
PHYSICAL REVIEW A 93, 032324 (2016)

Quantum algorithms and the finite element method

Ashley Montanaro and Sam Pallister*

School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
(Received 5 January 2016; published 17 March 2016)

The finite element method is used to approximately solve boundary value problems for differential equations.
The method discretizes the parameter space and finds an approximate solution by solving a large system of linear
equations. Here we investigate the extent to which the finite element method can be accelerated using an efficient
quantum algorithm for solving linear equations. We consider the representative general question of approximately
computing a linear functional of the solution to a boundary value problem and compare the quantum algorithm’s
theoretical performance with that of a standard classical algorithm—the conjugate gradient method. Prior work
claimed that the quantum algorithm could be exponentially faster but did not determine the overall classical and
quantum run times required to achieve a predetermined solution accuracy. Taking this into account, we find that
the quantum algorithm can achieve a polynomial speedup, the extent of which grows with the dimension of the
partial differential equation. In addition, we give evidence that no improvement of the quantum algorithm can
lead to a superpolynomial speedup when the dimension is fixed and the solution satisfies certain smoothness
properties.

DOI: 10.1103/PhysRevA.93.032324

I. INTRODUCTION

The development of a quantum algorithm for large systems
of linear equations is an exciting recent advance in the
field of quantum algorithmics. First introduced by Harrow,
Hassidim, and Lloyd (HHL) [1], and later improved by other
authors [2,3], the algorithm gives an exponential quantum
speedup over classical algorithms for solving linear systems.
However, the quantum linear equation (QLE) algorithm
“solves” a system of equations Ax = b in an unusually
quantum sense. The input b is provided as a quantum state |b〉,
and the algorithm produces another state |x〉 corresponding
to the desired output x. Whether this is considered to be a
reasonable definition of “solution” depends on the intended
application [4]. Still, linear equations are so ubiquitous
in science and engineering that many applications of the
QLE algorithm have been proposed, ranging from machine
learning [5] to computing properties of electrical networks [6].

One area in which large systems of linear equations occur
is the finite element method (FEM) [7–10]. The FEM is a
technique for efficiently finding numerical approximations to
the solutions of boundary value problems (BVPs) for partial
differential equations, based on discretizing the parameter
space via a finite mesh. The FEM is a tempting target for
acceleration by the QLE algorithm for several reasons. First,
the large systems of linear equations that occur in the FEM
are produced algorithmically, rather than being given directly
as input. This avoids efficiency issues associated with needing
to access data via a quantum RAM [4,5]. Second, the FEM
naturally leads to sparse systems of linear equations, which
is usually a requirement for quantum speedup via the QLE
algorithm. Third, the FEM has many important practical
applications. These include structural mechanics, thermal
physics, and fluid dynamics [10]. Any quantum speedup for
the FEM would thus represent a compelling application of
quantum computers.

*sam.pallister@bristol.ac.uk

Clader, Jacobs, and Sprouse [11] have studied the appli-
cation of the QLE algorithm to the FEM. In particular, they
consider an electromagnetic scattering cross-section problem
solved via the FEM and argue that the quantum algorithm
achieves an exponential speedup for this problem over the
best classical algorithm known. In order to achieve this
result, the authors of [11] propose ways to avoid issues
with the QLE algorithm that can reduce or eliminate a
quantum speedup. For example, they show that the important
classical technique known as preconditioning, which reduces
the condition number of the input matrix A, can be applied
within the quantum algorithm.

However, the analysis of [11] does not fully calculate and
combine all contributions to the complexity of approximately
solving the scattering cross-section problem. The classical
and quantum algorithmic complexity is calculated in [11] in
terms of two parameters: N (the size of the system of linear
equations resulting from applying the FEM) and ε (the solution
accuracy). The size of the system of equations is a parameter
which can be chosen by the user in order to achieve a desired
accuracy (i.e., N and ε are formally related). In [11] they are
treated as independent parameters and hence the complexity
analysis is left incomplete. If the scaling of N with ε is benign,
the classical algorithm might not need to solve a large system of
equations to achieve a given accuracy, so the quantum speedup
could be reduced or even eliminated.

A. New results

In this paper we work through the details of applying the
QLE algorithm to the general FEM and compare the worst-case
performance of the quantum algorithm with that of a simple
standard classical algorithm. We choose a representative
general problem—approximating a linear functional of the
solution to a BVP corresponding to an elliptic PDE—which
allows the two types of algorithm to be fairly compared.

Our results can be summarized as follows: We find that the
QLE algorithm is indeed applicable to the general FEM and
can achieve substantial speedups over the classical algorithm.

2469-9926/2016/93(3)/032324(14) 032324-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.93.032324

ASHLEY MONTANARO AND SAM PALLISTER PHYSICAL REVIEW A 93, 032324 (2016)

TABLE I. Complexity comparison of the algorithms studied in
this work. Quantities listed are the worst-case time complexities of
approximating a linear functional of the solution to a d-dimensional
BVP up to accuracy ε, using the FEM with linear basis functions (see
Sec. III for bounds when using higher-degree polynomials). ‖u‖, |u|�,
and ‖u‖� are the L2 norm, Sobolev �-seminorm, and Sobolev �-norm
of the solution, respectively, defined in Sec. II. The Õ notation hides
polylogarithmic factors.

Algorithm No preconditioning Optimal preconditioning

Classical Õ((|u|2/ε)(d+1)/2) Õ((|u|2/ε)d/2)

Quantum Õ(‖u‖|u|22/ε3 + ‖u‖1|u|2/ε2) Õ(‖u‖1/ε)

However, the quantum speedup obtained is only at most
polynomial, if the spatial dimension is fixed and the solution
satisfies certain smoothness properties. For example, the
maximal advantage of the quantum algorithm for the typical
physically relevant PDE defined over 3 + 1 dimensions (three
spatial and one temporal, such that d = 4) is approximately
quadratic. In a small enough dimension, and if the solution is
sufficiently smooth, the run time of the quantum algorithm can
actually be worse than the classical algorithm.

Examples of the bounds we derive are listed in Table I,
which includes the effect of preconditioning on the run time of
the algorithms. Note that in general it is difficult to rigorously
analyze the performance of preconditioners. We therefore
choose to highlight two extreme possibilities: no precondition-
ing at all is applied or maximally successful preconditioning
is used. The true performance of an algorithm using precondi-
tioning will fall somewhere between these two cases.

The run time of both the classical and the quantum
algorithms depends on the Sobolev �-seminorm and Sobolev �-
norm of the solution to the BVP, for some �; roughly speaking,
these measure the size of the �th derivatives of the solution.
Assuming that preconditioning has been optimally used within
the QLE algorithm, the quantum algorithm’s run time is
dependent only on the Sobolev �-norm (up to polylogarithmic
terms). However, the classical algorithm’s run time depends
on the Sobolev �-seminorm, for some � � 2. Therefore, for
problems with solutions whose higher-order derivatives are
large, the quantum advantage could be substantial.

Perhaps more importantly, to achieve accuracy ε in spatial
dimension d, the run time of the classical algorithm scales as
ε−O(d), while the scaling with ε of the quantum algorithm’s
run time does not depend on d. For higher-dimensional
problems, the quantum speedup can thus be very significant.
Interestingly, this holds even if preconditioning is not used.
(Note that we cannot quite say that the quantum algorithm
achieves an exponential speedup, as the run time also contains
a dimension-dependent constant factor which may be very
large.)

One example application is any dynamical problem involv-
ing n bodies, which implies solving a PDE defined over a
configuration space of dimension 2n. Also, there may be a
significant advantage for problems in mathematical finance;
for example, pricing multiasset options requires solving the
Black-Scholes equation over a domain with dimension given
by the number of assets [12]. This is discussed further in Sec. V.

The reason for the apparent contradiction between our
results and previous work [11], which claimed an exponential
speedup in fixed spatial dimension, is the inclusion of an
accuracy parameter in the run time, which was not fully
incorporated in [11]. Imagine that we would like to produce a
solution to some BVP that is accurate up to ε. This accuracy
parameter will affect the run time of algorithms for the
FEM. There are two potential sources of error in producing
the solution: the discretization process, which converts the
problem to a system of linear equations, and any inaccuracies
in solving the system of equations itself and computing the
desired function of the solution. The larger the system of
equations produced, the smaller the first type of error is.

The QLE algorithm can work with an exponentially larger
set of equations in a comparable time to the classical algorithm,
so this source of error can be reduced exponentially. However,
the scaling with accuracy of the QLE algorithm’s extraction of
a solution from the system of linear equations is substantially
worse than that of the classical algorithm. These two effects
can come close to canceling each other out.

We remark that there is a subtle point here: the scaling with
accuracy of the quantum algorithm is substantially better if we
only wish to produce the quantum state corresponding to the
solution to the FEM [3], rather than computing some property
of the state by measuring it. However, in applications one will
always eventually want to perform a measurement to extract
information from the final output of the quantum algorithm.
We therefore consider it reasonable to compare the quantum
and classical complexities of producing a (classical) answer to
some given problem.

Finally, we argue that the inability of the quantum algorithm
to deliver exponential speedups (in some cases) is not a
limitation of the algorithm itself but, rather, any quantum
algorithm for the FEM will face similar constraints. We
elucidate several barriers with which any quantum algorithm
will have to contend. First, we show that, informally, any
algorithm which needs to distinguish between two states which
are distance ε apart must have run time �(1/

√
ε). Second,

we argue that the “FEM solving subroutine” of any quantum
algorithm can likely be replaced with an equivalent classical
subroutine with at most a polynomial slowdown (in fixed
spatial dimension and when the solution is smooth). Third,
we show that there can be no more than a quadratic speedup if
the input to the problem is arbitrary and accessed via queries
to a black box or “oracle.”

Our results pinpoint the regimes in which one can hope
to achieve exponential quantum speedups for the FEM and
show that apparent speedups can disappear when one takes
the effect of solution accuracy into account. Nevertheless, we
believe that the fact that exponential speedups might still be
obtained in some cases is encouraging and an incentive to
focus on problems with the possibility of a genuine exponential
quantum speedup.

