
PHYSICAL REVIEW A 93, 032326 (2016)
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We investigate maximally coherent states to provide a refinement in quantifying coherence and give a measure-
independent definition of the coherence-preserving operations. A maximally coherent state can be considered a
resource to create arbitrary quantum states of the same dimension by merely incoherent operations. We propose
that only maximally coherent states should achieve the maximal value for a coherence measure and use this
condition as an additional criterion for coherence measures to obtain a refinement in quantifying coherence that
excludes invalid and inefficient coherence measures. Under this criterion, we then give a measure-independent
definition of the coherence-preserving operations, which play a role in quantifying coherence similar to that
played by the local unitary operations in the scenario of studying entanglement.
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I. INTRODUCTION

Coherence can be considered as one of the most distinc-
tive features of quantum mechanics. Along with quantum
entanglement, quantum discord, etc., coherence is viewed as
a valuable resource for quantum information processing tasks
[1–4], which otherwise could not be achieved efficiently or
at all by classical methods. Great progress has been made in
quantifying entanglement and other quantum correlations from
different viewpoints [5–12]. However, a rigorous framework
for quantifying coherence was proposed only recently in
Ref. [13]. Following this seminal work, fruitful research has
been done, some of which was mainly devoted to studying the
properties of specific coherence measures [14–19] or exploring
new possible coherence measures [20–22]. There are also
many considerations about the manipulation of coherence
[19,21–24] and the connections of coherence with quantum
entanglement, quantum discord, quantum deficit, and critical
phenomena of many-body systems [22,23,25,26].

In this work we present a thorough study of maximally
coherent states (MCSs), give a refinement of quantifying
coherence by adding a criterion for valid coherence measures,
and define the coherence-preserving operations (CPOs). It
should be noted that these three main results are closely
related. The MCSs are defined as states that can be used as
resources to produce any other states of the same dimension by
merely the incoherent (free) operations [13]. A valid coherence
measure C fulfilling the four criteria in Ref. [13] would assign
a maximal value to a set of states that we call the maximal-
coherence-value states (MCVSs) with respect to C. These four
criteria ensure that a MCS is a MCVS for any valid coherence
measures. However, for an arbitrary valid coherence measure, a
MCVS is not necessarily a MCS. While one may expect CPOs
in quantifying coherence to play a role analogous to that of the
local unitary operations in studying entanglement, there is no
measure-independent definition for CPOs like that of MCSs.
Instead, for a specific coherence measure C we can find a set of
incoherent operations under which the value of the coherence
measure of an arbitrary state would be conserved. We call these
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operations coherence-value-preserving operations (CVPOs)
with respect to C. Unfortunately, the different sets of CVPOs
under different valid coherence measures are not always the
same. We find that the mismatch between MCSs and MCVSs
happens to many inefficient coherence measures and therefore
propose a criterion that the MCVSs should be MCSs to
exclude these inefficient coherence measures and thus give
a refinement of quantifying coherence. This criterion also
makes the different groups of CVPOs of different coherence
measures converge to the unitary incoherent operations and
makes it reasonable to define the unitary incoherent operations
as CPOs. One operational implication of this result is that
coherence of arbitrary states is impossible to protect in a task
without knowledge of the state to be protected and the quantum
channel it would endure.

II. REVIEW OF QUANTIFYING COHERENCE

In quantifying coherence [13], a base B := {|i〉} has been
chosen and fixed, which would usually be composed of eigen-
states of some conserved quantity such as the Hamiltonian
of the system of interest. The quantitative theory of coherence
mainly consists of three basic definitions and four criteria. The
three definitions are as follows.

Definition 1: Incoherent states. The diagonalized states in
B are incoherent for B. We denote the set of incoherent states
by I.

Definition 2: Incoherent operations. Operations mapping
incoherent states onto incoherent states either with or without
subselections are incoherent. An incoherent operation �ICPTP

can be specified by a set of Kraus operators {KKKn} with∑
n KKK

†
nKKKn = III d and ρρρn ∈ I. We have the definitions ρρρn :=

KKKnρρρKKK
†
n/pn and pn := tr(KKKnρρρKKK

†
n) for all n. (In this work

we continue to use this notation for the incoherent operation
�ICPTP.)

