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Persistence of unvisited sites in quantum walks on a line
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We analyze the asymptotic scaling of persistence of unvisited sites for quantum walks on a line. In contrast
to the classical random walk, there is no connection between the behavior of persistence and the scaling of
variance. In particular, we find that for a two-state quantum walk persistence follows an inverse power law where
the exponent is determined solely by the coin parameter. Moreover, for a one-parameter family of three-state
quantum walks containing the Grover walk, the scaling of persistence is given by two contributions. The first is
the inverse power law. The second contribution to the asymptotic behavior of persistence is an exponential decay
coming from the trapping nature of the studied family of quantum walks. In contrast to the two-state walks,
both the exponent of the inverse power-law and the decay constant of the exponential decay depend also on the
initial coin state and its coherence. Hence, one can achieve various regimes of persistence by altering the initial
condition, ranging from purely exponential decay to purely inverse power-law behavior.
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I. INTRODUCTION

Quantum walks [1–3] represent a versatile tool in quantum
information processing with applications ranging from search
algorithms [4–7], graph isomorphism testing [8–10], finding
structural anomalies in graphs [11–13], to perfect state
transfer [14–18]. Moreover, quantum walks were shown to
be universal tools for quantum computation [19,20].

One fundamental characterization of classical random
walks on infinite lattices [21] is recurrence or transience.
Random walk is said to be recurrent when the probability to
return to the starting point at some later time (so-called Pólya
number) is unity and transient otherwise. In fact, recurrence
ensures that any lattice point is visited with certainty. Pólya
has shown [22] that for unbiased random walks this property
depends on the dimension of the lattice. In particular, random
walks are recurrent in dimensions 1 and 2 and transient on
cubic and higher-dimensional lattices. This result originates
from the diffusive behavior of a classical random walk.

Since measurement has a nontrivial effect on the state of the
quantum system, one has to specify a particular measurement
scheme to extend the concept of recurrence to the domain of
quantum walks. One possibility is to consider a scheme [23]
where the quantum walk is restarted from the beginning after
the measurement, and in each iteration one additional step
is performed. In this way the effect of measurement on the
quantum state is minimized. Within this measurement scheme
the Pólya number of a quantum walk depends not only on the
dimension of the lattice, but also on the coin operator which
drives the walk and in some cases also on the initial coin
state [24]. The ballistic nature of quantum walks implies that
most of them are transient already in dimension 2. However,
some quantum walks, such as the Grover walk [25–29], show
the so-called trapping effect (or localization). This feature can
be employed to construct recurrent quantum walks in arbitrary
dimension [24].
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Another scheme is to continue with the quantum walk
evolution after the measurement [30]. The effect of frequent
measurement is that the quantum walks are transient already
on a one-dimensional lattice, as follows from [31]. Recurrence
of quantum state within this measurement scheme has been
analyzed for general discrete time unitary evolution in [32].
The authors have found that the expectation value of the first
return time is quantized; i.e., it is either infinite or an integer.
More recently, it was shown [33] that this property is preserved
even in iterated open quantum dynamics, provided that the
corresponding superoperator is unital in the relevant part of the
Hilbert space. Moreover, the notion of monitored recurrence
was extended to a finite-dimensional subspace in [34]. In such
case the averaged expected return time is a rational number.

Persistence describes the probability that a given site
remains unvisited until a certain number of steps. As such, it
can be viewed as a complementary event to that of recurrence.
For classical random walks on a line and a plane persistence of
any site tends to zero for a large number of steps. In particular,
on one-dimensional lattice persistence obeys an inverse power
law with exponent 1/2, which follows in a straightforward way
from the diffusive behavior of a random walk [35].

In the context of quantum walks persistence was first
introduced in [36]. The authors have analyzed persistence for
two-state Hadamard walk on a line within the measurement
scheme of [23], i.e., when the quantum walk is restarted after
the measurement. It was found that persistence of any site
follows an inverse power law with the exponent determined
numerically as λ ≈ 0.318. In contrast to the classical case, no
clear connection of the exponent to the spreading properties
of the quantum walk was found.

