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Digital signatures are widely used in modern communication to guarantee authenticity and transferability of
messages. The security of currently used classical schemes relies on computational assumptions. We present a
quantum signature scheme that does not require trusted quantum channels. We prove that it is unconditionally
secure against the most general coherent attacks, and show that it requires the transmission of significantly fewer
quantum states than previous schemes. We also show that the quantum channel noise threshold for our scheme
is less strict than for distilling a secure key using quantum key distribution. This shows that “direct” quantum
signature schemes can be preferable to signature schemes relying on secret shared keys generated using quantum
key distribution.
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I. INTRODUCTION

Signature schemes allow for the exchange of messages
from one sender to multiple recipients, with the guarantee that
messages cannot be forged or tampered with. Additionally,
messages can be transferred, and cannot be repudiated.
Transferability means that with a probability that can be made
arbitrarily close to 1, if a message is accepted by an honest
recipient, it will also be accepted by another recipient if
forwarded. The related requirement of nonrepudiation means
that, except with probability that can be made arbitrarily small,
a sender cannot later successfully deny having sent a signed
message. Digital signatures are widely used for example in
email and electronic commerce, and are considered to be one
of the most important inventions of modern cryptography.
Unfortunately, the security of commonly used signature proto-
cols relies on the assumed computational difficulty of certain
problems. In the United States, for example, there are currently
three approved algorithms for generating digital signatures—
RSA, DSA, and ECDSA—all of which rely on the difficulty
of finding discrete logarithms or factoring large primes. With
the advent of quantum computers, such assumptions would no
longer be valid. Given the importance of digital signatures,
there is thus a strong motivation to develop practical signature
schemes whose security is unconditional, i.e., guaranteed by
the laws of physics, without any computational assumptions.

Unconditionally secure “classical” signature schemes are
possible, but need, at the very least, shared secret keys,
and often also require a third party trusted by everybody
(who effectively can provide each participant with secret
information) [1–4]. Shared secret keys can of course be
generated by quantum key distribution (QKD), so that an
unconditionally secure signature scheme can proceed by first
generating secret keys via QKD, and then running, e.g., the
protocol P2 in [4]. Unconditionally secure “direct” quantum
signature schemes proceed without first distilling highly secure
shared secret keys [4–7]. It is an open question what the best
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unconditionally secure signature schemes are, with respect to
the number of quantum transmissions required per signed bit,
trust assumptions, requirements on communication channels,
and so on. In this paper, we explicitly demonstrate that “direct”
quantum signature schemes can have advantages over schemes
relying on secret shared keys generated via QKD, by showing
that the “direct” scheme we propose can tolerate more noise
in the quantum channels.

Previous quantum signature schemes [4,6,7] improved
on the original Gottesman-Chuang scheme [5] by removing
the need for quantum memory. In these quantum signature
schemes, Alice encoded her signatures into quantum states
and sent a copy to both Bob and Charlie, who were only
able to gain partial information on the overall signature due
to the quantum nature of the states. However, the security
analysis assumed authenticated quantum channels that did
not allow eavesdropping. This strong and generally unrealistic
assumption meant that a potential forger (Bob) only had access
to his own copy of the signature states sent from Alice.
In reality an adversarial Bob would be able to gain extra
information on Alice’s signature through eavesdropping on
the signature states sent from Alice to Charlie.

Here we present a quantum signature protocol, with three
improvements over previous protocols. First, we remove all
trust assumptions on the quantum channels. This is crucial for
actual practical use of quantum signature schemes. Second,
instead of Alice sending the same signature states to Bob and
Charlie, Bob and Charlie send different states to Alice, which
leads to increased efficiency. This departs from the “public-
key” principle in the earlier quantum signature schemes. Third,
as already mentioned above, we show that in our direct
quantum signature protocol, the noise threshold for the Alice-
Bob and Alice-Charlie quantum channels is less strict than for
distilling a secret key using quantum key distribution (QKD).

II. PROTOCOL

We outline our protocol for three parties, with a sender,
Alice, and two receivers Bob and Charlie. Generalization to
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more parties is possible, but special care should be taken to
address colluding adversaries (see, e.g., [8]). In the three-party
scenario, at most one party can be dishonest, since two
colluding dishonest parties can trivially cheat on the third party.
In the multiparty scenario, the maximum number of dishonest
parties will depend on the method of dispute resolution. If
a majority vote is used to resolve disputes, then a majority
of the participants must be honest. Also, transferability and
nonrepudiation become identical in a three-party scenario
when majority vote dispute resolution is used. We assume that
between Alice and Bob, and between Alice and Charlie there
exists authenticated classical channels as well as untrusted,
imperfect quantum channels. In addition, Bob and Charlie
share a QKD link which can be used to transmit classical
messages in full secrecy. The protocol makes use of a
key-generating protocol (KGP) performed in pairs separately
by Alice-Bob and Alice-Charlie. The KGP uses the noisy
untrusted quantum channels, and generates two correlated bit
strings, one for the sender and one for the receiver. When the
noise level is below the prescribed threshold, the Hamming
distance between the receiver’s string and the sender’s string
is smaller than the Hamming distance between any string
an eavesdropper could produce and the sender’s string. The
KGP is further discussed below, after presenting the signature
protocol itself.

The quantum signature protocol has two parts, a distribution
stage, where the scheme is set up, and a messaging stage,
when messages are sent and signed. The distribution stage
involves both classical and quantum communication, but all
communication in the messaging stage is classical. We show
how to sign a one-bit message. Longer messages can be signed
for example by suitably iterating the one-bit protocol, as in [9].