B. Other related work

An alternative approach to the approximate numerical
solution of PDEs is the finite-difference method (FDM). This
method is also based on discretization of the problem domain

032324-2

QUANTUM ALGORITHMS AND THE FINITE ELEMENT METHOD PHYSICAL REVIEW A 93, 032324 (2016)

but differs from the FEM in that it approximates the partial
derivatives in the original problem with finite differences.

The QLE algorithm can also be applied to the FDM. One
example where this has been done, and described in detail, is
in the work of Cao et al. [13], who give a quantum algorithm
for the Poisson equation in d dimensions. Their algorithm
produces a quantum state corresponding to the solution to the
equation in time O(max{d, log 1/ε} log3 1/ε). Note that this
scaling with ε is exponentially better than the best general
results on Hamiltonian simulation known at the time; their
algorithm used special properties of the Poisson equation to
achieve an improved run time. The best classical algorithms
require time ε−�(d), as they solve a discretized version of the
problem on a d-dimensional grid with cells of size ε × ε ×
. . . × ε.

However, the quantum algorithm of Cao et al. [13] shares
the property of the FEM algorithms discussed here that, in
order to extract some information from the quantum state
produced, one finishes with a scaling with ε which is poly(1/ε).
In the physically realistic setting of the dimension d being fixed
and the accuracy ε being the parameter of interest, this is only
a polynomial improvement.

Other related work has given quantum algorithms for
solving large systems of sparse linear [14] or nonlinear [15]
differential equations via Euler’s method. In these cases the
quantum algorithms can, in principle, achieve an exponential
improvement over classical computation for approximately
computing properties of the solution to the system, if the
system of equations is provided implicitly. Fleshing out this
approach requires also specifying how the equations are
produced and how the property of interest is computed. If
the equations are generated by a discretization procedure such
as the FDM, qualitative conclusions similar to those we derive
for the FEM seem likely to hold.

C. Organization and notation

We begin, in Sec. II, by introducing the FEM and describing
its classical complexity. Section III goes through the details
of applying the QLE algorithm to the FEM and determines
its complexity. In Sec. IV we describe various limitations on
the quantum algorithm. We conclude in Sec. V with some
discussion and open problems.

We need to deal with continuous functions, their discretized
approximations as vectors, and their corresponding quantum
states. Italics denote functions, boldface denotes vectors, and
quantum states (usually normalized) are represented as kets.
We often let � ⊆ Rd denote an arbitrary convex set. For a
function f ∈ L2(�), ‖f ‖ := (

∫
�

f (x)2dx)
1/2

denotes the L2

norm of f . For a vector f, ‖f‖ := (
∑

i f2
i)

1/2
denotes the �2

norm of f.
We often use the term “spatial dimension” as shorthand for

“number of degrees of freedom in the given PDE,” distinct
from the dimension of the vector space used for a discretized
approximation of the solution of a PDE or the dimension of the
Hilbert space acted on by a quantum algorithm; this is merely
for convenience and should not be taken to mean that the only
PDEs of interest are those in which the degrees of freedom are
physical spatial dimensions.

FIG. 1. A basis set of “tent” functions (dotted blue lines) for
piecewise linear functions defined on the line (an example of which
is given by the solid red line). Any piecewise linear function can be
uniquely specified as a sum of scaled tents.

II. THE FINITE ELEMENT METHOD

Rather than provide a formal introduction to the FEM, it is
easiest to motivate the procedure via an example (we refer the
reader to [7], [8] and [9] for a thorough treatment). Imagine
we would like to solve Poisson’s equation in the interval [0,1],
in one dimension:

u′′ = f ; u(0) = u′(1) = 0.

Here f is the input to the problem and we fix the boundary
conditions u(0), u′(1). Given a sufficiently smooth “test
function” v ∈ L2[0,1] such that v(0) = 0, one can multiply
both sides by v and then integrate by parts:∫ 1

0
f (x)v(x)dx =

∫ 1

0
u′′(x)v(x)dx = −

∫ 1

0
u′(x)v′(x)dx.

Assuming certain regularity properties of f , a function u

which satisfies this equality for all test functions v will satisfy
Poisson’s equation. This is known as the weak formulation of
Poisson’s equation. The goal is to reduce this formulation to a
problem that is tractable computationally. The approximation
is to consider solutions and test functions that instead exist
in some finite-dimensional subspace S of L2[0,1]. Denote
the approximate solution as ũ, such that ũ ∈ S ⊂ L2[0,1].
Commonly S is taken to be the space of piecewise polynomial
functions of some degree k; the choice of “pieces” for these
functions is the origin of the finite element mesh.

A particularly simple choice of basis for this example is the
space of piecewise linear functions on [0,1], divided into N

intervals of size h. A basis for this space is the set of “tent”
functions (see Fig. 1), defined as

φi(x) =
⎧⎨
⎩

1
h

(x − xi−1) if x ∈ [xi−1,xi],
1
h

(xi+1 − x) if x ∈ [xi,xi+1],
0 otherwise.

More generally, consider some choice of basis for the space S,
denoted B = {φi}, such that |B| = N . We choose a basis such
that φi(0) = φ′

i(1) = 0, so that every function in S satisfies the
boundary conditions. Then ũ can be expanded in this basis: ũ =∑

j Ujφj . The corresponding weak formulation of Poisson’s
equation is

−
∑

j

Uj

∫ 1

0
φ′

j (x)v′(x)dx =
∫ 1

0
f (x)v(x) dx.

032324-3

ASHLEY MONTANARO AND SAM PALLISTER PHYSICAL REVIEW A 93, 032324 (2016)

FIG. 2. An example of a “mesh’—a discretization of the domain
over which the PDE is defined. Each polygon is a “finite element,”
with basis functions defined on them. The shading of each polygon
represents the amplitude associated with the function supported
on each finite element. As a physical example, the diagram could
represent the material stress on a plate induced by a deformation by
a rod.

For this condition to hold for all v ∈ S, it is sufficient for it to
hold on all basis functions φi :

−
∑

j

Uj

∫ 1

0
φ′

j (x)φ′
i(x)dx =

∫ 1

0
f (x)φi(x) dx.

If we define N -dimensional vectors ũ and f̃ such that

ũi = Ui, f̃i =
∫ 1

0
f (x)φi(x) dx

and an N × N matrix M such that

Mij =
∫ 1

0
φ′

i(x)φ′
j (x)dx, (1)

then the approximate solution to Poisson’s equation can be
determined by solving the linear system

Mũ = f̃. (2)

This general procedure (expressing the PDE in the weak
formulation, choosing a finite element mesh and basis func-
tions, and solving the resultant linear system of equations)
can be extended to far more complicated PDEs, domains,
and boundary conditions. In higher spatial dimensions, the
above framework can be naturally generalized as follows. The
uniform division of [0,1] into intervals is replaced with a
suitably regular division of the domain into a mesh, whose
elements are usually polygons (for example, triangles) or
polyhedra. An example of a mesh is shown in Fig. 2. The
space S is replaced with the space of piecewise polynomials
of degree k on the elements of the mesh, with a basis {φi}
of polynomials supported only on adjacent mesh elements.
Finally, the matrix M defined in (1) is modified such that
Mij = a(φi,φj), where a(u,v) is an inner product depending
on the PDE in question.

Here we choose not to specify which PDE we wish to
solve, as the details of this procedure for particular PDEs will
not be very significant when making a general comparison of
quantum and classical algorithms for the FEM. However, we
restrict ourselves to elliptic second-order PDEs throughout, to
avoid some technical complications. Even with this restriction,
the following analysis captures many examples of physical

interest, for example, electrostatics, subsonic fluid dynamics,
and linear elasticity.

A. Comparing quantum and classical algorithms for the FEM

The goal of this paper is to compare the performance of
quantum and classical algorithms for solving BVPs via the
FEM. However, the quantum algorithm does not allow the full
solution u to a given BVP to be obtained but does allow certain
properties of u to be approximately computed. In order to fairly
compare classical and quantum algorithms for solving general
BVPs, we consider the representative problem of computing
a linear functional of u. That is, for some known function
r : � → R, where � ⊂ Rd , we seek to compute

〈r,u〉 :=
∫

�

r(x)u(x)dx.

This is one of the simplest properties of u one could hope
to access. In general, we do not have complete knowledge of
u but have some approximation ũ. Although there are many
sensible norms with which one could measure the quality of
this approximation, one natural choice is the L2 norm, ‖f ‖ :=
(
∫
�

f (x)2dx)
1/2

. Then

|〈r,ũ〉 − 〈r,u〉| = |〈r,(ũ − u)〉| � ‖r‖‖ũ − u‖
by Cauchy-Schwarz. Hence an accuracy of ε in the L2 norm
in an approximation of u translates into an additive error
of at most ε‖r‖ in an approximation of 〈r,u〉. Therefore,
approximating 〈r,u〉 up to accuracy ε‖r‖ is the prototypical
problem considered throughout.

B. Approximation errors

If u is the exact solution to a BVP, henceforth let ũ be the
continuous, exact solution corresponding to the discretized
problem, (2); ũ is the solution that a perfect linear-system
solver would find. In general, however, the linear-system solver
is iterative and so will not truly reach ũ; so also let ˜̃u be
the continuous, approximate solution generated by the linear-
system solver.

Crucially, one can show that ũ can be made quite close
to u by taking a sufficiently fine mesh. Indeed, consider a
second-order differential equation defined over a polygonal,
d-dimensional domain (or, equivalently, define d as the
number of degrees of freedom in the PDE). Then take an
infinite, ordered family of progressively finer meshes {Mr}∞r=1,
constructed from a triangulation of the domain with simplices
of dimension d. Let k be the total degree of the polynomials
used as basis functions. We assume throughout that both d and
k are fixed. Given a parameter m ∈ {0,1}, and provided that
d > 2(k − m), that all angles in the mesh are bounded below
by some fixed value, and that the greatest edge length h in the
mesh goes to 0, then the following bound is known ([9], Thm.
3.2.1):

|u − ũ|m � Chk+1−m|u|k+1, h → 0, (3)

assuming that weak derivatives of u of order m exist. Here C is
a constant, independent of h (but not necessarily independent
of d or the definition of the mesh). | · |m is the Sobolev

032324-4

QUANTUM ALGORITHMS AND THE FINITE ELEMENT METHOD PHYSICAL REVIEW A 93, 032324 (2016)

seminorm

|v|m :=
(∑

α,|α|=m

‖∂αv‖2

)1/2

.