Definition 3: Maximally coherent states. A MCS is one that
can be used as a resource for deterministic construction of any
other state of the same dimension by incoherent operations
only. It was proven in Ref. [13] that |�d〉 := 1√

d

∑d−1
i=0 |i〉 is a

MCS.
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The MCSs and the incoherent states set the upper and
lower bounds for coherence measures, while the incoherent
operations puts gradient in between. To obtain reasonable
coherence measures, four criteria were proposed in Ref. [13].

Criterion 1. C(ρρρ) = 0 if and only if ρρρ is incoherent.
Criterion 2. C(�ICPTP(ρρρ)) � C(ρρρ) for arbitrary �ICPTP

and ρρρ.
Criterion 3.

∑
n pnC(ρρρn) � C(ρρρ) for all �ICPTP and ρρρ.

Criterion 4. The coherence measure should not increase
under the mixing processes of the states.

Any coherence measure satisfying the four criteria is
considered valid. This gives some good coherence measures
such as the relative coherence measure of coherence CRE and
the �1-norm coherence measure C�1 .

III. UNITARY INCOHERENT OPERATIONS

By Definition 2 of the incoherent operations, a CVPO
of an arbitrary coherence measure is incoherent. Of all the
incoherent operations, the unitary incoherent operations are the
simplest. It would be useful and easier to examine them first.

Lemma 1. All the unitary incoherent operations take the
form

UUU I:=
d−1∑
j=0

eiθj |αj 〉 〈j |, (1)

where {αj } is a relabeling of {j}. They are CVPOs admitted
by all the valid coherence measures.

Proof. We first prove the explicit expression of the unitary
incoherent operations. Since the unitary operations transform
pure states into pure states, it is obvious that the output state
should be one of the base vector states, given the input is from
B. That means UUU I should only be a relabeling of the base
vectors up to some phases, namely, be of the form presented
in (1). Here we complete the proof of the first portion of
Lemma 1 and start to prove the rest by utilizing the just
proven part. One may soon realize that the inverse UUU

†
I is also

unitary and incoherent. Therefore, for any valid coherence
measure C and state ρρρ, we can obtain C(ρρρ) � C(UUU IρρρUUU

†
I ) and

conversely C(UUU IρρρUUU
†
I ) � C(UUU †

I (UUU IρρρUUU
†
I )UUU I) = C(ρρρ), namely,

C(ρρρ) and C(UUU IρρρUUU
†
I ) are of the same value. ThusUUU I is a CVPO

for every valid coherence measure. �

IV. MAXIMAL-COHERENCE-VALUE STATES

Using Lemma 1, we can obtain a set of MCVSs for every
valid coherence measure by applying the unitary incoherent
operations on |�d〉:

SMCS :=
⎧⎨
⎩ 1√

d

d−1∑
j=0

eiθj |j 〉 |θ1, . . . ,θd−1 ∈ [0,2π )

⎫⎬
⎭. (2)

Notice that we have used MCS as the subscript here because
we will prove in Theorem 2 that SMCS is the set of MCSs too.
It is very interesting but not surprising to find that this set SMCS

of states has its special position in the quantitative theory of
coherence as a resource.

Theorem 1. SMCS is the complete collection of MCVSs
recognized by all the valid coherence measures, as can be
shown in Fig. 1.

SMCS

SCa

MCVS

SCb

MCVS

SCx

MCVS

FIG. 1. Relation between MVCSs of different valid coherence
measures and SMCS. Here SC

MCVS represents the full set of MCVSs
with respect to a specific valid coherence measure C.

Proof. We denote by SMCVS the complete collection of
MCVSs granted by all the valid coherence measures. It is
always true for any valid coherence measure C such that
SMCS ⊆ SMCVS ⊆ SC

MCVS, while in Ref. [15] it was shown that
S

CRE
MCVS coincides with SMCS. Hence SMCVS should be identical

to SMCS. �
However, this does not mean that every valid coherence

measure approves the states of SMCS as the sole kind of
MCVSs. One can find many valid coherence measures whose
MCVSs include more than just the states from SMCS. A specific
example is Ctrivial, which is defined as a measure of the value
zero if and only if its input state is incoherent; otherwise it
is always one. Another example is a continuous coherence
measure Cf presented in Ref. [15] for d = 4. We can follow the
same way to construct a family of Cf for arbitrary dimension
d. Also, the SC

MCVS could be different from one another for
different C.

Another fact that makes the states of SMCS special is that
they are difficult to generate if we are constrained to using only
incoherent channels.