A. Distribution stage

(1) For each possible future message m = 0 or 1, Alice
uses the KGP to generate four different length L keys,
AB

0 ,AB
1 ,AC

0 ,AC
1 , where the superscript denotes the participant

with whom she performed the KGP and the subscript denotes
the future message, to be decided later by Alice. Bob holds
the length L strings KB

0 ,KB
1 and Charlie holds the length L

strings KC
0 ,KC

1 . Due to the KGP, we know that AB
0 contains

fewer mismatches with KB
0 than does any string produced

by an eavesdropper, and the same applies to the other pairs
of strings. Alice’s signature for the future message m will
be Sigm = (AB

m,AC
m). Essentially, what will protect against

forging is that only Alice knows a valid signature for a message
m.

(2) For each future message, Bob and Charlie symmetrize
their keys by choosing half of the bit values in their KB

m,KC
m

and sending them (as well as the corresponding positions) to
the other participant using the Bob-Charlie secret classical
channel. As explained below, this ensures that Alice cannot
make Bob and Charlie disagree on the validity of a signature
if a message is forwarded from Bob to Charlie or vice versa
in the messaging stage. If Bob (or Charlie) chooses to forward
an element of KB

m (or KC
m ) in the distribution stage, he will not

further use it to check the validity of a signature. They will
only use the bits they did not forward and those received from
the other participant [10]. We denote their symmetrized keys

by SB
m and SC

m , with the superscript indicating whether the key
is held by Bob or Charlie. Bob (and Charlie) will keep a record
of whether an element in SB

m ( SC
m) came directly from Alice

or whether it was forwarded to him by Charlie (or Bob).
At this point in the protocol, Bob’s and Charlie’s sym-

metrized strings each contain half of KB
m and half of KC

m . For
each future possible message m, Bob and Charlie each have a
bit string of length L, and Alice has no information on whether
it is Bob’s SB

m or Charlie’s SC
m that contains a particular element

of the string (KB
m,KC

m ), which has length 2L. This protects
against repudiation. Bob has access to all of KB

m and half of
KC

m , but, even if he is dishonest, he does not know the half of
KC

m that Charlie chose to keep. This protects against forging
by Bob (and similarly for forging by Charlie).

B. Messaging stage

(1) To send a signed one-bit message m, Alice sends
(m,Sigm) to the desired recipient (say Bob).

(2) Bob checks whether (m,Sigm) matches his SB
m and

records the number of mismatches he finds. He separately
checks the part of his key received directly from Alice and the
part of the key received from Charlie. If there are fewer than
sa(L/2) mismatches in both halves of the key, where sa < 1/2
is a small threshold determined by the parameters and the
desired security level of the protocol, then Bob accepts the
message.

(3) To forward the message to Charlie, Bob forwards the
pair (m,Sigm) that he received from Alice.

(4) Charlie tests for mismatches in the same way, but
in order to protect against repudiation by Alice he uses a
different threshold. Charlie accepts the forwarded message if
the number of mismatches in both halves of his key is below
sv(L/2) where sv is another threshold, with 0 < sa < sv <

1/2. That the recipients have to use different thresholds or
acceptance criteria for messages received directly from the
sender and for forwarded messages is a general and necessary
feature of unconditionally secure signature schemes [3,8].
More generally in a multiparty situation, thresholds depend
on how many times a message has been forwarded, and the
level of mismatches will determine how many times a message
can subsequently be forwarded.

III. KEY GENERATION PROTOCOL

We now describe how two parties, for now called Alice and
Bob, perform the KGP. Essentially, Alice and Bob perform the
quantum part of QKD to generate raw keys, but do not proceed
to error correction or privacy amplification. This means that
Alice and Bob will generate different (but correlated) strings
that are not entirely secret. These keys will be the AB

i , KB
i

described above. Even though the KGP builds on QKD, the
security analysis for the KGP does not follow directly from the
security of the QKD protocol. This is because the goal of an
adversary in the signature protocol is different from that of an
eavesdropper in QKD. For the signature protocol, what matters
is the number of mismatches with a recipient’s key; for QKD,
what matters is the information an eavesdropper can hold about
the key. From the bound on an eavesdropper’s min-entropy in
QKD, we show how to bound the number of mismatches a
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forger in our signature protocol can achieve. Our aim is to
show that d(AB

i ,KB
i ) < d(Eguess,K

B
i ) except with negligible

probability, where d(.,.) is the Hamming distance and Eguess

is Eve’s attempt at guessing KB
i (and it may be that Eve is

Charlie). In addition to proving the security of the KGP itself,
the security of the signature protocol (in which the KGP is
used as a subprotocol) will be proven below in Sec. IV.

In what follows, the underlying QKD protocol upon which
the KGP is built will be the prepare-and-measure decoy-state
BB84 protocol using weak coherent pulses, described in [11].
Apart from the postprocessing, another difference is that here
it is Bob who prepares the states and sends them along
the quantum channel to Alice. This may not be necessary,
but simplifies the security analysis in that a dishonest Alice
cannot send the recipients Bob and Charlie entangled states.
Specifically, when the KGP is performed by Bob and Alice, we
assume that Bob has a phase-randomized source of coherent
states. The intensity of each light pulse is chosen by Bob to be
either u1, u2, or u3, where u1 > u2 > u3. The intensities are
chosen with probabilities (pu1,pu2 ,pu3 ). As in [11], we use all
intensity levels for key generation. To encode information, Bob
randomly selects one of four possible polarization states—
|0Z〉,|1Z〉 (Z basis) and |0X〉 = 1/