In the present paper we give analytical explanation of the
results found in [36]. The study of persistence is extended
to a one-parameter set of two-state quantum walks on a line.
We confirm that persistence obeys an inverse power law. The
exponent is determined solely by the parameter of the coin
operator. Hence, there is no connection of the exponent to
the scaling of variance like in the classical random walk.
Moreover, we analyze the persistence of sites for a set of
three-state quantum walks [37–39], which involves the familiar
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Grover walk [26–28] as a special case. We find that persistence
exhibits a more complicated asymptotic behavior. In addition
to the inverse power law, there is also an exponential decay
which arises from the trapping effect. The analytical results are
obtained using the suitable basis of the coin space formed by
the eigenvectors of the coin operator [39]. Both the exponent
of the inverse power-law and the decay rate of the exponential
decay depend on the coin parameter and, in contrast to the
two-state walk, on the initial coin state and its coherence.
Hence, it is possible to obtain various regimes of persistence,
ranging from pure inverse power law to pure exponential decay,
by choosing different initial condition. Moreover, we find that
for some initial coin states persistence behaves differently for
lattice sites on the positive and negative half lines.

The paper is organized as follows. In Sec. II we review
the definition of persistence of site m within a particular
measurement scheme of [23,36]. We provide an estimate of
the asymptotic behavior of persistence based on the limit
density. Section III is dedicated to the analysis of persistence
in two-state quantum walks. In Sec. IV we perform similar
analysis for a set of three-state quantum walks. More technical
details are left for Appendixes A and B . We conclude and
present an outlook in Sec. V.

II. PERSISTENCE OF UNVISITED SITES

In this section we briefly introduce persistence of a given
site and provide and estimate of its asymptotic behavior.
We follow the measurement scheme used in [23,36], where
the quantum walk is restarted from the beginning after each
measurement. By persistence of a site m we understand the
probability that the particular lattice point remains unvisited
until T steps. Since the walk starts at the origin of the lattice
we only consider persistence of sites m �= 0. We find that this
probability is given by [36]

Pm(T ) =
T∏

t=1

[1 − p(m,t)], (1)

where p(m,t) denotes the probability to find the quantum
particle at position m after t steps of the quantum walk.

Let us now turn to the approximation of persistence for
large T . For this purpose we rewrite (1) in the exponential
form,

Pm(T ) = exp

(
ln

{
T∏

t=1

[1 − p(m,t)]

})

= exp

{
T∑

t=1

ln[1 − p(m,t)]

}
.

We replace the logarithm by the first-order Taylor expansion
and arrive at

Pm(T ) ≈ exp

[
−

T∑
t=1

p(m,t)

]
. (2)

Next we use the limit density w(v) derived from the weak-limit
theorem [40] to estimate the exact probability p(m,t) by

p(m,t) ≈ 1

t
w

(
m

t

)
.

Finally, we estimate the sum in (2) with an integral

Im(T ) =
∫ T

1

1

t
w

(
m

t

)
dt (3)

and obtain the approximation of persistence,

Pm(T ) ≈ exp[−Im(T )]. (4)

In the following we analyze persistence of unvisited sites
for two- and three-state quantum walks on a line. Detailed
evaluations of the integral (3) are left for the Appendixes.

III. TWO-STATE WALK ON A LINE

Let us start our analysis with the two-state quantum walk
on a line with the coin operator,

C(ρ) =
(

ρ
√

1 − ρ2√
1 − ρ2 −ρ

)
, 0 < ρ < 1.

The coin parameter ρ determines the speed of propagation of
the wave packet on the line [41]. For ρ = 1/

√
2 we obtain the

familiar Hadamard walk [31].
Suppose that the initial coin state of the particle was

|ψC〉 = a|L〉 + b|R〉.
The limiting probability density for the two-state quantum
walk is given by [42,43]

w(v) =
√

1−ρ2

ρ
[1 − v�(a,b)]

π (1 − v2)
√

1 − v2

ρ2

,

where � is determined by the initial coin state and the coin
parameter

�(a,b) = |a|2 − |b|2 +
√

1 − ρ2

ρ
(ab + ba).

Before we turn to the persistence we first simplify the
dependence on the initial coin state � by changing the basis
of the coin space. Following the idea of [44], we consider the
basis formed by the eigenvectors of the coin operator

|χ+〉 =
√

1 + ρ

2
|L〉 +

√
1 − ρ

2
|R〉,

(5)

|χ−〉 = −
√

1 − ρ

2
|L〉 +

√
1 + ρ

2
|R〉,

which satisfy the relations

C(ρ)|χ±〉 = ±|χ±〉.
We decompose the initial coin state of the walk into the
eigenvector basis as

|ψC〉 = h+|χ+〉 + h−|χ−〉.
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From (5) we find that the coefficients of the initial coin state
in the standard basis a and b are related to the eigenbasis
coefficients h± by

a =
√

1 + ρ√
2

h+ −
√

1 − ρ√
2

h−,

b =
√

1 − ρ√
2

h+ +
√

1 + ρ√
2

h−.