Lemma 2. �ICPTP(ρρρ) is a state of SMCS if and only if �ICPTP

is unitary and ρρρ itself is a state in SMCS.
Proof. Given �ICPTP is unitary and ρρρ belongs to SMCS, it is

apparent from Lemma 1 that �ICPTP(ρρρ) is one of the states in
SMCS. Next we presume that �ICPTP(ρρρ) belongs to SMCS. Then
�ICPTP(ρρρ) should be a pure state, since SMCS contains only pure
states. This means that ρρρn = ρρρn′ ∈ SMCS for all the different
n and n′ if there are any. By clinging to this fact and using
the spectral expression of ρρρ, we can finally see that �ICPTP

is unitary and ρρρ is from SMCS. To obtain this result, one may
find it very helpful to utilize a specific property of the Kraus
operator KKKn of �ICPTP for which has been stated in Ref. [23]
that there is at most one nonzero entry in every column of KKKn.
For a detailed derivation, refer to Appendix A. �

V. MAXIMALLY COHERENT STATES

In the following we will present an important result about
the MCSs. We have shown that the aforementioned states of
SMCS are special as described in Theorem 1 and Lemma 2. The
reason behind this is the following.

Theorem 2. SMCS is the complete set of MCSs.
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MUI

MCa

CVPO

MCb

CVPO

MCx

CVPO

FIG. 2. Relation between CVPOs of different valid coherence
measures and unitary incoherent operations. Here we denote the
complete collection of unitary incoherent operations by MUI and the
CVPOs for coherence measure C by MC

CVPO.

Proof. First, we show that ρρρ is a MCS if ρρρ belongs to SMCS.
Since the case of |�d〉 was proven explicitly in Ref. [13], we
consider a state ρρρ that is physically different from |�d〉 but
still belongs to SMCS. For such a state we can transform it to
|�d〉 by exploiting a unitary incoherent operation. Then we
use a set of incoherent operations to generate all the other
states of the same dimension, as was done in Ref. [13]. The
combination of two incoherent operations can still be counted
as one incoherent operation. Therefore, ρρρ is indeed a MCS if
ρρρ ∈ SMCS. Second, we prove that ρρρ belongs to SMCS provided
ρρρ is a MCS. If ρρρ can be exploited to generate any other d-
dimensional state by incoherent processes, i.e., a MCS, we
can find some �ICPTP to transform it into a state of SMCS. That
means ρρρ should be within SMCS according to Lemma 2. In
conclusion, ρρρ would fulfill Definition 3 of MCSs if and only
if ρρρ ∈ SMCS. �

VI. COHERENCE-VALUE-PRESERVING OPERATIONS

We can also find all the CVPOs admitted by every valid
coherence measure.

Theorem 3. The complete collection of CVPOs approved
by every valid coherence measure should be the full set of
unitary incoherent operations. This is expressed in Fig. 2.

Proof. First, all the unitary incoherent operations are
CVPOs of an arbitrary valid coherence measure according to
Lemma 1. Second, if �ICPTP is a CVPO admitted by every valid
coherence measure and |�〉 is a state of SMCS, �ICPTP(|�〉)
would be a MCVS under any measure and therefore belongs
to SMCS. By utilizing Lemma 2, it is clear that �ICPTP is
unitary. �

VII. REFINEMENT OF QUANTIFYING COHERENCE

From Theorems 1 and 2 we can see that though the
coherence measure satisfying the original four criteria of
Ref. [13] would count any MCS as a MCVS, many of them
also give other states maximal coherence values. A typical
example of such an inefficient but valid coherence measure is
Ctrivial, which as mentioned is zero for all incoherent states and
one for all coherent states and similarly for valid measures Cf

[15], which are continuous but still inefficient. Additionally,

Theorem 1 indicates that there could be differences among the
sets of MCVSs of different measures. Similar disagreements
exist among the sets of CVPOs of different coherence measures
according to Theorem 3. The latter would further make it
difficult to obtain a coherence-independent definition of the
CPOs. As we will see, all these problems happen to inefficient
measures such as Ctrivial and Cf . We therefore propose a
criterion for valid coherence measures to give quantifying
coherence a refinement.

Criterion 5. A valid coherence measure should only assign
a maximal value to the MCSs.