√
2(|0Z〉 + |1Z〉),|1X〉 =

1/
√

2(|0Z〉 − |1Z〉) (X basis). The X and Z bases are chosen
with probabilities pX � 1/2 and pZ = 1 − pZ � 1/2 respec-
tively. The asymmetric probabilities for the two bases increase
the efficiency of the protocol [12]. Intensities and states are
chosen independently by Bob to avoid correlations between
intensity and information encoding. Alice also independently
chooses the X and Z measurement bases with probabilities pX

and pZ respectively.
For each state sent by Bob, Alice obtains one of four

possible outcomes {0,1,∅,d} where 0 and 1 are the bit values,
∅ represents no detection, and d is a double click event.
In the case of double clicks, Alice randomly chooses a bit
value. Alice and Bob then announce their basis and intensity
choices over an authenticated classical channel. If states are
transmitted and then measured in different bases, or if there
is no detection, they are discarded (sifting). The protocol is
continued until a sufficient number of measurement outcomes
have been obtained for each basis and intensity choice. A raw
key is generated by choosing a random sample of size L + k

of the X basis counts. The bit string generated by Bob is split
into four parts (VB, ZB, XB,keep, XB,forward). Alice will hold
corresponding strings but with the subscript B replaced by
A. The V strings have length k and are generated from X

basis measurements. They are used to estimate the correlation
between Alice’s and Bob’s strings generated from X basis
measurements, after which they are discarded. The Z strings
are generated from Z basis measurements. They will be used to
quantify the level of eavesdropping by Eve. Roughly speaking,
due to the complementary nature of the X and Z bases,
eavesdropping must affect the correlations Alice and Bob
would expect to see in their states and measurement results,
and they can use a measure of their correlations to find a
quantitative bound on the min-entropy the eavesdropper has
on Bob’s X strings. The two XB strings have length L/2 and
together make up Bob’s key, KB

i . Bob will forward XB,forward

to Charlie (who could in fact be Eve) and will keep the other

string, XB,keep, for himself. Bob will no longer use the bits in
XB,forward.

It should be stressed that in signature schemes it cannot
be assumed that Alice and Bob are honest. This is another
difference from standard QKD. However, as explained below,
neither of them gain from dishonesty during the KGP, and
therefore we can assume that they behave honestly during the
KGP stage.

In what follows we will consider the finite case, that is, a
finite number of states are sent and measured, with Eve allowed
to perform the most general attack permissible by quantum
mechanics—so-called “coherent” attacks. This means that Eve
can perform entangling operations on any or all states sent over
the quantum channel, and at any later time make a general
measurement on an ancilla system kept in quantum memory.

Our strategy will be to find Eve’s information in terms of
her smooth min-entropy, and use that to bound the probability
that she can make a signature declaration containing fewer
than a certain number of errors. To begin with then, we must
find Eve’s smooth min-entropy on Bob’s key XB,keep. We
follow [11] and find Eve’s smooth min-entropy in the same
manner as for decoy state QKD, with the only difference being
that here, Bob gives the extra information XB,forward to Eve.
However, since Bob does not subsequently use this part of
the key, this can be treated in the same manner as is done for
the V string sacrificed for parameter estimation, as detailed
more explicitly in Proposition 6 of [13]. Essentially, Eve’s
smooth min-entropy on XB,keep can be found using entropic
uncertainty relations based on the level of correlation between
ZB and ZA. For ease of notation, we will simply write X instead
of XB,keep, and we will denote its length by n. Eve also gains
information from the classical communication between Alice
and Bob, which is assumed to be public but authenticated. The
classical random variables V , �n, and XB,forward represent the
information gained by Eve from parameter estimation, basis
declarations in the sifting step, and, if Eve is Charlie, the
forwarding of XB,forward by Bob, respectively.

We gather all of Eve’s information into one quantum
system living in the Hilbert space HE . This comprises the
space containing Eve’s ancilla quantum system following her
coherent attack,HE′ , as well as the spaces containing the states
encoding the strings V , �n, and XB,forward, which we assume
are known to Eve. As in Appendix B of [11], we find

Hε
min(X|E) � sL

X,0 + sL
X,1

[
1 − h

(
φU

X,1

)]
, (1)

where the inequality holds up to a small additive term
proportional to log2(1/ε). Here sL

X,0 and sL
X,1 are the number of

pulses reaching Alice which come from zero- and one-photon
pulses respectively, and which make up the entries in the
string X. φU

X,1 is the phase error rate in X basis measurements
coming from single-photon pulses. The superscripts U and
L represent worst-case scenario estimates consistent with
parameter estimation performed on a finite sample (see
Appendix A).

Now the question is, given Eve’s smooth min-entropy, is it
possible to bound the number of errors she is likely to make
when guessing Bob’s key?

Proposition 1. Suppose that Bob and Eve share the state
ρXE where, as above, X is the n-bit string representing the
part of Bob’s key that is not forwarded to Eve, and E is
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the correlated quantum system held by Eve, including all
information gained from classical communications. Then,
for any eavesdropping strategy, Eve’s average probability of
making at most r mistakes when guessing X can be bounded
as

〈pr〉 �
r∑

k=0

(
n

k

)
2−Hε

min(X|E)ρ + ε. (2)

The proof of this proposition is given in Appendix B. We
can further use Markov’s inequality to say that for any a > 0,

Prob(Eve makes fewer than r mistakes) := pr � a (3)

except with probability at most

εF := 1

a

(
br

n2−Hε
min(X|E)ρ + ε

)
, (4)

where br
n := ∑r

k=0

(
n

k

)
and for large n, we have br

n ≈ 2nh(r/n).
So we have found a bound on the probability of Eve making
fewer than r mistakes in terms of her smooth min-entropy.
Using this, as well as (1) for the min-entropy, we find