In the new basis the factor �(a,b) becomes

�(h+,h−) = 2|h+|2 − 1

ρ
.

The asymptotic probability density thus simplifies into

w(v) =
√

1−ρ2

ρ

[
1 − v

ρ
(2|h+|2 − 1)

]
π (1 − v2)

√
1 − v2

ρ2

. (6)

Let us now turn to persistence. We leave the details of
evaluation of the integral (4) for Appendix A . We find that for
large T the function Im(T ) grows like a logarithm,

Im(T ) ∼ λ ln

(
T

|m|
)

,

where the prefactor reads

λ =
√

1 − ρ2

ρπ
. (7)

Hence, we find that in the asymptotic regime persistence of
site m follows an inverse power-law,

Pm(T ) ∼
(

T

|m|
)−λ

, (8)

The exponent λ is independent of the initial coin state. It is
determined solely by the coin operator, i.e., by the value of
ρ. Note that for ρ = 1/

√
2, i.e., the Hadamard walk, we find

that λ = 1
π

≈ 0.318, which is in agreement with the numerical
result obtained in [36].

Our results are illustrated in Figs. 1–3. In Fig. 1 we
show the influence of the initial coin state. In the top two
plots we display the probability distribution of the two-state
quantum walk with the coin parameter ρ = 1/

√
2, i.e., the

Hadamard walk. In all figures gray circles represent the
data points obtained from numerical simulation. The red
curves correspond to the asymptotic probability density given
by (6). For the top plot we have chosen the initial coin state
|ψ (1)

C 〉 = |χ−〉. The resulting probability density shows only
one peak on the right. In the middle plot the initial coin state
was chosen according to |ψ (2)

C 〉 = 1√
2
(|χ+〉 + |χ−〉). This state

leads to a symmetric distribution. Despite the differences in
the probability distributions, the persistence shows the same
asymptotic scaling, as we illustrate in the bottom figure. Here
we display the persistence of site m = 2 as a function of
the number of steps T . To unravel the inverse power-law
behavior we use log-log scale. The gray circles correspond to
the numerical simulation and the red curves show the inverse
power law (8).
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FIG. 1. Probability density and persistence in dependence on the
choice of the initial coin state for the Hadamard walk (ρ = 1/

√
2).

The top two plots show the probability distribution of the Hadamard
walk after t = 100 steps for two different initial coin states |ψ (1,2)

C 〉
on a semilog scale. In the bottom plot we display persistence of site
m = 2 as a function of the number of steps T on a log-log scale.
Despite the differences in the probability distributions the asymptotic
scaling of persistence is independent of the initial state, in accordance
with (8).

In Fig. 2 we illustrate the influence of the coin parameter
ρ. In the top two plots we show the probability distribution of
the two-state quantum walk with the initial coin state |ψC〉 =

1√
2
(|χ+〉 + |χ−〉). For the top plot the coin parameter is ρ1 =

0.2. In the middle plot we have chosen the coin parameter
ρ2 = 0.8. We see that the coin parameter directly affects the
speed at which the walk spreads through the lattice [41]. The
bottom plot shows the difference in the scaling of persistence
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FIG. 2. Probability density and persistence in dependence on the
choice of the coin parameter ρ. The top two plots show the probability
distribution of the two-state quantum walk on a semilog scale. In both
situations the initial coin state was chosen as |ψC〉 = 1√

2
(|χ+〉 +

|χ−〉), which leads to symmetric probability distribution. In the top
plot the coin parameter is ρ1 = 0.2 while in the middle plot we have
chosen ρ2 = 0.8. The bottom plot shows scaling of persistence of site
m = 2 for different values of ρ1,2 on a log-log scale. The exponent
of the inverse power law (8) decreases with increasing value of ρ, as
predicted by (7).

of site m = 2 for different values of ρ. We use log-log scale to
unravel the scaling of persistence. We find that the exponent
of the inverse power law decreases with increasing value of ρ,
in accordance with (7).