This ensures that all MCVSs are MCSs and it is the same
for every coherence measure. More importantly, inefficient
coherence measures such as Ctrivial and Cf would be excluded
by this additional criterion. Some well-defined coherence
measures such as the relative entropy measure, �1-norm
measure, and intrinsic randomness measure [21] fulfill not
only the original four criteria but also the additional criterion.
The explicit proof of Criterion 5 for these three coherence
measures is provided in Appendix B.

Given that C fulfill all five criteria, we can use the same
argument for Theorem 3 to show the following.

Criterion 5′. The complete collection of CVPOs with
respect to C is the full set of unitary incoherent operations.

Therefore, the disagreements between the CVPOs of
different measures would vanish too. Moreover, Criterion 5′
is a necessary condition for all five criteria to be fulfilled. It
can be used to test if a measure can satisfy the five criteria
simultaneously. A typical example is the skew information
measure of coherence studied in Ref. [27]. The skew infor-
mation measure would actually violate not only Criterion 5′
but also Theorem 3. This indicates that both Criterion 2 and
Criterion 5 are violated. Our result agrees with that presented
in Ref. [18]. See Appendix B for a detailed analysis.

VIII. COHERENCE-PRESERVING OPERATIONS

An additional benefit that Criterion 5 provides is a natural
way to define the CPOs. Criterion 5′, which is a consequence
of Criterion 5 tells us that the set of CVPOs of any valid
coherence measure C satisfying the five criteria is independent
of C. Furthermore, Theorems 1 and 3 indicate that, for all the
coherence measures satisfying the original four criteria, the
relation between the set of unitary incoherence operations and
the sets of CVPOs is structurally similar to that between SMCS

and the different SC
MCVS. One can get a clear view of this

by comparing Figs. 1 and 2. For these reason we propose a
definition of the CPOs.

Definition 4. An operation is coherence preserving if and
only if it is unitary and incoherent.

This definition of the CPOs is measure independent. The
CPOs defined in this way are CVPOs for every coherence
measure satisfying the original four criteria and would make
a full collection of the CVPOs if the coherence measure
additionally satisfies Criterion 5.

This result about the CPOs has one important physical
implication for the general coherence-preserving tasks. For an
arbitrary coherence measure C satisfying the five criteria, one
may notice that the physical process conserving the coherence
values of all the d-dimensional states could only be the process
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of relabeling of the base B. In other words, there is no physi-
cally nontrivial process under which the coherence value of an
arbitrary d-dimensional state with respect to the measure C can
be conserved. However, as it is shown in Ref. [23], we may find
that the coherence value of some states with respect to C could
be frozen (conserved) under specific physically nontrivial
processes while that of the other states could not. That means
if we want the coherence value of some state to be protected,
some information about this state and the quantum channel
should be provided. Complete ignorance of the state to be
protected (frozen) or the quantum channel lying ahead would
make the protecting task impossible to achieve in principle.
Moreover, by reexamining Lemma 2, we may say that MCSs
are actually the most fragile. By that we mean that the maximal
coherence is the most difficult to preserve, since the only type
of incoherent process-preserving MCSs is relabeling.

IX. CONCLUSION

In this work we have provided a full collection of MCSs
in (2), a reasonable criterion (Criterion 5) for valid coherence
measures, and a measure-independent definition (Definition 4)
of the CPOs. It is understandable that the states presented in
(2) are MCSs. However, a valid coherence measure satisfying
the original four criteria could assign a maximal value to
other states which are not MCSs. We therefore proposed a
criterion to make a valid coherence measure assign only the
MCSs a maximal value and therefore excludes some inefficient
coherence measures. In addition, it is apprehensible that the
unitary incoherent operations defined in (1) are CPOs since
they are CVPOs to any coherence measure fulfilling the
original four criteria. Similarly, other incoherent operations
could be CVPOs for some measures satisfying the original
four criteria, especially those with larger sets of MCVSs.
With our criterion for coherence measures, we found that only
the unitary incoherent operations are CVPOs with respect to
any valid measure. We identified in Definition 4 the unitary
incoherent operations as the only CPOs. Our study of the
CPOs has a very significant implication that the coherence of
a state is intrinsically hard to preserve when there is a lack of
information about the state and the form of quantum channel
it would undergo.
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APPENDIX A: DETAILED PROOF OF LEMMA 2

Here we give a detailed proof of the only if part of Lemma
2.