εF = 1

a
[2−n{cL

X,0+cL
X,1[1−h(φU

X,1)]−h(r/n)} + ε], (5)

where cL
X,i := sL

X,i/n is the lower bound on the count rate
for X basis pulses containing i photons. The equation above
should technically have an approximation sign rather than an
equality since we have used the approximate bound on the
min-entropy from Eq. (1). It can be made exact by including the
terms proportional to log2(1/ε) in the min-entropy, however,
for simplicity we have neglected such terms in the main body
of the paper. The condition

cL
X,0 + cL

X,1

[
1 − h

(
φU

X,1

)] − h(r/n) > 0 (6)

determines whether or not Eve is able to make fewer than r

errors with non-negligible probability. If the condition holds,
n can be increased to make Eve’s probability of making fewer
than r errors arbitrarily small. We define pE by the equation

cL
X,0 + cL

X,1

[
1 − h

(
φU

X,1

)] − h(pE) = 0. (7)

The meaning of this is that pE is the minimum rate at which Eve
can make errors (except with negligible probability). Suppose
the error rate on X basis measurements between Alice and Bob
is upper bounded as eU

X . As long as pE > eU
X , there exists a

choice of parameters and a sufficiently large signature length
which makes the protocol secure (see Sec. IV). Equivalently,
QDS is possible as long as

cL
X,0 + cL

X,1

[
1 − h

(
φU

X,1

)] − h(eU
X ) > 0. (8)

IV. SECURITY ANALYSIS

We will now prove the security of the main signature protocol,
i.e., the robustness (probability of an honest run aborting),
security against forging (probability that a recipient generates
a signature, not originating from Alice, that is accepted as
authentic), and repudiation (or transferability) (probability that
Alice generates a signature that is accepted by Bob but then
when forwarded, is rejected by Charlie). In what follows, we
assume that Alice-Bob and Alice-Charlie have each used the

KGP to generate length L bit strings to use in the QDS protocol
described above.

(a) Robustness. Bob rejects a signed message if the L/2
bits received from either Alice or Charlie have a mismatch
rate higher than sa with Alice’s signature. From parameter
estimation performed on the strings VA,VB (whose length we
denote by k), Alice and Bob obtain an estimate of the error
rate they have with respect to each other, for the strings they
generated in the X basis. We denote the observed error rate by
ẽX. Using the Serfling inequality [14], we can bound the actual
error rate between the strings XA,keep and XB,keep (which we
denote as eX) by

eX � ẽX + δ := eU
X, (9)

where

δ :=
√

ln(1/εPE)

2k

(
1 − k − 1

n

)
. (10)

This bound holds except with probability εPE . It can be
seen that for any fixed choice of δ, the failure probability
εPE decays exponentially fast in the parameter k. Let eU

X,B ,
eU
X,C be the worst-case error rates Alice has from performing

separate KGP’s with Bob and Charlie respectively. Set eU
X :=

max{eU
X,B,eU

X,C} and choose sa such that sa > eU
X . The Serfling

inequality tells us that the true error rate between Alice’s and
Bob’s keys will be less than eU

X except with probability at most
εPE , so the probability of an honest abort is simply

Prob(Honest Abort) � 2εPE, (11)

where the factor of 2 occurs since the abort can be due to
either the states received from Alice or the states received
from Charlie.

(b) Security against forging. It is easier for either Bob or
Charlie to forge than for any other external party, and we will
therefore consider forging by an internal party. In order to forge
a message, Bob must give a declaration (m,Sigm) to Charlie
that has fewer than svL/2 mismatches with the unknown (to
Bob) half of SC

m sent directly from Alice to Charlie, and fewer
than svL/2 mismatches with the half he himself forwarded
to Charlie. An adversarial Bob will obviously be able to meet
the threshold on the part he forwarded to Charlie. We therefore
consider only the unknown half that was received directly from
Alice. If parameter estimation is successful in the KGP, then
we know the worst-case (maximum) rate at which Alice will
make errors with Charlie’s key; we denote it by eU

X . From
Eq. (7), we also know the minimum rate at which Bob will
make errors with Charlie’s key; we denote it by pE .

Assuming (8) holds, we choose sv such that eU
X < sv < pE .

In this case, Charlie will likely accept a legitimate signature
sent by Alice, since the upper bound on their error rate, eU

X ,
is less than the threshold sv . On the other hand, Charlie will
likely reject any dishonest signature declaration by Bob, since
the probability of Bob finding a signature with an error rate
smaller than sv is restricted by Eqs. (3) and (5) as

Prob(Eve makes fewer than svL/2 errors) := psvL/2 � a

(12)
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except with probability at most

εF := 1

a
[2−L/2{2sL

X,0/L+(2sL
X,1/L)[1−h(φU

X,1)]−h(sv )} + ε]. (13)

Let us suppose that if any of the parameter estimation
procedures fail (so for example if eU

X is not a good upper
bound), or if psvL/2 � a, then Bob is able to successfully forge
with certainty. We are then able to bound Bob’s probability of
successfully forging as

Prob(Forge) � a + εF + 8εPE. (14)

This equation is valid for any choice of a,ε,εPE > 0 and so can
be made arbitrarily small by increasing L. The addition of 8εPE

is to account for the possibility of the upper or lower bounds
failing on any of the eX, sX,0, sX,1, or φX,1 (see Appendix A).
Note that security against an adversarial Bob derives entirely
from the Alice-Charlie KGP, in which Bob is already assumed
to be an adversary. Thus, any dishonesty on Bob’s part during
the Alice-Bob KGP cannot help him to forge. Exactly the same
arguments apply when Charlie is the forger.