Here α = (α1, . . . ,αd) is a multi-index, |α| := ∑
i αi , and

∂α := (∂
∂x1

)
α1

. . . (∂
∂xd

)
αd . That is, the sum is over all partial

derivatives of order m. We later also need to use the Sobolev
m-norm, defined by ‖v‖m := ∑m

i=0 |v|i . For m = 0, |v|m =
‖v‖m = ‖v‖, so we have ‖u − ũ‖ � C hk+1|u|k+1.

The overall level of inaccuracy in approximating u with ˜̃u
(and hence computing 〈r,u〉 from ˜̃u) can be bounded using the
triangle inequality:

‖u − ˜̃u‖ � ‖u − ũ‖ + ‖ũ − ˜̃u‖.
To achieve a final error of ε‖r‖ in computing 〈r,u〉 it is
sufficient to achieve ‖u − ũ‖ � ε/2, ‖ũ − ˜̃u‖ � ε/2. Thus,
by (3), we can take a mesh such that

h = O

((
ε

|u|k+1

)1/(k+1))
. (4)

Observe that |u|k+1 might be initially unknown. In the case
of the simple instance of the FEM discussed in the previous
section, we had |u|k+1 = ‖f ‖, so this bound could be explicitly
calculated. However, it can be nontrivial to estimate this
quantity for more complicated BVPs.

C. Classical complexity of the FEM

The overall complexity of solving a BVP via the FEM is
governed by the dimensionality of the problem being solved,
the choice of finite element basis, and the desired accuracy
criteria. These feed into the complexity of solving the required
system of linear equations.

As the matrix M is a Gramian matrix it is necessarily
positive semidefinite. Also, the basis φi is almost universally
chosen such that each basis vector only has support on a small
number of finite elements, with the implication that M is
sparse, i.e., has s = O(1) nonzero entries in each row. The
most common choice of algorithm for inversion of matrices of
this type (large, sparse, symmetric, and positive semidefinite)
is the conjugate gradient method [16] (for discussion in the
context of the FEM, see [7], Sec. 1.3). This method uses time
O(Ns

√
κ log 1/εCG) to solve a system Mũ = f̃ of N linear

equations, each containing at most s terms, with condition
number κ = ‖M‖‖M−1‖, up to accuracy εCG in the “energy
norm” ‖x‖M :=

√
xT Mx.

We now estimate the values of each of the parameters in
this complexity, first calculating the required size of the linear
system, N . Let P be a basis for the space of polynomials of
total degree k in d variables. To construct a basis for the space
of piecewise degree-k polynomials on the mesh, it is sufficient,
for each finite element in the mesh, to include functions defined
to be equal to a corresponding function in P on that finite
element and 0 elsewhere. Then the total size of the basis is
N = O(h−d). Using (4), to achieve a final discretization error
of ε/2 we can take

N = O

((|u|k+1

ε

) d
k+1

)
.

We next determine the required accuracy εCG. Let a be
the inner product defining M , such that Mij = a(φi,φj).
This inner product induces the energy norm (on functions)
‖u‖E := √

a(u,u). Use of this norm makes it easy to interpret
the error from the conjugate gradient method, as one can
readily calculate that

‖ũ − ˜̃u‖E = ‖ũ − ˜̃u‖M. (5)

In many important cases, such as elliptic PDEs, one can show
that a is coercive: there exists a universal constant c such that
a(u,u) � c‖u‖2 for all u (for further discussion on coercivity
in PDEs, see [17]). It follows from coercivity of a that ‖ũ −˜̃u‖ � √

c‖ũ − ˜̃u‖E . To achieve ‖ũ − ˜̃u‖ � ε/2 it is therefore
sufficient to take εCG = O(ε).

The scaling of the condition number of M (denoted κ)
with the size and shape of the mesh is discussed extensively
in [29] and in Chap. 9 of [8]. Assume that d � 2 and that there
exists a universal constant C such that the basis functions φi

satisfy

C−1hd−2‖v‖L∞(T) �
∑

supp(φi)∩T
=∅
v2

i � Chd−2‖v‖L∞(T) (6)

for any function v such that v = ∑
i viφi and any finite

element T ; this fixes the normalization of the basis functions.
Then, for a wide range of relatively regular meshes, the
largest eigenvalue λmax(M) = O(1) and the smallest eigen-
value λmin(M) = �(N−2/d), so κ = O(N2/d). Finally, we
have s = O(1) by our assumption about the supports of the
basis elements φi . The overall complexity of the algorithm
is thus

O

((|u|k+1

ε

) d+1
k+1

log 1/ε

)
.

In many practical cases, however, preconditioning is applied in
order to reduce this scaling by improving the condition number.
This can be seen as replacing the matrix M with a matrix M ′ =
PM for some “preconditioner” P and solving the new system
of linear equations M ′ũ = P f̃. A number of preconditioners
are known; one frequently used example in the case of the
FEM is the sparse approximate inverse (SPAI) preconditioner.
Although there is no guarantee that this preconditioner can
improve the condition number in the worst case, experimental
results suggest that it can be very effective in practice [18–21].
If the condition number were reduced to the best possible
scaling O(1), we would obtain a “best-case” run time of the
classical algorithm which is

O

((|u|k+1

ε

) d
k+1

log 1/ε

)
.

We remark that the preconditioned matrix M ′ may no longer
be symmetric; the dependence of the conjugate gradient
method on the condition number κ is quadratically worse for
nonsymmetric matrices, but as we have assumed that κ = O(1)
following preconditioning, this does not affect the complexity.

The best classical run time following this approach is then
found by optimizing over allowed values of k. Observe that

032324-5

ASHLEY MONTANARO AND SAM PALLISTER PHYSICAL REVIEW A 93, 032324 (2016)

in either case, if |u|k+1 and d are fixed, this complexity is
bounded by a polynomial in 1/ε.

III. SOLVING THE FEM WITH A QUANTUM ALGORITHM

The key step towards solving the FEM more quickly using
a quantum computer is to replace the classical algorithm
for solving the corresponding system of linear equations
with a quantum algorithm. The fastest such algorithm known
was recently presented by Childs, Kothari, and Somma [3],
improving previous algorithms of HHL [1] and Ambainis [2].

Theorem 1: Childs, Kothari, and Somma [3]. Let A be
an N × N Hermitian matrix such that ‖A‖‖A−1‖ � κ and A

has at most s nonzero entries in each row. Assume there is
an algorithm PA which, on input (r,i), outputs the location
and value of the ith nonzero entry in row r . Let b be an N -
dimensional unit vector, and assume that there is an algorithm
Pb which produces the corresponding state |b〉. Let

x′ = A−1b, |x〉 = x′

‖x′‖ .

Then there is a quantum algorithm which produces state |x〉
up to accuracy ε in the �2 norm, with a bounded probability of
failure, and makes

O(sκ poly(log(sκ/ε)))

uses ofPA andPb. The run time is the same up to a poly(log N)
factor.

We also need to approximate the Euclidean norm of the
solution, ‖x′‖. The most efficient approach known to achieving
this appears to be based on the original HHL algorithm. The
number of uses of PA required to estimate ‖x′‖ up to accuracy
ε‖x′‖ can be shown to be

O((sκ2/ε) poly log(sκ/ε));

the number of uses of Pb required is O(κ/ε). Assuming that
PA and Pb can each be implemented in time poly(log N), the
run time of the algorithm is

O((sκ2/ε) poly log(Nsκ/ε)).

As we were unable to find statements of these bounds in the
literature, we sketch the argument behind them in Appendix A.

Here we apply these results to the linear system Mũ = f̃.
We see from the above bounds that the complexity of the
overall quantum algorithm for solving the FEM is determined
by the following parameters:

(1) The complexities of the algorithms PM and Pf̃ , which,
respectively, determine elements of M and (approximately)
produce |f̃ 〉.

(2) The condition number κ and sparsity s of the matrix
M .

(3) The complexity of determining some quantity of
interest given a state which approximates |ũ〉.

These quantities will depend in turn on the desired accuracy
of the output. We now investigate each of them.

Note that most of the algorithms we use will have some
arbitrarily small, but nonzero, probability of failure. We
assume throughout that failure probabilities have been made
sufficiently low that they can be disregarded.

A. Preparing the input

The purpose of this section is to discuss the time to prepare
the input state |f̃ 〉 (i.e., the complexity of the subroutine
Pf̃ required for the QLE algorithm). To achieve an efficient
algorithm overall, we would like to be able to prepare |f̃ 〉
in time poly(log N). Rather than rely on a quantum RAM
to provide |f̃ 〉, we instead refer to a scheme introduced by
Zalka [22] and independently rediscovered both by Grover
and Rudolph [23] and by Kaye and Mosca [24].

The scheme can be used to produce a real quantum state
|ψ〉 of n qubits in time polynomial in n, given the ability to
compute the weights

Wx :=
∑

y∈{0,1}n−k

|〈xy|ψ〉|2

for arbitrary k = 1, . . . ,n and arbitrary x ∈ {0,1}k in time
poly(n), as well as the ability to determine the sign of 〈x|ψ〉
for arbitrary x in time poly(n).

To approximately produce |ψ〉 up to a high level of accuracy
[e.g., O(2−n)] in time polynomial in n, it is actually sufficient
to be able to approximately compute each weight Wx up to
accuracy ε in time O(log 1/ε), for arbitrary ε. We sketch the
argument as follows. The algorithm of [23], [24] and [22] is
designed to produce a state |ψ ′〉 with non-negative amplitudes
in the computational basis, such that 〈x|ψ ′〉 = |〈x|ψ〉| = √

Wx

for all x ∈ {0,1}n, and then flips the signs of amplitudes as
required. To produce |ψ ′〉 the algorithm expresses Wx , for
each x ∈ {0,1}n, as a telescoping product,

Wx = Wx1 × Wx1x2

Wx1

× Wx1x2x3

Wx1x2

× · · · × Wx

Wx1...xn−1

,

computes each fraction in turn (in superposition), and uses this
to set 〈x|ψ ′〉. If the goal is to produce |ψ〉 up to accuracy ε

in the �2 norm, from the inequality (|〈x|ψ〉| − |〈x|ψ ′〉|)2 �
|〈x|ψ〉2 − 〈x|ψ ′〉2|, it is sufficient to approximate each weight
Wx , x ∈ {0,1}n, up to additive error O(ε2/2n). So the product
can be truncated at the point i where the weight Wx1...xi

=
O(ε2/2n), because any subsequent multiplications can only
decrease Wx , and weights below this size can be ignored.

