.

Consider ρ being the mixture of two Fock states

ρ = 1

2
√

2
|2〉〈2| +

(
1 − 1

2
√

2

)
|0〉〈0|. (A1)

The covariance matrix of ρ,

γ =
(

a 0
0 a

)
(A2)

with a = 1 + √
2, determines a Gaussian (thermal) state

ρG =
√

2

1 + √
2

∑
j

(
1

1 + √
2

)j

|j 〉〈j |. (A3)

It is then easy to see that

Tr[ρGρG] = Tr[ρρG] = 1

1 + √
2
. (A4)

This obviously gives g = 1, although ρ is a non-Gaussian state.
Other counterexamples of non-Gaussian states with g = 1 may
be found among the states of the form

ρ = p |n〉〈n| + (1 − p)|0〉〈0|. (A5)

Given n, the real roots of the equation

(1 + 2np)(np)n − (1 + 2np − n)(1 + np)n = 0 (A6)

satisfying 0 < p < 1 provide g = 1. Note that Eq. (A6) is
a polynomial of degree n, therefore, the number of its roots
providing counterexamples is expected to increase with n.

(ii) The degree of Gaussianity g is invariant under Gaussian
unitary operations.

Proof. Consider an arbitrary state ρ and corresponding
Gaussian state ρG. A Gaussian unitary operator UG trans-
forming Gaussian states to Gaussian states transforms ρ

to ρ ′ = UGρ(UG)†. The same operator similarly transforms
the Gaussian state ρG to ρ ′G = UGρG(UG)†. The later
transformation is equivalent to a symplectic transformation
of the corresponding covariance matrices. By construction of
ρG, its covariance matrix is also the covariance matrix of
ρ. This covariance matrix is transformed by the symplectic
transformation into the covariance matrix of ρ ′G. Therefore,
ρ ′G is the Gaussian state corresponding to ρ ′. Then a simple
calculation gives us the desired result

g′ = Tr(ρ ′ρ ′G)

Tr(ρ ′Gρ ′G)

= Tr(UGρG(UG)†UGρG(UG)†)

Tr(UGρG(UG)†UGρG(UG)†)

= Tr(ρρG)

Tr(ρGρG)
= g, (A7)

where we used the invariance of the trace under cyclic
permutations. �

(iii) The degree of Gaussianity g is invariant under partial
transposition.

Proof. Partial transposition implies sign flip of one of the
two momentum quadratures (say, p2 → −p2), i.e., one of the
arguments of the Wigner function describing a two-mode state.
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Then we have

g′ = Tr(ρ ′ρ ′G)

Tr(ρ ′Gρ ′G)
= (2π )2

∫
dx1dp1dx2dp2Wρ ′ (x1,p1,x2,p2)Wρ ′G (x1,p1,x2,p2)

(2π )2
∫

dx1dp1dx2dp2Wρ ′G (x1,p1,x2,p2)Wρ ′G (x1,p1,x2,p2)

= (2π )2
∫

dx1dp1dx2dp2Wρ(x1,p1,x2,−p2)WρG (x1,p1,x2,−p2)

(2π )2
∫

dx1dp1dx2dp2WρG (x1,p1,x2,−p2)WρG (x1,p1,x2,−p2)
= Tr(ρρG)

Tr(ρGρG)
= g, (A8)

where at the last step we changed the variables as
−p2 → p2. �

(iv) The degree of Gaussianity g is invariant under transpo-
sition.

Proof. The proof follows the same steps as for the partial
transposition, but in this case, we have both p2 → −p2 and
p1 → −p1. This does not change the conclusion. �

Finally, we would like to comment on the possibility of
an experimental estimation of the degree of Gaussianity g.
Following [21], an expression of g as a converging series on
the radial moments 〈r2n+1〉 of the Wigner function is derived
for states with an angular-independent Wigner function and
covariance matrix of the form γ = a1:

g = 4π

∞∑
n=0

(−1)n〈r2n+1〉
n!an

. (A9)

Equation (A9) is also applicable to states with a phase-
dependent Wigner function but in this case one needs to
employ the phase-averaged quantity 1

2π

∫ 2π

0 〈r2n+1〉ϕdϕ instead
of 〈r2n+1〉. Equation (A9) gives evidence that the experimental
estimation of the degree of Gaussianity is a feasible task for
states where the higher moments are of decreasing strength
(see, for example, Ref. [25]).