(c) Security against repudiation. Alice aims to send a
declaration (m,Sigm) which Bob will accept and, when
forwarded, Charlie will reject. To do this, we must have that
Bob accepts both the elements that Alice sent directly to him
and the elements that Charlie forwarded to him. In order for
Charlie to reject he needs only reject one of either the elements
he received from Alice, or the elements Bob forwarded to him.
Intuitively, security against repudiation follows because of the
symmetrization performed by Bob and Charlie using the secret
classical channel. Even if Alice knows and can control the error
rates between AB

m, AC
m and KB

m , KC
m , she cannot control whether

the errors end up with Bob or Charlie. After symmetrization,
the keys SB

m and SC
m will each have the same expected number

of errors. To repudiate, one must contain significantly more
errors than the other. Using results in [15], we can bound this
probability as

Prob(Repudiation) � 2 exp

[
− 1

4
(sv − sa)2L

]
. (15)

For a more formal proof, please see Appendix C. Note
that security against repudiation derives entirely from the
symmetrization performed by Bob and Charlie, in which Alice
plays no part. Even if Alice can control the choices of sa , sv

by manipulating the error rates achieved during the Alice-Bob
KGP and the Alice-Charlie KGP, the choice of L depends on
sa and sv and the protocol will be secure for any valid choice.

V. COMPARISON TO QKD

For the BB84 protocol performed using decoy states as
described above, with a finite number of states sent and
received, Appendix B of [11] gives the length of the extractable
secret key as

l =
⌊
sL
X,0 + sL

X,1

[
1 − h(φU

X,1)
] − λEC − log2

2

εcor(α2α3ν)2

⌋

≈ sL
X,0 + sL

X,1

[
1 − h(φU

X,1)
] − λEC,

(16)

where εcor and ν are constants related to the possibility of
failure of error correction and privacy amplification. The term
λEC represents the information leaked to Eve during error
correction. It depends on the specific implementation, but must
be greater than or equal to nh(eU

X ), where n is the size of the
bit string being corrected. In practice, error correction will not
be perfect and it is common to write λEC = nfECh(eU

X ) where
fEC is a leakage parameter. To perform error correction, the
total key is split into blocks and the leakage parameter fEC

depends on this block size, but not the overall length of the key.
Increasing the block size reduces fEC at the cost of decreasing
the efficiency of the error correction protocol. Estimates of
fEC for practically feasible error correction is an area of active
research [16], though it is commonly estimated to be in the
range 1.11–1.2, regardless of the length of the total key being
distilled. For example, [17] assumes fEC = 1.2 based on the
performance of error-correcting codes in use at ID Quantique.
Rewriting (16), we obtain

l ≈ n
{
cL
X,0 + cL

X,1

[
1 − h

(
φU

X,1

)] − fECh
(
eU
X

)}
. (17)

Comparing Eqs. (8) and (17), we immediately see that there
are Alice-Bob and Alice-Charlie quantum channels for which
quantum signatures are possible and yet practical QKD gives a
zero key generation rate. As stated above, fEC is independent
of n and so cannot be decreased by simply increasing the
size of the total key. The important point is that because the
quantum signature scheme omits the inefficient process of
error correction, there should always be some region where
quantum signature generation is possible but QKD is not.

VI. DISCUSSION

In this paper we have presented a quantum signature
protocol and proven it unconditionally secure against coherent
attacks. It improves on previous quantum signature protocols
by removing all trust assumptions on the quantum channels
between participants. One might have expected that a protocol
that does not rely on these assumptions must necessarily be less
efficient. However, our protocol also significantly reduces the
length of the signature needed to sign a message. To facilitate
comparison to previous quantum signature protocols, suppose
one wants the probabilities in (11), (14), (15) to all be below
10−4. Using realistic experimental quantities (taken from [18]),
we estimate that a signature length of L = 7.71 × 105 (for
each of the possible one-bit messages 0 and 1) is required to
securely sign a one-bit message, sent over a distance of 50 km.
This would require Bob and Charlie to transmit approximately
6.3 × 108 quantum states (per bit to be signed) to Alice during
their KGP’s (see Appendix D). We compare this to previous
quantum signature protocols which required O(1010) states
to be transmitted to achieve the same level of security over
1 km [19].

The increase in efficiency is largely due to the fact that
in our protocol Bob and Charlie send Alice different states,
whereas in previous protocols Alice sent Bob and Charlie the
same signature states. In those protocols, even without any
eavesdropping, a potential forger has access to a legitimate
copy of each of the states Alice sent to the participants, and thus
to reach the same levels of security requires longer signatures.
Moreover, when generalizing to N participants with up to
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t dishonest parties, potentially colluding forgers are even
more powerful, since they may have t legitimate copies of
each state. In our protocol, where different states are sent by
each participant, this problem is evaded. The only source of
information for a potential forger is by eavesdropping on the
quantum channels, an activity not even considered in previous
protocols due to the assumption of “authenticated” quantum
channels.

We also showed that the noise threshold in the quantum
channels connecting Alice-Bob and Alice-Charlie is in prac-
tice less strict for quantum signatures than for distilling a
secret key using QKD. For some quantum channels, therefore,
quantum signature protocols that use QKD (e.g., P2 of Ref. [4])
are not possible, while our direct quantum protocol remains
possible. This is an example that direct quantum protocols are
sometimes preferable to protocols relying on secret shared
keys generated using standard QKD, and highlights that
quantum signature protocols are not in general merely a direct
combination of QKD protocols and classical postprocessing.
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APPENDIX A: FINITE-SIZE ESTIMATES

Equation (1) contains three quantities to estimate: sL
X,0 and

sL
X,1, which are estimates of the number of counts (sent and

measured in the X basis) containing zero and one photon
respectively, and φU

X,1 which is an estimate of the phase error
rate in the X basis counts.