If the algorithm does not compute the weights Wx and Wy

in some fraction Wx/Wy exactly but, instead, computes the
approximations W̃x and W̃y such that |W̃x − Wx | � γWx and
|W̃y − Wy | � γWy for some γ , then |W̃x/W̃y − Wx/Wy | =
O(γWx/Wy). As we have assumed that Wx = �(ε2/2n) for
all k-bit strings x for which we compute Wx (1 � k � n), it
is sufficient to approximate each weight Wx up to additive
accuracy O(ε2/(n2n)) for each fraction to be accurate up to
a multiplicative error of O(ε2/(n2n)) and hence the overall
product of weights to be accurate up to an additive error of
O(ε2/2n). From the assumption about the complexity of the
algorithm for approximately computing Wx , we can achieve
this level of accuracy in poly(n, log 1/ε) time.

In the case of the FEM, the weights Wx correspond to
quantities of the form

S(a,b) :=
b∑

i=a

(∫
�

φi(x)f (x)dx
)2

,

032324-6

QUANTUM ALGORITHMS AND THE FINITE ELEMENT METHOD PHYSICAL REVIEW A 93, 032324 (2016)

where x ∈ Rd and a and b are integers. Expressions of this
form can be computed (either exactly or approximately) for
many functions f of interest. For example, consider the one-
dimensional setting discussed in Sec. II. If f is a polynomial,
then the integral can be easily calculated and corresponds to
a polynomial in xi−1, xi , and xi+1. If the finite elements are
regularly spaced, so xi = ih for some h, the entire sum S(a,b)
is a polynomial in a and b which can be explicitly calculated
for any a and b.

For a choice of polynomial basis of degree k [i.e., where the
(k + 1)th derivative φ

(k+1)
i = 0], then from Darboux’s formula

one has that∫
�

φi(x)f (x)dx =
k∑

j=1

(−1)jφ(j)
i (x)

∫
· · ·

∫
︸ ︷︷ ︸
j+1 times

f (x)dx.

So, once the basis is specified, computing individual ampli-
tudes is only as difficult as integrating the function f (x). How-
ever, the state-production algorithm requires the computation
of weights which depend on up to N = 2n squared amplitudes.
To obtain an efficient algorithm, it is therefore necessary to find
a more concise expression for these sums.

As discussed above, this can be achieved when f is a
polynomial and the finite element mesh is suitably regular. This
includes some physically interesting cases; even a constant
function f can be of interest. An efficiently computable
expression for S(a,b) can also be obtained when f is only
supported on a few basis elements. However, it appears
challenging to compute this quantity efficiently for more
general functions f . Indeed, see Sec. IV C for an argument
that this should not be achievable in general.

For simplicity in the subsequent bounds, we henceforth
assume that the state |f̃ 〉 can be produced perfectly in time
poly(log N).

B. Solving the system of linear equations

Let M be the matrix defined by Mij = a(φi,φj). Recall
from Theorem III that the quantum algorithm assumes that it
has access to an algorithm PM which, on input (r,i), outputs
the location and value of the ith nonzero entry in row r (or “not
found” if there are fewer than i nonzero entries). If the finite
element mesh is suitably regular, PM is easy to implement. For
instance, consider the set of n piecewise linear functions on
[0,1] defined in Sec. II. Then M is a tridiagonal matrix whose
diagonal elements are equal to 2/h and whose off-diagonal
elements are equal to −1/h. Hence for r > 1,

PM (r,i) =

⎧⎪⎨
⎪⎩

(r − 1, − 1/h) if i = 1,
(r,2/h) if i = 2,

(r + 1, − 1/h) if i = 3,
not found otherwise.

More generally, it will be possible to implementPM efficiently
if there is an efficient procedure for mapping an index to a
finite element and for listing the neighboring elements for a
given element. This will be the case, for example, when the
finite element mesh is a regular triangulation of a polygon.
For discussion of automated mesh generation and indexing
schemes, see both [25] and Sec. 5.1 in [7].

When solving the system of linear equations, inaccuracies
in the prepared state |f̃ 〉 will translate into inaccuracies in the
output state |ũ〉. Let |̃f̃ 〉 be the approximate state that was
actually prepared. Then the state produced after applying the
QLE algorithm is (approximately)

M−1 |̃f̃ 〉
‖M−1 |̃f̃ 〉‖

.

If |f̃ 〉 is prepared up to accuracy ε in the �2 norm, then the
inaccuracy of the output state in the �2 norm is∥∥∥∥∥ M−1|f̃ 〉

‖M−1|f̃ 〉‖ − M−1 |̃f̃ 〉
‖M−1 |̃f̃ 〉‖

∥∥∥∥∥.

Writing |̃f̃ 〉 = |f̃ 〉 + |ε〉 for some vector |ε〉 such that ‖|ε〉‖ =
ε, this quantity is equal to∥∥∥∥∥M−1|f̃ 〉(‖M−1 |̃f̃ 〉‖ − ‖M−1|f̃ 〉‖)

‖M−1|f̃ 〉‖‖M−1 |̃f̃ 〉‖
− M−1|ε〉

‖M−1 |̃f̃ 〉‖

∥∥∥∥∥
� |‖M−1 |̃f̃ 〉‖ − ‖M−1|f̃ 〉‖|

‖M−1 |̃f̃ 〉‖
+ ‖M−1|ε〉‖

‖M−1 |̃f̃ 〉‖

� 2
‖M−1|ε〉‖
‖M−1 |̃f̃ 〉‖

� 2εκ,

by the triangle inequality, the reverse triangle inequality, and
the definition of the condition number κ . We therefore see that,
if preconditioning is not applied to the matrix M to reduce
κ , it is necessary for |f̃ 〉 to be prepared up to accuracy of
O(N−2/dε). (Note that this is not an issue if we can produce
|f̃ 〉 exactly, as for some examples discussed in the previous
section.)

Clader, Jacobs, and Sprouse [11] showed that the SPAI
preconditioner can be used within the overall framework of the
QLE algorithm. Preconditioning replaces M with M ′ = PM

for some matrix P , to obtain the corresponding linear system
PMũ = P f̃. In the SPAI preconditioner, P is chosen such that
P ≈ M−1 and also that P is sparse. The sparsity desired is a
parameter of the algorithm; although one has no guarantees
that either P or PM will be sparse while PM achieves a
low condition number, in practice this is often the case. The
structure of the SPAI is designed such that queries to entries
of PM can be computed from queries to M with a modest
overhead [11].

If preconditioning is used, we no longer need to prepare
the initial state |f̃ 〉, but a state proportional to P |f̃ 〉. Note
that preparing the input P f̃ in the classical case requires
only multiplication of a vector by a sparse matrix, which
is computationally cheap compared to matrix inversion. As
such, it is typically neglected when considering the classical
computational complexity. However, the situation is more
complicated in the quantum setting.

The most straightforward way to prepare P |f̃ 〉 is to con-
struct |f̃ 〉 and then attempt to apply the (nonunitary) operation
P . There are several known approaches which can be used to
achieve this probabilistically. One elegant example is a simple
special case of the “Chebyshev” approach in Sec. 4 of [3].
That work uses a quantum walk to apply nth-order Chebyshev

032324-7

ASHLEY MONTANARO AND SAM PALLISTER PHYSICAL REVIEW A 93, 032324 (2016)

polynomials Tn(P) in an arbitrary s-sparse Hermitian matrix
P . (If P is not Hermitian, a standard trick [1] can be used to
express it as a submatrix of a Hermitian matrix.) As the first
Chebyshev polynomial T1 is simply T1(x) = x, this allows P

itself to be implemented. If the subroutine in [3] succeeds
when applied to a state |ψ〉, then |ψ〉 is (exactly) mapped to
P |ψ〉/‖P |ψ〉‖. The success probability is at least

‖P |ψ〉‖2

s2‖P ‖2
max

� 1

κ(P)2s2
,

where ‖P ‖max = maxi,j |Pij | and we use ‖P ‖max � ‖P ‖.
Using amplitude amplification, the failure probability can be
made at most δ, for arbitrarily small δ > 0, with O(1/(κ(P)s))
repetitions. Each repetition requires time polylogarithmic in
N , κ(P), and s.

Combining all these considerations, we see that if precon-
ditioning is used, the complexity of the quantum algorithm
will depend on a number of parameters, each of which may
be hard to estimate in advance. These are the condition
number of PM , the complexity of computing entries of P ,
the sparsity of P , and the condition number of P . Here, in
order to give a best-case comparison of the preconditioned
quantum algorithm with the classical algorithm, we make the
optimistic assumption that preconditioning is optimal [i.e.,
κ(PM) = O(1)] and that taking all of these additional sources
of complexity into account multiplies the run time by only a
poly(log(N)) factor.

C. Measuring the output

By running the QLE algorithm, we obtain an output state
|̃ũ〉 which approximates the normalized state

|ũ〉 =
∑

i ũi |i〉√∑
i ũ2

i

,

where we associate each basis state |i〉 with the basis function
φi . Given copies of |ũ〉, we can carry out measurements to
extract information about u. One example is the prototypical
problem we consider here, approximating the L2 inner product
〈u,r〉 between u and a fixed function r . This can be achieved
by approximately computing the inner product 〈ũ|r〉 between
|ũ〉 and the state |r〉 defined by

|r〉 = 1(∑
i〈φi,r〉2

)1/2

∑
i

〈φi,r〉|i〉 (7)

for some function r; then 〈ũ|r〉 is the L2 inner product between
ũ and r , up to an overall scaling factor. |r〉 can be produced
using techniques described in the previous section. Some
interesting cases are particularly simple: for example, taking
r to be uniform in a region, 〈ũ|r〉 gives the average of ũ over
that region.