Proof. It has been claimed in the main text that �ICPTP(ρρρ) ∈
SMCS means ρρρn = ρρρn′ ∈ SMCS for all the different n and n′ if
there are any. Notice that

ρρρn =
∑

k

(qk/pn)KKKn|ϕk〉 〈ϕk|KKK†
n, (A1)

where qk are the eigenvalues of ρρρ and |ϕk〉 the corresponding
eigenstates. One would further obtain

(KKKn/
√

pn) |ϕk〉 = (KKKn/
√

pn) |ϕk′ 〉 ∈ SCMS. (A2)

Here we have ignored the global phase difference and will do
the same in the following. This relation should be true for all
k and k′ if both qk and qk′ are nonvanishing. Thus

|〈ϕk|(KKK†
n/

√
pn)|i〉| = 1/

√
d, (A3)

where |i〉 is an arbitrary base vector of B. This indicates that
KKK

†
n |i〉 should not be a null vector for any |i〉. According to

Ref. [23], if �ICPTP is incoherent we can write KKKn as

KKKn =
d−1∑
j=0

√
pnKnje

iγnj |λnj 〉 〈j |, (A4)

where {λni} = {i} and Knj should all be nonzero to ensure
KKK

†
n |i〉 �= 0. This makes KKKn invertible. Hence KKKn |ϕk〉 would

be different from KKKn|ϕk′ 〉 if |ϕk〉 differs from |ϕk′ 〉. Applying
this to Eq. (A1), we can see that ρρρn being a pure state implies
that ρρρ should also be a pure state

|ϕ〉 =
d−1∑
j=0

ϕje
iϑj |j 〉, (A5)

where ϕj are all non-negative and satisfy the normalization
condition of |ϕ〉. We can then rewrite ρρρn as

1√
pn

KKKn|ϕ〉 =
d−1∑
j=0

Knjϕj e
i(γnj +ϑj )|λnj 〉 ∈ SMCS. (A6)

From this expression we know that there is no null ϕj and
Knj = 1/

√
dϕj . Thus Knj is independent of n. Also, γnj −

γnj ′ should be independent of n for every j and j ′ because
ρρρn = ρρρn′ , that is, (KKKn/

√
pn)|ϕ〉 = (KKKn′/

√
pn′)|ϕ〉. Therefore,

KKKn/
√

pn and KKKn′/
√

pn′ are mutually equivalent up to some
global phase. One may notice that the Kraus operators KKKn

that have been considered are those with nonzero pn. It is
enough, though. Given the facts that diagonal entries of the
sum of KKK

†
nKKKn with nonvanishing pn should never exceed one

and there is a normalization constraint on ϕj , we can obtain
that ρρρ should belong to SMCS. And �ICPTP would be an unitary
operation provided further the completeness relation of the
Kraus operators. �

APPENDIX B: ANALYSIS OF SPECIFIC COHERENCE
MEASURES

In this Appendix we first analyze some coherence measures
satisfying Criteria 1–4 and show that they satisfy also Criterion
5. Among them, the relative entropy measure and �1-norm
measure have been proven in Ref. [13] and the intrinsic
randomness measure was proven in Ref. [21] to fulfill the
original four criteria. We also discuss the skew information that
was claimed to satisfy the original four criteria in Ref. [27].
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The skew information measure turns out to violate not only
Criterion 5 but also Criterion 2 in the general case of d � 3.

1. Relative entropy coherence measure

The CRE can certainly fulfill Criterion 5 because the full set
of maximal-coherence-value states S

CRE
MCVS is identical to SMCS,

as has been presented in Ref. [15].

2. The �1-norm coherence measure

We show that the �1 coherence measure also satisfies
Criterion 5. We obtain the maximal value of the �1-norm
measure of coherence C�1 (|�d〉 〈�d |) = d − 1, given |�d〉 =

1√
d

∑d−1
i=0 |i〉 and

C�1 (ρρρ) =
d−1∑
i,j=0
i �=j

|〈i|ρρρ|j〉|. (B1)

One may consider an arbitrary state

ρρρ =
∑

k

qk|ϕk〉 〈ϕk|, (B2)

where all the qk are positive and fulfill the trace normalization
condition. It can be derived that