As in [11], we have

sX,0 � τ0

u2 − u3

(
u2e

u3n∗
X,u3

pu3

− u3e
u2n∗

X,u2

pu2

)
, (A1)

where n∗
X,uk

is the number of counts (from states sent and
measured in the X basis) coming from pulses with intensity
uk , and τn := ∑

uk
puk

e−ukun
k/n!. This formula is valid in the

asymptotic limit where the number of counts will be equal to
the expected value. In the finite setting, we cannot know with
certainty the actual value of n∗

X,uk
. This is because once the

raw key is generated, we randomly choose a finite sample of
L + k states from X basis counts. Nevertheless we are able to
bound n∗

X,uk
from above and below with high probability using

the statistics observed in parameter estimation. Specifically, if
nX,uk

are the observed statistics, Hoeffdings inequalities [20]
give

n−
X,uk

: = nX,uk
− δ(L + k,εPE) � n∗

X,uk
,

n+
X,uk

: = nX,uk
+ δ(L + k,εPE) � n∗

X,uk
. (A2)

These bounds hold with probability at least 1 − εPE ,
where δ(nX,εPE) := √

nX ln(1/εPE)/2. Replacing the n∗
X,uk

in
Eq. (A1) by the corresponding worst-case finite-size estimate
leads to a finite-size lower bound on sX,0, which we call sL

X,0,
and which holds with probability at least 1 − 2εPE .

Similarly, we can bound sL
X,1 as

sL
X,1 � u1τ1

u1(u2 − u3) − (u2
2 − u2

3)

[
eu2n−

X,u2

pu2

− eu3n+
X,u3

pu3

+ u2
2 − u2

3

u2
1

(
sL
X,0

τ0
− eu1n+

X,u1

pu1

)]
. (A3)

The X basis phase errors are not directly observed in the
protocol. Instead, we relate φU

X,1 to the bit error rate in the Z

basis. As in Appendix B of [11], we have

φU
X,1 �

vU
Z,1

sL
Z,1

+ γ

(
α1,

vU
Z,1

sL
Z,1

,sL
Z,1,s

L
X,1

)
, (A4)

where vU
Z,1 is the upper bound on the number of bit errors in

Z basis counts coming from single-photon pulses, and

γ (a,b,c,d) :=
√

(c + d)(1 − b)b

cd ln 2
log2

[
c + d

cd(1 − b)b

1

a2

]
,

(A5)

where α1 comes from the calculation of the min-entropy given
in [11], and is such that α1 > 0, ε > 2α1 + α2 + α3. Here ε is
the smoothing parameter in the smooth min-entropy.

All quantities on the right-hand side of Eq. (A4) are known,
except vU

Z,1 which we can find as

vU
Z,1 � τ1

u2 − u3

(
eu2m+

Z,u2

pu2

− eu3m−
Z,u3

pu3

)
, (A6)

where the m±
Z,uk

are the upper and lower bounds on the true
number of bit errors from Z basis counts of intensity uk . These
are found from the observed number plus finite-size variations,
similar to Eq. (A2).

APPENDIX B: PROOF OF PROPOSITION 1

In order to guess X making fewer than r errors, Eve will
perform some optimal measurement on her system E and from
that gain a classical outcome F which is her guess for X.
This transforms ρXE to the classical state τXF which can be
represented by the probability distribution PXF . From the data
processing inequality [21] we have

Hε
min(X|E)ρ � Hε

min(X|F )P . (B1)

We now use the following lemma, similar to Lemma 3.1.12
from [22].

Lemma 1. Let τXF be a classical state. Then the maximiza-
tion in the smooth min-entropy,

Hε
min(X|F )τ := max

τXF ∈Bε (τXF )
sup
σF

Hmin(τXF |σF ),

is achieved for a classical τXF and a classical σF . Note that
the supremum over σ is over all density matrices with trace 1.
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Proof. To prove this, we will show that for any τ ′
XF ∈

Bε(τXF ) and σ ′
F , there exists a classical τXF ∈ Bε(τXF ) and a

classical σF such that

Hmin(τXF |σF ) � Hmin(τ ′
XF |σ ′

F ).

To do this, define E := EXF , the projective measurement in the
XF basis. Choose τXF := E(τ ′

XF ) and σF := EF (σ ′
F ), where

EF is the projective measurement in the F basis. Since EF is a
CPTP map, σF still has unit trace. Also, we have

||τXF − τXF ||1 = ||E(τ ′
XF − τXF )||1 � ||τ ′

XF − τXF ||1 � ε,

where the first equality follows from the definition of E and
because τXF is classical. The first inequality follows because
the trace distance can only decrease under CPTP maps, and
the second inequality follows because τ ′

XF ∈ Bε(τXF ). This
shows that τXF ∈ Bε(τXF ).

Now we use Lemma 3.1.12 from [22] to say that

Hmin(τXF |σF ) � Hmin(τ ′
XF |σ ′

F )

is true if

1X ⊗ σF − E(1X ⊗ σ ′
F ) � 0.

Plugging in the definition of E we find

1X ⊗ σF − EXF (1X ⊗ σ ′
F ) = 1X ⊗ σF − 1X ⊗ σF = 0,

where we have used that EXF = EX ⊗ EF when applied to
product states.