This inner product can be estimated using a procedure
known as the Hadamard test [26], a subroutine whose output
is a ±1-valued random variable with expectation 〈ũ|r〉. By
applying amplitude estimation [27] to approximately compute
this expectation, 〈ũ|r〉 can be estimated up to accuracy ε

with O(1/ε) uses of algorithms to produce the states |ũ〉
and |r〉. A related approach was used by Clader, Jacobs, and
Sprouse [11] to compute an electromagnetic scattering cross

section, which corresponds to a quantity of the form |〈ũ|r〉|2.
This can be approximately computed using the swap test [28],
a subroutine which, given two states |ψ〉, |ψ ′〉, outputs “same”
with probability 1

2 + 1
2 |〈ψ |ψ ′〉|2 and “different” otherwise.

We remark that more complicated properties of u seem to
be more problematic to compute directly from the state |ũ〉,
due to the nonorthogonality of the basis {φi}. For example,
one common use of the QLE algorithm is to determine the
similarity of solutions to sets of linear equations by using the
swap or Hadamard test to compare them [1,2]. Consider two
states |a〉 and |b〉 corresponding to functions a = ∑

i aiφi and
b = ∑

i biφi . Then

〈a|b〉 ∝
∑

i

aibi ,

while a sensible measure of similarity of the functions a and
b is the inner product∫

�

a(x)b(x)dx =
∑
i,j

aibj

∫
�

φi(x)φj (x)dx.

One would hope for this to be approximately proportional to∑
i aibi . However, although φi and φj do not have overlapping

support for most pairs i
= j , there are still enough such pairs
where this overlap is nonzero that the integral can sometimes
be a poor approximation.

D. Overall complexity

The total complexity of the quantum algorithm for solving
an FEM problem is found by combining the complexities of
all of the above pieces. Assume that we would like to compute
R := ∫

�
r(x)u(x)dx for some r : � → R up to additive error

ε‖r‖. Write α = (
∑

i〈φi,r〉2)1/2. The quantum algorithm will
perform the following steps by applying the QLE algorithm to
the system of linear equations Mũ = f̃:

Step 1. Estimate ‖ũ‖ up to an additive term εN . Let Ñ be
the estimate.

Step 2. Use the QLE algorithm to produce copies of |̃ũ〉,
an approximation to |ũ〉. Use these to estimate 〈r |̃ũ〉 up to an
additive term εout. Let R̃ be the estimate.

Step 3. Output αÑR̃ as an estimate of R.
We can bound the overall error as follows. Let εL be the

inaccuracy, in the �2 norm, in solving the system of linear
equations in step 2, i.e., εL = ‖|̃ũ〉 − |ũ〉‖. This encompasses
any errors in producing the initial state |f̃ 〉, as well as
inaccuracies arising from the QLE algorithm itself (although
recall that we have in fact assumed that we can produce |f̃ 〉
perfectly). Then

R̃ = 〈r |̃ũ〉 + εout = 〈r|ũ〉 + 〈r|(|̃ũ〉 − |ũ〉) + εout

= 〈r|ũ〉 + ε′
L + εout

for some ε′
L, where |ε′

L| � εL by Cauchy-Schwarz. So

R̃ =
∑

i ũi〈φi,r〉
‖ũ‖(∑i〈φi,r〉2

)1/2 + ε′
L + εout = 〈ũ,r〉

α‖ũ‖ + ε′
L + εout

032324-8

QUANTUM ALGORITHMS AND THE FINITE ELEMENT METHOD PHYSICAL REVIEW A 93, 032324 (2016)

using the definition of |r〉 from (7) and of |ũ〉 as a normalized
version of ũ. Writing Ñ = ‖ũ‖ + εN , we have

αÑR̃ = 〈ũ,r〉
(

1 + εN

‖ũ‖
)

+ α(‖ũ‖ + εN)(ε′
L + εout).

The analysis of the remaining term 〈ũ,r〉 is now similar to the
classical setting,

〈ũ,r〉 = 〈u,r〉 + 〈ũ − u,r〉 = 〈u,r〉 + ε′
D,

where

|ε′
D| � ‖r‖‖ũ − u‖ =: ‖r‖εD

by Cauchy-Schwarz. Combining all the terms together, we
have

αÑR̃ − R = ε′
D

(
1 + εN

‖ũ‖
)

+ 〈u,r〉εN

‖ũ‖
+α(‖ũ‖ + εN)(ε′

L + εout).

We, finally, use 〈u,r〉 � ‖u‖‖r‖ to obtain

αÑR̃ − R = ε′
D

(
1 + εN

‖ũ‖
)

+ ‖u‖‖r‖ε′
N

‖ũ‖
+α(‖ũ‖ + εN)(ε′

L + εout)

for some ε′
N such that |ε′

N | � |εN |. To achieve overall accuracy
ε‖r‖ it is sufficient for each term in this expression to be
upper-bounded by ε‖r‖/3, which follows from

εD = O(ε),

εN = O(min{‖̃u‖,ε‖ũ‖/‖u‖}),
εL,εout = O(ε‖r‖/(α‖ũ‖)).

Assume, for simplicity in the final bound, that ε � ‖u‖; then
the second condition becomes εN = O(ε‖ũ‖/‖u‖). We now
calculate the complexity of achieving these accuracies.

Using the discretization error bound, (3), we have εD �
C hk+1|u|k+1 for some universal constant C. We can therefore
take

h = O

((
ε

|u|k+1

) 1
k+1

)
.

As in the classical case, this choice of h corresponds to solving
a system of

N = O

((|u|k+1

ε

) d
k+1

)
linear equations. For any δ > 0, as discussed in Sec. III and
Appendix A, ‖ũ‖ can be approximated up to accuracy δ‖ũ‖ in
time O((sκ2/δ) poly log(Nsκ/δ)) using the HHL algorithm,
recalling that s and κ are the sparsity and condition number
of M , respectively. Inserting δ = ε/‖u‖ and the bound on N ,
this part requires time

O

(
sκ2‖u‖

ε
poly(log(sκ‖u‖|u|k+1/ε))

)
.

We can also put an upper bound on εL and εout by upper-
bounding α/‖r‖ and ‖ũ‖. In the former case, it holds that

α

‖r‖ = O(h
√

s);

we prove this technical claim in Appendix B. In the latter case,

‖ũ‖ = O(‖ũ‖M/h) = O(‖ũ‖E/h) = O(‖u‖1/h).

The first two equalities follow from λmin(M) = �(N−2/d) =
�(h2) [8,29] and the equivalence between ‖ũ‖M and ‖ũ‖E

[see (5)]. The third follows from ‖ũ‖E = O(‖ũ‖1), where
‖ · ‖1 is the Sobolev �-norm. This is a consequence of the inner
product a(·,·), which defines the energy norm corresponding to
an underlying elliptic PDE [8], and the bound (3). Combining
these bounds, the requirement on εL and εout can be rewritten
as

εL,εout = O

(
ε√

s‖u‖1

)
.

To achieve accuracy εout using the Hadamard test and ampli-
tude estimation requires O(1/εout) uses of the QLE algorithm,
each of which runs in time O(sκ poly(log(Nsκ/εL))) by The-
orem III. Inserting the bounds on εL, εout gives a complexity
for Step 2 which is

O

(√
sκ‖u‖1

ε
poly(log(sκ‖u‖1|u|k+1/ε))

)
.

Combining these bounds, we obtain an overall run time of

O

(
sκ2‖u‖ + √

sκ‖u‖1

ε
poly(log(sκ‖u‖1|u|k+1/ε))

)
.

In fixed spatial dimension, s = O(1), and if preconditioning is
not used, κ = O(N2/d) = O((|u|k+1/ε)2/(k+1)). Inserting these
values, we obtain a bound of

Õ

(‖u‖|u|
4

k+1
k+1

ε
k+5
k+1

+ ‖u‖1|u|
2

k+1
k+1

ε
k+3
k+1

)
,

where the Õ notation hides polylogarithmic factors. On the
other hand, if we assume that optimal preconditioning has
been applied, so κ reduces to O(1), we would obtain an overall
bound of just

Õ

(‖u‖1

ε

)
.

These run times should be compared with the corresponding
run times of the classical algorithm:

Õ

((|u|k+1

ε

) d+1
k+1

)
and Õ

((|u|k+1

ε

) d
k+1

)
,

respectively. First, note that if preconditioning is used, the
dependence on |u|k+1 in the quantum algorithm’s run time is
significantly milder than for the classical algorithm, being only
polylogarithmic. Even if preconditioning is not used, for large
enough d the dependence is polynomially better.

Perhaps more importantly, observe that in the term depen-
dent on ε in the algorithms’ run times, the quantum algorithm’s
run time no longer depends on the dimension d. This holds
whether or not preconditioning is used. Thus the quantum
algorithm will achieve a large speedup when ε is small and
d is large. [Note that we cannot quite call this an exponential
quantum speedup with respect to d: the run time of the quantum
algorithm also depends on a term C in (3) which is constant
for a fixed dimension and family of meshes but has unbounded
dependence on d.]

032324-9

ASHLEY MONTANARO AND SAM PALLISTER PHYSICAL REVIEW A 93, 032324 (2016)

As a demonstrative example of the speedup (or otherwise)
expected for the quantum algorithm, consider the case of
solving a BVP in four dimensions (three spatial and one
temporal, say), using piecewise linear basis functions. Then
the classical run times both without preconditioning and with
optimal preconditioning are

Õ

((|u|2
ε

) 5
2
)

and Õ

((|u|2
ε

)2)
,

respectively. The analogous quantum run times are

Õ

(‖u‖|u|22
ε3

+ ‖u‖1|u|2
ε2

)
and Õ

(‖u‖1

ε

)
.

In this case, lack of preconditioning leads to a quantum
algorithm which might or might not outperform the classical
algorithm, depending on the relative sizes of ε, ‖u‖, ‖u‖1,
and |u|2. In the optimally preconditioned case, the quantum
algorithm both scales better with accuracy and has a less
stringent condition on the solution smoothness.

IV. QUANTUM LOWER BOUNDS

We have seen that the QLE algorithm can be used to obtain
polynomial quantum speedups over the best-known classical
algorithms for the FEM. We now argue that, in the physically
realistic setting of fixed dimension and smooth solutions, a
polynomial quantum speedup is the largest speedup one can
expect. We first discuss the general question of putting lower
bounds on the complexity of algorithms based on a QLE
subroutine.