APPENDIX B: COMPUTATION OF THE
DEGREE OF GAUSSIANITY

Let us show how one can perform the computation of the
degree of Gaussianity g2 of the reduced one-mode state cor-
responding to σ2 at the output of the entanglement analyzing
box of Fig. 1 (this state corresponds to the smallest symplectic
eigenvalue ν−). The same technique allows computation of the
degree of Gaussianity g of the two-mode state ρ (see Fig. 4)
as well.

By our convention the Gaussian state σG
2 has the same

covariance matrix γσ2 = ν−1 as σ2. Then, since it corresponds
to the purity of σG

2 , the denominator in the definition of g2

given by Eq. (3) is trivially evaluated as

Tr
[
σG

2 σG
2

] = 1√
det(γσ2 )

= 1

ν−
. (B1)

The evaluation of the numerator in Eq. (3) is more involved.
Although after the two-mode squeezer we have a simple form
for the density matrix of state ρTMS = Uλ(ρin ⊗ |0 〉 〈0|)U †

λ ,
the addition of the Gaussian noises makes the density matrix
of state ρ (and so the ones of the reduced states σ1 and σ2)
very hard to express in a simple form. State ρ is obtained
as a result of the application of Gaussian additive noise
channels �η and �μ to the first and second modes of ρTMS

correspondingly,

ρ = (�η ⊗ �μ)[ρTMS]

=
∫

dx1dp1dx2dp2
1

2πη
e
− x2

1 +p2
1

2η
1

2πμ
e
− x2

2 +p2
2

2μ

×D(x1,p1)D(x2,p2)ρTMSD
†(x1,p1)D†(x2,p2), (B2)

where D(x,p) is the displacement operator. We will perform
calculations avoiding the direct use of the density matrix σ2.
Instead we will use the following construction. Let σ be
the density matrix of the two-mode state that has σ1 and
σ2 as reduced states. Then we have the following equivalent
representation of the numerator in Eq. (3):

Tr
[
σ2σ

G
2

] = Tr
[
σ
(
1 ⊗ σG

2

)]
= lim

V →∞
V + 1

2
Tr

[
σ
(
ρV

th ⊗ σG
2

)]
, (B3)

where ρV
th = 2

V +1

∑
n

(
V −1
V +1

)n|n〉〈n| is a thermal state with a
covariance matrix V1. Identity (B3) holds because this state
multiplied by (V + 1)/2 tends to 1 when V tends to infinity.
Next we express σ as a result of the transformation of the
initial state ρin ⊗ |0〉〈0| by the circuit in Fig. 4:

Tr
[
σ
(
ρV

th ⊗σG
2

)]
=Tr

[
UST [(�η⊗�μ)[Uλ(ρin⊗|0〉〈0|)U †

λ]]U †
Sρ

V
th ⊗σG

2

]
=Tr

[
(ρin⊗|0〉〈0|)U †

λ(�η⊗�μ)
[
T

[
U

†
S

(
ρV

th ⊗σG
2

)
US

]]
Uλ

]
.

(B4)

Here US is the final symplectic transformation, Uλ describes
the action of the two-mode squeezer, T is the partial transpo-
sition in the second mode, and �η (�μ) denotes the additive
Gaussian noise channel with the noise variance η (μ) being
applied to the first (second) mode. At the final step we use
the invariance of the trace under cyclic permutations and the
equivalence of the partial transposition and additive noise
channel to their duals with respect to the scalar product of
operators defined as 〈〈A|B〉〉 = Tr[A†B] on a set of density
operators of two-mode states. Let us prove the last two
statements.

(i) The partial transposition as a map defined on the set of
density operators is equal to its dual.