This lemma means that

Hε
min(X|F )P = Hmin(X|F )P ′ (B2)

for some classical (possibly unnormalized) probability distri-
bution P ′

XF . To start with, let us assume that following Eve’s
optimal strategy, her guess F is jointly distributed with X

according to P ′
XF . In fact, they will be distributed according to

some unknown probability distribution PXF , but P ′
XF is ε-close

to PXF in terms of L1 (or trace) distance. Note that the trace
distance makes sense even for unnormalized distributions.

Let us introduce the notation

br
n :=

r∑
k=0

(
n

k

)
, (B3)

Sr
x = {x ′ ∈ X : d(x,x ′) � r}, (B4)

where d is the Hamming distance. Under the distribution P ′
XF ,

Eve’s average “probability” (note again that P ′ may not be
normalized, but we will relate it to the normalized probability
distribution P ) of making at most r mistakes, 〈pr〉P ′ , can be
bounded as

〈pr〉P ′ =
∑
f

P ′
F (f ) max

x

∑
x ′∈Sr

x

P ′
X|F=f (x ′)

�
∑
f

P ′
F (f )|Sr

x | max
x

P ′
X|F=f (x)

= br
n

∑
f

P ′
F (f ) max

x
P ′

X|F=f (x)

:= br
n2−Hmin(X|F )P ′ , (B5)

where P ′
F is the marginal distribution of P ′

XF and the last
inequality follows from the definition of min-entropy on
classical systems [23].

Now, in fact the distribution shared by Bob and Eve
following Eve’s optimal strategy is not P ′

XF , but PXF where
PXF is ε-close to P ′

XF . We can use the above bound on 〈pr〉P ′

to get a bound for 〈pr〉P as follows:

〈pr〉P ′ =
∑
f

P ′
F (f ) max

x

∑
x ′∈Sr

x

P ′
X|F=f (x ′)

=
∑
f

P ′
F (f ) max

x

∑
x ′∈Sr

x

P ′
XF (x ′,f )

P ′
F (f )

=
∑
f

max
x

∑
x ′∈Sr

x

P ′
XF (x ′,f ). (B6)

Let f ∈ {f1,f2, . . .} and let x ′
i and xi be such that

max
x

∑
x ′∈Sr

x

P ′
XF (x ′,fi) =

∑
x∈Sr

x′
i

P ′
XF (x,fi), (B7)

max
x

∑
x ′∈Sr

x

PXF (x ′,fi) =
∑
x∈Sr

xi

PXF (x,fi), (B8)

i.e., x ′
i and xi specify the sets, Sr

x , which maximize the sum
in the last equality of (B6) for distributions P ′

XF and PXF

respectively. Continuing from (B6) we have

〈pr〉P ′ =
∑

i

∑
x∈Sr

x′
i

P ′
XF (x,fi) �

∑
i

∑
x∈Sr

xi

P ′
XF (x,fi)

�

⎛
⎝∑

i

∑
x∈Sr

xi

PXF (x,fi)

⎞
⎠ − ε

= 〈pr〉P − ε. (B9)

So, following her optimal strategy, we can bound Eve’s average
probability of making fewer than r mistakes when guessing
the bit values of X as

〈pr〉P � 〈pr〉P ′ + ε � br
n2−Hmin(X|F )P ′ + ε

� br
n2−Hε

min(X|E)ρ + ε, (B10)

where we have used Hmin(X|F )P ′ = Hε
min(X|F )P �

Hε
min(X|E)ρ .

APPENDIX C: SECURITY AGAINST REPUDIATION

Alice aims to send a declaration (m,Sigm) which Bob will
accept and which Charlie will reject. For this to happen, Bob
must accept both the elements that Alice sent directly to him,
and the elements that Charlie forwarded to him. In order
for Charlie to reject he need only reject either the elements
he received from Alice, or the elements Bob forwarded to
him (or both). Intuitively, security against repudiation follows
because of the symmetrization performed by Bob and Charlie
using the secret classical channel. In the distribution stage,
to send the future message m, Alice will use the KGP with
Bob and Charlie so that they hold the strings (b1, . . . ,bL) and
(c1, . . . ,cL) respectively. We give Alice full power and assume
that later on, in the messaging stage, she is able to fully control
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the number of mismatches her signature declaration contains
with (b1, . . . ,bL) and (c1, . . . ,cL). Call the mismatch rates eB

and eC respectively. Now, the symmetrization process means
that Bob and Charlie will randomly (and unknown to Alice)
receive L/2 elements of each other’s strings. We aim to show
that any choice of eC,eB leads to an exponentially decaying
probability of repudiation.

Suppose that eC > sa . In this case, Bob is selecting
(without replacement) L/2 elements from the set {c1, . . . ,cL},
which contains exactly eCL mismatches with Alice’s future
declaration. The number of mismatches Bob selects then
follows a hypergeometric distribution H (L,eCL,L/2) with
expected value eCL/2. In order to accept the message, Bob
must select fewer than saL/2 errors. Using [15] we can bound
the probability that Bob selects fewer than saL/2 mismatches
as

P(Bob gets fewer than saL/2 mismatches from Charlie)

� exp[−(eC − sa)2L]. (C1)

To repudiate, Alice must make Bob accept the message, which
means that Bob must accept both the part received from
Alice and the part received from Charlie. Since P(A ∩ B) �
min{P(A),P(B)}, the probability of repudiation must be less
than or equal to the above expression, and so must also decrease
exponentially.