A. A general quantum lower bound

We observe from Theorem III and the discussion in
Sec. III C that producing the quantum state |x〉 ∝ A−1|b〉
for some well-conditioned, sparse matrix A can be achieved
in time poly log(1/ε), while the apparently simpler task
of approximating some natural properties of |x〉 uses time
O(1/ε). It is therefore natural to suspect that the run time
of this component could be improved substantially, e.g.,
to poly log(1/ε). However, it was shown by HHL [1] that
the existence of a quantum algorithm with this scaling for
approximating some very simple properties of |x〉 would imply
the complexity-theoretic consequence BQP = PP, which is
considered highly unlikely (implying, for example, that quan-
tum computers could efficiently solve NP-complete problems).

As well as this complexity-theoretic argument, we now give
an argument based on ideas from query complexity which
lower-bounds the run time of any algorithm which approx-
imates some function of the output of the QLE algorithm,
without making use of the internal structure of the algorithm.
This encompasses all the uses of QLE for the FEM discussed
in Sec. III C.

We adapt a standard technique of Bennett et al. [30].
Consider an algorithm which has access to a unitary subroutine
Aψ , parametrized by an unknown state |ψ〉, such thatAψ maps
|0〉 to |ψ〉. The algorithm may also have access to the inverse
subroutine A−1

ψ . The algorithm does not know anything about
how Aψ is implemented and uses it as a “black box.” It aims
to estimate some property of |ψ〉. In the context of the FEM,

we think of Aψ as the QLE algorithm, where |ψ〉 is the output
state corresponding to the approximate solution of the desired
BVP. We assume that the algorithm only makes use of the
QLE subroutine for one instance, i.e., it uses Aψ throughout,
rather than Aψ ′ for some |ψ ′〉
= |ψ〉; relaxing this assumption
would only make the problem harder.

For notational simplicity, we also assume in the proof that
the overall algorithm does not use A−1

ψ and does not use
any ancilla qubits. (These assumptions can easily be relaxed
without changing the conclusions.) Further assume that the
overall algorithm makes T uses of Aψ , interspersed with
arbitrary unitary operators U1, . . . ,UT +1. Let |φ〉 be such that
‖|ψ〉 − |φ〉‖ � ε and such that the output of the algorithm
should be different when using Aφ rather than Aψ . Finally, let
|η〉ψ,t be the state of the overall algorithm after t uses of Aψ .
Then

‖|η〉ψ,T − |η〉φ,T ‖
= ‖UT +1AψUT . . .AψU1|0〉 − UT +1AφUT . . .AφU1|0〉‖
= ‖AψUT . . .AψU1|0〉 − AφUT . . .AφU1|0〉‖
� ‖AψUTAψUT −1Aψ . . .AψU1|0〉

− AψUTAφUT −1Aφ . . .AφU1|0〉‖
+ ‖AψUTAφUT −1Aφ . . .AφU1|0〉 − AφUT . . .AφU1|0〉‖

� ‖AψUT −1Aψ . . .AψU1|0〉 − AφUT −1Aφ . . .AφU1|0〉‖
+ ‖Aψ − Aφ‖.

The first inequality is the triangle inequality, while the
second uses the fact that unitaries do not change the Eu-
clidean distance. As the algorithm does not use any infor-
mation about the internal structure of Aψ , Aφ , we are free
to assume that Aψ = |ψ〉〈0| + |φ′〉〈1| + ∑

i�2 |ζi〉〈i|, Aφ =
|φ〉〈0| + |ψ ′〉〈1| + ∑

i�2 |ζi〉〈i|. Here |φ′〉 and |ψ ′〉 are states
orthonormal to |ψ〉 and |φ〉, respectively, within the subspace
spanned by |ψ〉 and |φ〉, and |ζi〉 are arbitrary states which are
orthonormal to both of these states and each other. Explicitly,
we can take

|φ′〉 = |φ〉 − 〈ψ |φ〉|ψ〉√
1 − |〈ψ |φ〉|2

, |ψ ′〉 = |ψ〉 − 〈φ|ψ〉|φ〉√
1 − |〈ψ |φ〉|2

.

Then

‖Aψ − Aφ‖ = ‖(|ψ〉 − |φ〉)〈0| + (|φ′〉 − |ψ ′〉)〈1|‖.
Writing |δ〉 := |ψ〉 − |φ〉, |δ′〉 := |φ′〉 − |ψ ′〉 and upper-
bounding the operator norm by the Frobenius norm, we have

‖Aψ − Aφ‖ �
√

tr
(
A†

ψ − A†
φ

)
(Aψ − Aφ)

=
√

〈δ|δ〉 + 〈δ′|δ′〉 =
√

2‖|ψ〉 − |φ〉‖,
where we use the fact (which can easily be seen by direct
calculation) that ‖|φ′〉 − |ψ ′〉‖ = ‖|ψ〉 − |φ〉‖. Hence

‖Aψ − Aφ‖ �
√

2ε

and in turn, by induction,

‖|η〉ψ,T − |η〉φ,T ‖ � T
√

2ε.

As the algorithm is supposed to output something different
if it is given Aφ rather than Aψ , assuming that it succeeds,

032324-10

QUANTUM ALGORITHMS AND THE FINITE ELEMENT METHOD PHYSICAL REVIEW A 93, 032324 (2016)

the final measurement made distinguishes between the two
states |η〉ψ,T and |η〉φ,T . The optimal worst-case probability
p of distinguishing these states is given by the trace distance
between them [31], so

p = 1

2
+ 1

4
‖ηψ,T − ηφ,T ‖1 � 1

2
+ 1

2
‖|η〉ψ,T − |η〉φ,T ‖

� 1

2
+ T ε√

2
.

Therefore, in order for the algorithm to succeed with proba-
bility (say) 2/3, it must use Aψ at least �(1/ε) times. As a
simple example of how this bound can be applied, consider
an algorithm which attempts to distinguish between these two
cases: (a) the output from the QLE subroutine is a particular
state |ψ0〉; and (b) the output from the QLE subroutine
is some state |φ〉 such that the overlap |〈φ|ψ0〉|2 = 1 − ε.
Then ‖|φ〉 − |ψ0〉‖ = O(

√
ε), so any algorithm distinguishing

between these two cases by using QLE as a black box must
use it �(1/

√
ε) times.

This bound is tight for this particular problem, which
can be solved by using the QLE subroutine O(1/

√
ε) times

within quantum amplitude estimation [27]. However, for other
problems it may be possible to put stronger lower bounds on
the complexity.

B. Replacing the QLE subroutine with a classical algorithm

The above lower bound shows, roughly speaking, that any
algorithm which uses the QLE subroutine as a black box
and attempts to determine up to accuracy ε some property
of the output state must make �(1/

√
ε) uses of the subroutine.

However, in some cases it can be of interest to approximate
properties of the output state to quite low levels of accuracy.

For example, consider the problem of distinguishing be-
tween the following two cases: (a) the solution to a BVP
is periodic; and (b) the solution is far from periodic. As it
is known that quantum algorithms can test the periodicity
of functions exponentially faster than classical algorithms
can [32], one might hope to use QLE, together with the
quantum periodicity tester, to solve this problem exponentially
faster than any classical algorithm.

Also note that it is likely to be hard to prove that it is
impossible to obtain a superpolynomial quantum speedup for
solving BVPs, if we define “solving” a BVP as computing
an arbitrary function of the solution to a BVP. For example,
we could contrive a BVP where the solution is easy to
write down, and can be interpreted as an integer, and could
then ask the algorithm to output the prime factors of that
integer. Proving that quantum computers could not outperform
classical computers for this task would imply an efficient
classical algorithm for integer factorization.

Nevertheless, we believe that, even given a quantum
algorithm for solving problems of this form, any uses of
the QLE algorithm as a subroutine could be replaced with a
classical algorithm, with at most a polynomial slowdown if the
spatial dimension is fixed and the solution is suitably smooth.
This would imply that any exponential quantum speedup in the
overall algorithm is not due to the part of it that solves the FEM.
Making this argument rigorous seems challenging for technical
reasons related to regularity of meshes and comparing different

norms to measure accuracy, so we do not attempt it here,
instead merely sketching the ideas informally.

The argument proceeds as follows. Imagine we have an
overall quantum algorithm which uses the QLE algorithm as
a subroutine to solve T FEM instances in a spatial dimension
bounded by d = O(1), such that the solution to each instance
has all relevant Sobolev norms bounded by O(1). Then each
such instance can be approximately solved by a classical
algorithm using a mesh of size poly(1/ε), for any desired
accuracy ε. We replace each subroutine which applies the
QLE algorithm to solve an instance of the FEM, using a mesh
M to achieve accuracy ε, with the following procedure:

(1) Classically solve the same FEM instance, using a mesh
M′ which achieves accuracy max{γ /T ,ε} for some universal
constant γ . Note that if ε < γ/T , this will in general be a
coarser mesh than M.

(2) Construct the quantum state corresponding to the
output of the solver, as a superposition of basis functions from
M′.

(3) Map this quantum state to the equivalent quantum state
on the finer mesh M. This is essentially equivalent to the
classical task of expressing each element of M′ in terms of
elements of M.

Here we are assuming that the meshes M and M′ are
sufficiently regular that the last step makes sense (in particular,
that M is a submesh of M′).

If ε � γ /T , the state produced by the original subroutine
is left essentially unchanged. If ε < γ/T , the original state
produced was within distance O(1/T) of the actual solution to
the corresponding FEM instance, as is the state produced by the
new subroutine. By the triangle inequality, the new state must
be within distance O(1/T) of the old state. If each such state
produced by one of the new subroutines is within Euclidean
distance O(1/T) of the corresponding original state produced
by one of the QLE subroutines, then using an argument similar
to that in Sec. IV A, the whole algorithm does not notice the
difference between the original and the modified sequence of
subroutines except with a low probability.

We now examine the complexity of the steps in the modified
subroutines. Each use of step 1 solves the FEM with precision
O(1/T), which requires time poly(T) and a mesh of size
poly(T). In step 2 we need to construct a known poly(T)-
dimensional quantum state. This can be done in time poly(T)
for any such state (see, e.g., claim 2.1.1 in [33]). If M and
M′ are suitably regular, the mapping required for step 3 can
be implemented efficiently, i.e., in time polynomial in n, the
number of qubits used by the original algorithm.