C�1 (ρρρ) =
d−1∑

j,j ′=0

|〈j |ρρρ|j ′〉| − 1

=
d−1∑

j,j ′=0

∣∣∣∣∣
∑

k

qk 〈j |ϕk〉 〈ϕk|j ′〉
∣∣∣∣∣ − 1

�
d−1∑

j,j ′=0

∑
k

qk|〈j |ϕk〉||〈ϕk|j ′〉| − 1 (B3)

= d2
∑

k

qk

⎛
⎝d−1∑

j=0

1

d
|〈j |ϕk〉|

⎞
⎠

2

− 1

� d2
∑

k

qk

d−1∑
j=0

1

d
|〈j |ϕk〉|2 − 1 (B4)

= d − 1. (B5)

As we will see, to make the equality in (B4) hold true, it
is required that |〈j |ϕk〉| must be of the same value 1/

√
d.

Therefore, |ϕk〉 can be expressed as

|ϕk〉 = 1√
d

d−1∑
j=0

eiθkj |j 〉. (B6)

To further reduce the inequality (B3) into an equality, we
must make sure that either there is only one nonzero qk or
〈j |ϕk〉 〈ϕk|j ′〉 = ei(θkj −θkj ′ )/d is independent of k. That means
ρρρ is a pure state and must come from SMCS. Further, one may
notice that the �1-norm coherence measure of a state from
SMCS would always be d − 1. Therefore, the �1-norm measure
of coherence also satisfies Criterion 5.

3. Intrinsic randomness

The so-called intrinsic randomness has been defined in
Ref. [21] as

CIR(ρρρ) :=
{

CRE(ρρρ) if ρρρ is pure

min
qk,ρρρk

∑
k qkCRE(ρρρk) otherwise. (B7)

Now we set to prove that it also satisfies Criterion 5. When ρρρ

is pure, the intrinsic randomness measure coincides with the
relative entropy measure. Therefore CIR(ρρρ) can achieve the
maximal value if and only if ρρρ is within SMCS. In the case that
ρρρ is a mixed state, CIR(ρρρ) could be of that maximal value only if
ρρρ can be decomposed solely into a statistical mixture of states
from SMCS, which, however, is not possible because a mixed
state always has at least two distinct eigenvectors |ϕ0〉 and |ϕ1〉
with nonvanishing eigenvalues q0 and q1. For convenience
we can assume q0 � q1 without loss of generality. One
may realize that (q0 |ϕ0〉 〈ϕ0| + q1 |ϕ1〉 〈ϕ1|) can be replaced
by [q0 |ϕ+〉 〈ϕ+| + q0 |ϕ−〉 〈ϕ−| + (q1 − q0) |ϕ1〉 〈ϕ1|]. The
states |ϕ±〉 are defined as superpositions of |ϕ0〉 and |ϕ1〉
and are designed to be mutually orthogonal. By choosing the
superposition parameters carefully, we can keep |ϕ±〉 out of
SMCS even if |ϕ0〉 and |ϕ1〉 belong to SMCS. That means a mixed
state can never have only decompositions of states from SMCS.
Thus, ρρρ is a MCVS with respect to the intrinsic randomness
measure of coherence if and only if ρρρ ∈ SMCS.

4. Skew information

The skew information [27,28] is defined as

Cskew(ρρρ,KKK) := − 1
2 tr([

√
ρρρ,KKK]2), (B8)

where KKK := ∑d−1
i=0 ki |i〉 〈i| is self-adjoint and ki �= kj for

different i and j . For a pure state ρρρ = |ψ〉 〈ψ |, we find that

Cskew(|ψ〉 〈ψ |,KKK)

= 〈ψ |KKK2|ψ〉 − (〈ψ |KKK|ψ〉)2

=
d−1∑
i=0

k2
i |〈i|ψ〉|2 −

(
d−1∑
i=0

ki|〈i|ψ〉|2

)2

= 1

2

d−1∑
i,j=0
i �=j

|〈i|ψ〉|2(ki − kj )2|〈j |ψ〉|2. (B9)

We can now see that Cskew(|ψ〉 〈ψ |,KKK) would not be conserved
under a unitary incoherent operation, i.e., a relabeling of
the base vectors up to some phases, given d � 3. Therefore,
Theorem 3 and Criterion 5′ would be violated. Also, we know
that Theorem 3 is a consequence of Criterion 2, one of the
original four criteria, while Criterion 5′ is the consequence of
Criterion 5, our additional criterion. Hence, neither Criterion
2 nor 5 would be fulfilled.
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