Suppose that eC � sa . In this case, if eB > sa , the above
argument shows that it is highly likely that Bob will reject
the message, so we consider only the case where eB � sa .
Consider first the set {b1, . . . ,bL}. We can use the same
arguments as above to bound the probability of selecting more
than svL/2 mismatches as

Prob(Charlie gets more than svL/2 mismatches from Bob)

� exp[−(sv − eB)2L]. (C2)

Alice succeeds if Charlie selects more than svL/2 mismatches
from either the set {b1, . . . ,bL} or the set {c1, . . . ,cL}. Using
P(A ∪ B) � P(A) + P(B), we can see that, for the choice of
eB,eC � sa , we have

Prob(Charlie gets more than svL/2 mismatches)

� 2 exp[−(sv − sa)2L]. (C3)

So again, the probability of Alice successfully repudiating
decreases exponentially in the size of the signature. Similar to
[4], Alice’s best strategy would be to pick eB = eC = 1

2 (sv +
sa), in which case

Prob(Repudiation) � 2 exp

[
− 1

4
(sv − sa)2L

]
. (C4)

APPENDIX D: CALCULATION OF THE NUMBER OF
QUANTUM TRANSMISSIONS REQUIRED

PER SIGNED BIT

1. Parameters and constraints

The correctness and security of the protocol depends on the
three equations (11), (14), and (15), which in turn depend on
the choice of parameters sa and sv . The parameters must be
such that eU

X < sa < sv < pE . Here, and in all that follows, eU
X

is the maximum of the worst-case error rates Alice makes

with Bob’s key (found from the Alice-Bob KGP) and the
worst-case error rates Alice makes with Charlie’s key (found
from the Alice-Charlie KGP). Similarly, pE is the minimum
of the eavesdropper’s error rates found from the Alice-Bob
and Alice-Charlie KGP. The aim is to choose the parameters
that minimize the number of quantum transmissions required
per signed bit. Note that the number of quantum transmissions
required per signed bit is not equal to the signature length
L. In general, due to channel losses and parameter estimation
procedures, Bob will have to transmit more than L quantum
states to generate a signature of length L.

In the next section, we will calculate the length of the
signature and the number of quantum transmissions necessary
to sign a message with a security level of 10−4. By this,
we mean that the probabilities of honest abort, forging, and
repudiation, given respectively by (11), (14), and (15), are
all less than 10−4. To find the length per possible one-bit
message 0, 1, of the signature necessary to securely sign a
one-bit message, we must first choose the parameters sa and
sv . Ideally, our choice would minimize the total length of the
signature L. We choose to set εPE = 10−5 and

sa = eU
X + pE − eU

X

3
, sv = eU

X + 2
(
pE − eU

X

)
3

. (D1)

We note here that this may not be the optimal choices of
these parameters, however, it seems natural to choose the
parameters in order to equally partition the gap between eU

X

and pE . Nevertheless, more sophisticated optimization of the
parameters may lead to better results.

2. Number of quantum transmissions required per signed bit

In this section, we use experimental data provided by
[18] to give a rough estimate of the number of states (per
possible message bit value) Bob needs to transmit over a 50-km
quantum channel to securely sign a one-bit message. We set
εPE = 10−5 in all equations that follow. The experiment in
[18] approximately achieves the following values:

(i) Source: 1-GHz pulse rate.
(ii) Basis probabilities: pX = 93.75%, pZ = 6.25%.
(iii) Intensity levels: (u1,u2,u3) = (0.425, 0.0435,

0.0022).
(iv) Dark count rate: pd = 2.1 × 10−5.
(v) Detector efficiency: ηdet = 20.4%.
(vi) Channel attenuation: 0.2 dB/km.
(vii) Receiver loss: 2.8 dB.
(viii) Optical bit error rate: X basis QX = 1.38%, Z basis

QZ = 0.76%.
As in [24], we model the detection rates for intensity uk as

Ruk
= 1 − (1 − 2pd )e−ukη (D2)

and the Z basis bit error rates as

eZ,uk
= (1 − e−ukη)QZ + e−ukηpd

Ruk

, (D3)

and similarly for the X basis bit error rates, but using QX

in place of QZ . Over 50 km, the attenuation due to channel
and detector loss is ηch = 10−1.28 = 0.0525. η represents the
overall transmission in the system, with η = ηdetηch = 0.0107.
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If we choose intensities with probabilities pu1 = 25%,
pu2 = 40%, and pu3 = 35%, then if Bob transmits 6.3 × 108

states in total, we expect the raw key to contain 8.10 × 105

bit values from X basis measurement outcomes. Of these,
Bob will randomly choose L/2 = 3.86 × 105 to be XB,keep,
another L/2 will be used as XB,forward and the remaining k =
3.86 × 104 will be used to estimate the correlation between
Alice and Bob’s X basis measurement outcomes.

For the given intensity choice probabilities and error rates,
we expect to observe an X basis bit error rate of 2.87%. We
can then use Eq. (9) to upper bound the true error rate as
eU
X = 4.02%.

Using Appendix A and the detection and error rates given
by (D2), (D3) above, we can calculate the min-entropy. Setting
ε = 10−10 we use (1) to find

Hε
min(X|E) = 1.40 × 105. (D4)

Using (7) we find pE = 6.96%, and so have sa = 4.99% and
sv = 5.96%. Setting also a = 10−5 and putting these values
into Eqs. (11), (14), and (15) we find

Prob(Honest Abort) � 2εPE = 2.00 × 10−5, (D5)

Prob(Forge) � εF + a + 8εPE = 1.00 × 10−4, (D6)

Prob(Repudiation) � 2 exp
( − 1

4 (sv − sa)2L
)

= 2.97 × 10−8. (D7)

Thus we can see that when 6.3 × 108 states are transmitted,
the protocol is secure to a level of 10−4. It should be stressed
that this analysis is rough, and has not been optimized.
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