As the original quantum algorithm solved T instances of
the FEM and acts nontrivially on all n qubits, its run time must
be lower-bounded by max{T ,n}. Therefore, the run time of the
new algorithm is at most polynomial in the run time of the
old algorithm. As the new algorithm no longer contains any
quantum subroutines which solve the FEM, we see that any
quantum speedup achieved by it does not come from quantum
acceleration of the FEM.

C. Solving oracular FEM instances

We finally observe that there cannot be an efficient quantum
(or classical) algorithm for solving an instance of the FEM if

032324-11

ASHLEY MONTANARO AND SAM PALLISTER PHYSICAL REVIEW A 93, 032324 (2016)

the input function f (x) is initially unknown and provided via
an oracle (black box) and does not satisfy some smoothness
properties. Indeed, this even holds for near-trivial FEM
instances.

Imagine we are given an FEM instance of the form
u(x) = f (x), for f ∈ L2[0,1], and are asked to approximate

the quantity
∫ 1

2
0 u(x)2dx to within accuracy ε: this is a very

simple property of a trivial PDE. Further assume that we
are given access to f via an oracle which maps x �→ f (x)
for x ∈ [0,1], and that there are N possibilities for what the
function f can be. We show that this problem is hard by
encoding an unstructured search on N elements as an instance
of the FEM.

Let B be the “bump” function defined by B(x) =
exp(−1/(1 − x2)) for −1 < x < 1, and B(x) = 0 elsewhere.
Fix N and let f0 be the shifted and rescaled bump function
f0(x) = √

NB(2Nx − 1). f0 is supported only on [0,1/N]
and has continuous derivatives of all orders, and ‖f0‖ = �(1).

Assume that we have access to an oracle function O :
{0, . . . ,N − 1} → {0,1} such that there is a unique y0 ∈
{0, . . . ,N − 1} with O(y0) = 1. It is known that determining
whether y0 < N/2 or y0 � N/2 requires �(

√
N) quantum

queries to O [34]. We define f in terms of O as follows. Given
x ∈ [0,1], set y = �Nx� and evaluate O(y). If the answer is
1, return f0(x − y/N). Otherwise, return 0.

f (equivalently, u) is a bump function in the range
[y0/N,(y0 + 1)/N] and is 0 elsewhere. So, if y0 < N/2,∫ 1

2
0 u(x)2dx � C for some constant C > 0, while if y0 � N/2,∫ 1

2
0 u(x)2dx = 0. Hence approximating this integral up to

additive accuracy ε, for sufficiently small constant ε > 0,
allows us to determine whether or not y0 < N/2. As this task
requires �(

√
N) quantum queries, solving this instance of the

FEM must require �(
√

N) queries to f . A similar classical
lower bound of �(N) queries also holds. Note that this does
not contradict the bound, (3), as the norms of derivatives of u

are large.

V. CONCLUSIONS

We have shown that, when one compares quantum and
classical algorithms for the FEM fairly by considering every
aspect of the problem—including the complexity of producing
an accurate approximation of the desired classical output—
an apparent exponential quantum advantage can sometimes
disappear. However, there are still two types of problems where
quantum algorithms for the FEM could achieve a significant
advantage over classical algorithms: those where the solution
has large higher-order derivatives and those where the spatial
dimension is large.

For ease of comparison with the quantum algorithm, we
have only considered a very simple classical FEM algorithm
here; there is a large body of work concerned with improving
the complexity of such algorithms. For example, the finite
element mesh can be developed adaptively and made more
refined near parts of the domain which are more complex
or of particular interest. This can substantially improve the
convergence speed. It is our suspicion that more advanced
classical FEM algorithms might eliminate the quantum

algorithm’s advantage with respect to BVPs whose solutions
have large higher-order derivatives.

For example, adaptive schemes such as “hp-FEM” have, in
principle, a discretization error that scales far better than the
scaling shown here; it can be shown [35] that a perfect adaptive
scheme has scaling

‖u − ũ‖ = O(e− 1
h),

provided that the dimension of the domain is both small and
fixed. While this is a large improvement over the “vanilla”
classical complexity presented above, it is not always apparent
how to generate adaptive schemes that are effective enough
to saturate this scaling, in practice. Also, it does not seem
impossible that the quantum algorithm could be substantially
improved using similar adaptive schemes.

Additionally, the case for the possibility of substantial
improvement in the classical algorithm is less clear with
respect to problems in high spatial dimension d. Indeed, any
reasonable discretization procedure seems likely to lead to
systems of linear equations which are of size exponential in
d (this is the so-called “curse of dimensionality”). This is
precisely the regime in which the quantum algorithm might
be expected to have a significant advantage. One setting in
which such high-dimensional BVPs occur is mathematical
finance; for example, the problem of pricing multiasset basket
options using the Black-Scholes equation [12]. Alternatively,
producing a solution to any problem in many-body dynamics
requires solving a PDE where the dimension grows with the
number of bodies. However, Monte Carlo methods and related
techniques can sometimes be used to alleviate the curse of
dimensionality in practice [36,37]. It is therefore an interesting
open question whether quantum algorithms can in fact yield
an exponential speedup for problems of practical interest in
this area.

ACKNOWLEDGMENTS

A.M. was supported by the UK EPSRC under Early Career
Fellowship EP/L021005/1 and would like to thank Robin
Kothari for helpful discussions and explanations of the results
in [3]. S.P. was supported by the EPSRC Centre for Doctoral
Training in Quantum Engineering.

APPENDIX A: USE OF THE HHL ALGORITHM TO
APPROXIMATE THE NORM OF THE SOLUTION

Assume that we have an s-sparse system of linear
equations Ax = b, for some Hermitian N × N matrix A

such that λmax(A) � 1, λmin(A) � 1/κ . We would like to
approximate ‖x‖ up to accuracy ε‖x‖ using the HHL al-
gorithm [1]. Here we sketch how the complexity of this
task can be bounded, using the same notation as in The-
orem III (see [1] for further technical details). The HHL
algorithm is based on a subroutine Psim whose probability
of acceptance is approximately p := ‖A−1|b〉‖2/κ2. For any
δ > 0, approximating the probability p that a subroutine
accepts, up to additive accuracy δp, can be achieved us-
ing amplitude estimation [27] with O(1/(δ

√
p)) uses of

the subroutine. Therefore, approximating κ‖b‖√p = ‖x‖

032324-12

QUANTUM ALGORITHMS AND THE FINITE ELEMENT METHOD PHYSICAL REVIEW A 93, 032324 (2016)

up to additive accuracy ε‖x‖ can be achieved with

O

(
κ‖b‖
ε‖x‖

)
= O

(
κ

ε

)

uses of Psim, where we use λmax(A) � 1. The run time of the
Psim subroutine, which is described in [1], depends on the
accuracy with which its actual probability of acceptance p̃

approximates p. Using the best-known algorithm for Hamil-
tonian simulation [38] within Psim, an accuracy of |p̃ − p| =
O(εp) can be achieved with O((sκ/ε) poly log(sκ/ε)) uses of
the algorithm PA for determining entries in A. The run time is
the same up to a polylogarithmic term in N , s, κ , and ε. Each
use of the subroutine within amplitude estimation requires
two uses of Pb to reflect about state |b〉. Therefore, the overall
number of uses of PA required is

O((sκ2/ε) poly log(sκ/ε)),

and the number of uses of Pb is O(κ/ε). Note that quantum
linear equation algorithms subsequent to HHL [2,3] achieved
a better dependence on κ , ε, or both for the task of producing
|x〉; however, it does not seem obvious how to use these to
achieve an improved accuracy for estimating ‖x‖.

APPENDIX B: PROOF OF THE TECHNICAL BOUND

In this Appendix we prove the claimed bound in Sec. III D
that

α

‖r‖ = O(h
√

s),

where α = (
∑

i〈φi,r〉2)
1/2

. Indeed, we show that

sup
r
=0

(∑
i〈φi,r〉2

)1/2

‖r‖ = O(h
√

s).

Observe that this expression will be maximized when r is in
the subspace spanned by the {φi} functions, so we can assume

that r = ∑
i riφi for some ri . Then the numerator satisfies(∑

i

〈φi,r〉2

)1/2

=
(∑

i

(∫
�

φi(x)r(x)dx
)2)1/2

=
(∑

i

(∫
�

φi(x)
∑

j

rjφj (x)

)2)1/2

=
(∑

i

(∑
j

rj

∫
�

φi(x)φj (x)dx
)2)1/2

= ‖Wr‖,
where we define the matrix Wij := ∫

�
φi(x)φj (x)dx. Similarly,

for the denominator we have

‖r‖ =
(∫

�

(∑
i

riφi(x)

)2

dx
)1/2

=
(∑

i,j

rirj

∫
�

φi(x)φj (x)dx
)1/2

= (rT Wr)1/2.

Therefore,

α

‖r‖ � sup
r
=0

(
rT WT Wr

rT Wr

)1/2

= sup
r′,‖r′‖=1

((r′)T Wr′)1/2 = ‖W‖1/2.

Assume that W is s sparse. To upper-bound ‖W‖ we use

‖W‖ � s max
i,j

|Wij | = s max
i,j

|〈φi,φj 〉| � s max
i

‖φi‖2,

where the first inequality can be found in [39], for example,
and the second is Cauchy-Schwarz. Then

‖φi‖2 =
∫

T

φi(x)2dx � hd max
x∈T

φi(x)2 = O(h2),

where we assume that φi is supported in a region T of diameter
at most h, and we use (6) to bound maxx∈T φi(x)2 = O(h2−d).
Thus α/‖r‖ = O(h

√
s).

[1] A. Harrow, A. Hassidim, and S. Lloyd, Quantum Algorithm
for Linear Systems of Equations, Phys. Rev. Lett. 103, 150502
(2009).

[2] A. Ambainis, Variable time amplitude amplification and
a faster quantum algorithm for solving systems of lin-
ear equations, in Proceedings of the 29th Annual Sympo-
sium on Theoretical Aspects of Computer Science. Leibniz
International Proceedings in Informatics, Vol. 14 (Schloss
Dagstuhl—Leibniz Center for Informatics, Wadern, Germany,
2012), pp. 636–647.

[3] A. Childs, R. Kothari, and R. Somma, Quantum linear systems
algorithm with exponentially improved dependence on precision
(2015).

[4] S. Aaronson, Quantum machine learning algorithms: Read the
fine print, Nature Phys. 11, 291 (2015).