Finally, Fig. 3 illustrates that the asymptotic behaviour of
persistence is independent of the actual position m. The top plot
displays the probability distribution of the two-state walk with

1 10 100 1000

1

10−1

10−2

T

P m
(T

)

m = 2

m = −2

FIG. 3. The top plot shows the probability distribution for the
two-state walk with ρ = 0.5. The initial coin state is |ψC〉 = |χ+〉,
which results in density with only one peak on the left. The bottom
plot illustrates the behavior of persistence of sites m = 2 and m = −2.
Both curves have the same slope (7), which is determined solely by
the coin parameter ρ.

coin parameter ρ = 0.5 and the initial coin state |ψC〉 = |χ+〉.
This initial condition leads to a density which is the most
biased towards left, as indicated by the presence of only one
peak. In the bottom plot we show persistence of sites m = 2
and m = −2 on a log-log scale. Despite the differences in the
intermediate regime, the slope of both curves is the same, in
agreement with (8).

To conclude this section, we have found that for the two-
state quantum walk on a line persistence of unvisited sites
obeys an inverse power law (8) with exponent (7) determined
only by the coin parameter.

IV. THREE-STATE WALK ON A LINE

Let us now turn to the three-state walk on a line. Here the
particle is allowed to move to the left, stay at its position, or
move to the right. We denote the corresponding orthogonal
coin states by |L〉, |S〉, and |R〉. As for the coin operator we
consider the one which was studied in [37–39]. In the standard
basis {|L〉,|S〉,|R〉} the coin operator is given by the matrix

C(ρ) =

⎛
⎜⎝

−ρ2 ρ
√

2 − 2ρ2 1 − ρ2

ρ
√

2 − 2ρ2 2ρ2 − 1 ρ
√

2 − 2ρ2

1 − ρ2 ρ
√

2 − 2ρ2 −ρ2

⎞
⎟⎠, (9)
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with parameter ρ ∈ (0,1). Quantum walks with such a coin
operator represent a one-parameter extension of the familiar
three-state Grover walk [26–28], which corresponds to the
choice of ρ = 1/

√
3. Indeed, the results of [39] have shown

that the considered quantum walks share the same features and
the coin factor ρ is a scaling parameter which determines the
rate of spreading of the three-state quantum walk across the
line.

To evaluate the persistence of unvisited sites, we estimate
the exact probability distribution p(m,t) for large number
of steps t . In contrast to the two-state walk, the properties
of the probability distribution are not fully captured by the
limit density w(v). Indeed, the three-state quantum walk
leads to the trapping effect [26–28,38,39], which means that
the probability of finding the particle at position m has a
nonvanishing limit for t approaching infinity. We denote the
limiting value,

lim
t→∞ p(m,t) = p∞(m),

as the trapping probability. Hence, for large t we approximate
the probability to find the particle at position m at time t with
the sum

p(m,t) ≈ 1

t
w

(
m

t

)
+ p∞(m).

The limit density w(v) and the trapping probability p∞(m)
were analyzed in [38,39]. We follow the results of [39] since
they have simpler form due to the use of a more suitable basis
of the coin space. In particular, the basis of the coin space was
constructed from the eigenvectors of the coin operator (9),
which reads

|σ+〉 =
√

1 − ρ2

2
|L〉 + ρ|S〉 +

√
1 − ρ2

2
|R〉,

|σ−
1 〉 = ρ√

2
|L〉 −

√
1 − ρ2|S〉 + ρ√

2
|R〉,

|σ−
2 〉 = 1√

2
(|L〉 − |R〉).

The vectors satisfy the eigenvalue equations

C(ρ)|σ+〉 = |σ+〉, C(ρ)|σ−
i 〉 = −|σ−

i 〉, i = 1,2.

We decompose the initial coin state into the eigenstate basis
according to

|ψC〉 = g+|σ+〉 + g1|σ−
1 〉 + g2|σ−

2 〉.
The limiting probability density then reads [39]

w(v) =
√

1 − ρ2

π (1 − v2)
√

ρ2 − v2

[
1 − |g2|2

− (g1g2 + g1g2)
v

ρ
+ (|g2|2 − |g+|2)

v2

ρ2

]
. (10)

The trapping probability is given by [39]

p∞(m) =

⎧⎪⎪⎨
⎪⎪⎩

2−2ρ2

ρ4 Q2m|g+ + g2|2, m > 0,

Q

ρ2

{|g+|2 + (1 − ρ2)|g2|2
}
, m = 0,

2−2ρ2

ρ4 Q2|m||g+ − g2|2, m < 0,

(11)

where Q depends on the coin parameter ρ,

Q = 2 − ρ2 − 2
√

1 − ρ2

ρ2
.