Proof. Let us take a representation of two arbitrary
density operators describing bipartite states in some basis
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ρ = ∑
ijkl cijkl|ij 〉〈kl| and σ = ∑

nmrs dnmrs |nm〉〈rs| and ap-
ply partial transposition T on ρ. Then we have

Tr[T [ρ]σ ] = Tr

⎡
⎣∑

ijkl

cijkl|il〉〈kj |
∑
nmrs

dnmrs |nm〉〈rs|
⎤
⎦

=
∑
ijkl

cijkldkjil

= Tr

⎡
⎣∑

ijkl

cijkl|ij 〉〈kl|
∑
nmrs

dnmrs |ns〉〈rm|
⎤
⎦

= Tr[ρT [σ ]]. (B5)

�
(ii) The Gaussian additive noise (product) channel is equal

to its dual on the set of density operators of two-mode states.
Proof. We prove first the equivalence on the example of the

two-mode channel �η ⊗ �μ applied to ρTMS:

Tr[(�η ⊗ �μ)[ρTMS]ρ ′] = Tr[ρTMS(�η ⊗ �μ)[ρ ′]]. (B6)

Using Eq. (B2) and the linearity of the trace we move it
inside the integral and then make a cyclic permutation of the
displacement operators. Then, by applying the expression of
the Hermitian conjugate of the displacement operator in the
form D†(x,p) = D(−x,−p) and by changing the variables
−x1 → x1, −p1 → p1, −x2 → x2, and −p2 → p2, we arrive
at the desired conclusion.

This proof holds if we replace the state ρTMS by an arbitrary
density operator. �

Following Eq. (B4), the trace on the right-hand side of
Eq. (B3) can be computed as the trace of the product of density
matrices when the dual circuit is applied to the state ρV

th ⊗ σG
2

taking into account the properties of the dual maps discussed
above. The big advantage of doing so is that ρV

th ⊗ σG
2 is a

Gaussian state and all the transformations that constitute the
circuit (and their duals) preserve the Gaussian character of the
state. Thus the state ρ∗ =U

†
λ(�η⊗�μ)[T [U †

Sρ
V
th ⊗σG

2 US]]Uλ

is completely determined by its covariance matrix γ ∗, which is
the result of the application of the dual circuit to the covariance

matrix of ρV
th ⊗ σG

2 ,

γ ∗ =STMS(−λ)

(
T

[
ST

(
V 1 0
0 ν−1

)
S

]
+

(
η1 0
0 μ1

))
ST

TMS(−λ),

(B7)

where S represents the symplectic diagonalization that
gives the symplectic eigenvalues, T is the partial transpo-
sition (which acts on the two-mode covariance matrices as

p2 → −p2), and STMS(λ) = 1√
1−λ2

(
1 λσz

λσz 1

)
, the two-mode

squeezing transformation.
From covariance matrix γ ∗, we can easily deduce the

Wigner function W ∗(x1,p1,x2,p2) of ρ∗ and with its help
compute the trace in Eq. (B4):

Tr[(ρin ⊗ |0〉〈0|)ρ∗]

= (2π )2
∫

dx1dp1dx2dp2Wρin (x1,p1)

×W|0〉(x2,p2)W ∗(x1,p1,x2,p2)

= 2πC

∫
dx1dp1Wρin (x1,p1)Wm

th (x1,p1). (B8)

Here the normalization factor C is obtained by integrating
over the variables of the second mode (it is a simple Gaussian
integral)

2π

∫
dx2dp2W|0〉(x2,p2)W ∗(x1,p1,x2,p2) = CWm

th (x1,p1)

(B9)

and by stressing out a new Wigner function
Wm

th (x1,p1) = 1
πm

e−(x2
1 +p2

1)/m corresponding to a thermal
state of variance m. Returning to the state space,
the computation of the trace can be carried out as
follows:

Tr[ρin ⊗ |0〉〈0|ρ∗] = C Tr

[ ∞∑
n=0

φn|n〉〈n|ρm
th

]

= C
2

m + 1

∞∑
n=0

φn

(
m − 1

m + 1

)n

. (B10)

Both parameters m and C depend on V . The explicit formulas
for m and C are cumbersome and we do not present them here,
however, they allow us to carry out the limit V → ∞, which
provides the trace in Eq. (B3). Together with Eq. (B1), this
gives us a value for g2 following Eq. (3).
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