[5] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algo-
rithms for supervised and unsupervised machine learning
(2013).

[6] G. Wang, Quantum algorithms for approximating the effective
resistances in electrical networks (2013).

[7] O. Axelsson and V. A. Barker, Finite Element Solution of
Boundary Value Problems: Theory and Computation (Society
for Industrial and Applied Mathematics, Philadelphia, PA,
2001).

[8] S. C. Brenner and L. R. Scott, The Mathematical Theory of
Finite Element Methods. Texts in Applied Mathematics, Vol. 15
(Springer, New York, 2008).

[9] P. G. Ciarlet, The Finite Element Method for Elliptic Problems
(Elsevier, Amsterdam, 1978).

[10] S. S. Rao, The Finite Element Method in Engineering
(Butterworth-Heinemann, London, 2005).

[11] B. Clader, B. Jacobs, and C. Sprouse, Preconditioned Quan-
tum Linear System Algorithm, Phys. Rev. Lett. 110, 250504
(2013).

[12] L. Jiang and C. Li, Mathematical Modeling and Methods of
Option Pricing (World Scientific, Singapore, 2005).

032324-13

http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1038/nphys3272
http://dx.doi.org/10.1038/nphys3272
http://dx.doi.org/10.1038/nphys3272
http://dx.doi.org/10.1038/nphys3272
http://dx.doi.org/10.1103/PhysRevLett.110.250504
http://dx.doi.org/10.1103/PhysRevLett.110.250504
http://dx.doi.org/10.1103/PhysRevLett.110.250504
http://dx.doi.org/10.1103/PhysRevLett.110.250504

ASHLEY MONTANARO AND SAM PALLISTER PHYSICAL REVIEW A 93, 032324 (2016)

[13] Y. Cao, A. Papageorgiou, I. Petras, J. Traub, and S. Kais,
Quantum algorithm and circuit design solving the Poisson
equation, New J. Phys. 15, 013021 (2013).

[14] D. Berry, High-order quantum algorithm for solving linear
differential equations, J. Phys. A: Math. Theor. 47, 105301
(2014).

[15] S. Leyton and T. Osborne, A quantum algorithm to solve
nonlinear differential equations (2008).

[16] J. Shewchuk, An introduction to the conjugate gradi-
ent method without the agonizing pain, Technical Report
CMU-CS-TR-94-125 (Carnegie Mellon University, Pittsburgh,
PA, 1994); http://www.cs.cmu.edu/ quake-papers/painless-
conjugate-gradient.ps.

[17] A. Ern and J.-L. Guermond, Theory and Practice of Finite
Elements (Springer-Verlag, Berlin, 2013).

[18] M. Benzi, C. D. Meyer, and M. Tuma, A sparse approximate
inverse preconditioner for the conjugate gradient method, SIAM
J. Sci. Comput. 17, 1135 (1996).

[19] M. Benzi and M. Tuma, A comparative study of sparse
approximate inverse preconditioners, Appl. Numer. Math. 30,
305 (1999).

[20] S. S. Li, P. L. Rui, and R. S. Chen, An effective sparse
approximate inverse preconditioner for vector finite element
analysis of 3D EM problems, in IEEE International Symposium
on Antennas and Propagation Society, 2006 (IEEE, New York,
2006), pp. 1765–1768.

[21] X. W. Ping and T.-J. Cui, The factorized sparse approximate
inverse preconditioned conjugate gradient algorithm for finite
element analysis of scattering problems, Prog. Electromagnet.
Res. 98, 15 (2009).

[22] C. Zalka, Simulating quantum systems on a quantum computer,
Proc. Roy. Soc. A: Math., Phys. Eng. Sci. 454, 313 (1998).

[23] L. Grover and T. Rudolph, Creating superpositions that corre-
spond to efficiently integrable probability distributions (2002).

[24] P. Kaye and M. Mosca, Quantum networks for generating
arbitrary quantum states, in Optical Fiber Communication Con-
ference and International Conference on Quantum Information,
2001, OSA Technical Digest Series (Optical Society of America,
Washington DC, 2001).

[25] R. Haber, M. S. Shephard, J. F. Abel, R. H. Gallagher, and
D. P. Greenberg, A general two-dimensional, graphical finite
element preprocessor utilizing discrete transfinite mappings, Int.
J. Numer. Methods Eng. 17, 1015 (1981).

[26] D. Aharonov, V. Jones, and Z. Landau, A polynomial
quantum algorithm for approximating the Jones polynomial,
Algorithmica 55, 395 (2009).

[27] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Quantum
amplitude amplification and estimation, in Quantum Com-
putation and Quantum Information: A Millennium Volume.
AMS Contemporary Mathematics Series, Vol. 305 (American
Mathematical Society, Providence, RI, 2002), pp. 53–74.

[28] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Quantum
Fingerprinting, Phys. Rev. Lett. 87, 167902 (2001).

[29] R. E. Bank and L. R. Scott, On the conditioning of finite element
equations with highly refined meshes, SIAM J. Numer. Anal. 26,
1383 (1989).

[30] C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths
and weaknesses of quantum computing, SIAM J. Comput. 26,
1510 (1997).

[31] C. W. Helstrom, Quantum Detection and Estimation Theory
(Academic Press, New York, 1976).

[32] S. Chakraborty, E. Fischer, A. Matsliah, and R. de Wolf,
New results on quantum property testing, in Proceedings
of FSTTCS, Leibniz International Proceedings in Informatics
(LIPIcs) (Schloss-Dagstuhl - Leibniz Center for Informatics,
Dagstuhl, Germany, 2010), pp. 145–156.

[33] A. Prakash, Quantum algorithms for linear algebra and machine
learning, Ph.D. thesis, University of California, Berkeley,
2014.

[34] L. Grover and J. Radhakrishnan, Is partial quantum search
of a database any easier? in Proceedings of the Seventeenth
Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’05 (Association for Computing Machinery,
New York, 2005), pp. 186–194.

[35] B. Guo and I. Babuška, The H-P version of the finite element
method, Comput. Mech. 1, 203 (1986).

[36] P. Boyle, M. Broadie, and P. Glasserman, Monte Carlo methods
for security pricing, J. Econ. Dynam. Control 21, 1267 (1997).

[37] P. L’Ecuyer, Quasi-Monte Carlo methods with applications in
finance, Finance Stochast. 13, 307 (2009).

[38] D. Berry, A. Childs, and R. Kothari, Hamiltonian simulation
with nearly optimal dependence on all parameters, in Proceed-
ings of the 56th IEEE Symposium on Foundations of Computer
Science (FOCS 2015) (IEEE, New York, 2015), pp. 792–809.

[39] A. Childs and R. Kothari, Limitations on the simulation of non-
sparse Hamiltonians, Quantum Info. Comput. 10, 669 (2010).

032324-14

http://dx.doi.org/10.1088/1367-2630/15/1/013021
http://dx.doi.org/10.1088/1367-2630/15/1/013021
http://dx.doi.org/10.1088/1367-2630/15/1/013021
http://dx.doi.org/10.1088/1367-2630/15/1/013021
http://dx.doi.org/10.1088/1751-8113/47/10/105301
http://dx.doi.org/10.1088/1751-8113/47/10/105301
http://dx.doi.org/10.1088/1751-8113/47/10/105301
http://dx.doi.org/10.1088/1751-8113/47/10/105301
http://www.cs.cmu.edu/
http://dx.doi.org/10.1137/S1064827594271421
http://dx.doi.org/10.1137/S1064827594271421
http://dx.doi.org/10.1137/S1064827594271421
http://dx.doi.org/10.1137/S1064827594271421
http://dx.doi.org/10.1016/S0168-9274(98)00118-4
http://dx.doi.org/10.1016/S0168-9274(98)00118-4
http://dx.doi.org/10.1016/S0168-9274(98)00118-4
http://dx.doi.org/10.1016/S0168-9274(98)00118-4
http://dx.doi.org/10.2528/PIER09071703
http://dx.doi.org/10.2528/PIER09071703
http://dx.doi.org/10.2528/PIER09071703
http://dx.doi.org/10.2528/PIER09071703
http://dx.doi.org/10.1098/rspa.1998.0162
http://dx.doi.org/10.1098/rspa.1998.0162
http://dx.doi.org/10.1098/rspa.1998.0162
http://dx.doi.org/10.1098/rspa.1998.0162
http://dx.doi.org/10.1002/nme.1620170706
http://dx.doi.org/10.1002/nme.1620170706
http://dx.doi.org/10.1002/nme.1620170706
http://dx.doi.org/10.1002/nme.1620170706
http://dx.doi.org/10.1007/s00453-008-9168-0
http://dx.doi.org/10.1007/s00453-008-9168-0
http://dx.doi.org/10.1007/s00453-008-9168-0
http://dx.doi.org/10.1007/s00453-008-9168-0
http://dx.doi.org/10.1103/PhysRevLett.87.167902
http://dx.doi.org/10.1103/PhysRevLett.87.167902
http://dx.doi.org/10.1103/PhysRevLett.87.167902
http://dx.doi.org/10.1103/PhysRevLett.87.167902
http://dx.doi.org/10.1137/0726080
http://dx.doi.org/10.1137/0726080
http://dx.doi.org/10.1137/0726080
http://dx.doi.org/10.1137/0726080
http://dx.doi.org/10.1137/S0097539796300933
http://dx.doi.org/10.1137/S0097539796300933
http://dx.doi.org/10.1137/S0097539796300933
http://dx.doi.org/10.1137/S0097539796300933
http://dx.doi.org/10.1007/BF00272624
http://dx.doi.org/10.1007/BF00272624
http://dx.doi.org/10.1007/BF00272624
http://dx.doi.org/10.1007/BF00272624
http://dx.doi.org/10.1016/S0165-1889(97)00028-6
http://dx.doi.org/10.1016/S0165-1889(97)00028-6
http://dx.doi.org/10.1016/S0165-1889(97)00028-6
http://dx.doi.org/10.1016/S0165-1889(97)00028-6
http://dx.doi.org/10.1007/s00780-009-0095-y
http://dx.doi.org/10.1007/s00780-009-0095-y
http://dx.doi.org/10.1007/s00780-009-0095-y
http://dx.doi.org/10.1007/s00780-009-0095-y