Let us estimate the persistence of site m. We approximate
the sum in (2) with

T∑
t=1

p(m,t) ≈ Im(T ) +
T∑

t=
 |m|
ρ

�
p∞(m),

where Im(T ) is defined in (3). The sum on the right-hand side
is trivial,

T∑
t=
 |m|

ρ
�
p∞(m) =

(
T −

⌈ |m|
ρ

⌉)
p∞(m).

Here 
x� denotes the ceiling of x, i.e., the smallest integer not
less than x. The integral Im(T ) is evaluated in Appendix B.
We find that Im(T ) asymptotically grows like a logarithm,

Im(T ) ∼ λ ln

(
T

|m|
)

,

where the prefactor reads

λ =
√

1 − ρ2

πρ
(1 − |g2|2).

We conclude that for the three-state quantum walk on a line
persistence of site m behaves asymptotically like

Pm(T ) ∼
(

T

|m|
)−λ

e−p∞(m)T . (12)

We see that there are two contributions to persistence. Similarly
to the two-state walk, there is an inverse power law. In addition,
the trapping effect contributes with the exponential decay.
However, the behavior of persistence depends on the initial
state, in contrast to the two-state walk. Indeed, both λ and
the trapping probability p∞(m) are determined by the initial
condition. The exponent λ depends only on the probability
|g2|2 to find the initial coin state |ψC〉 in the eigenstate
|σ−

2 〉. On the other hand, the rate of the exponential decay
is determined by the interference of the amplitudes g+ and
g2. In the following we discuss various initial conditions to
illustrate our result.

Let us first consider the initial coin state |ψC〉 = |σ+〉.
In such a case the general formula (12) for the asymptotic
behavior of persistence turns into

P (g+)
m (T ) ∼

(
T

|m|
)−λ

e−γ (m)T , (13)

with the exponent given by

λ =
√

1 − ρ2

πρ
(14)

and the decay constant given by

γ (m) = 2(1 − ρ2)

ρ4
Q2|m|. (15)
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FIG. 4. Probability distribution and persistence for the three-state
walk with ρ = 0.8 starting with the coin state |ψC〉 = |σ+〉. In the
top plot we show the probability distribution after t = 100 steps.
The middle plot displays persistence (13) of sites m = 2 and m = 10
on the log-log scale. For m = 2 the decay of persistence is faster
than the inverse power law. The deviation is due to the exponential
decay which starts to play a dominant role for large T . We do not
observe this effect for m = 10, since the decay constant decreases
exponentially with the distance from the origin. The bottom plot,
which shows persistence of site m = 2 on the log-scale, confirms that
Pm(T ) decays exponentially.

We see that both contributions, namely the inverse power law
and the exponential decay, are present. For illustration of this
result, we show in Fig. 4 the probability distribution and
persistence for the three-state walk with the coin parameter
ρ = 0.8. The top plot displays the probability distribution

after t = 100 steps. The gray circles correspond to the
numerical simulation, the red curve depicts the asymptotic
probability density (10), and the blue dashed curve corresponds
to the trapping probability (11). The middle plot illustrates
persistence of sites m = 2 and m = 10 on the log-log scale.
For m = 2 the decay of persistence is faster than the inverse
power law. Indeed, for large number of steps the exponential
decay starts to play a dominant role. On the other hand, for
m = 10 we do not observe any deviation from the inverse
power law at the considered time scale. This is due to the fact
that the decay constant (15) itself decreases exponentially with
the distance from the origin. The bottom plot, where we display
persistence of site m = 2 on the logarithmic scale, illustrates
that Pm(T ) decays exponentially in the long-time limit.

Let us now turn to the initial coin state |ψC〉 = |σ−
2 〉. The

general formula for persistence of site m (12) for g2 = 1
reduces into purely exponential decay,

P (g2)
m (T ) ∼ e−γ (m)T , (16)

where the decay rate γ (m) is given by (15). To illustrate this
effect, we display in Fig. 5 the probability distribution and
persistence for the Grover walk, i.e., ρ = 1/

√
3. The top plot

shows the probability distribution after t = 100 steps. The
middle plot displays persistence of sites m = 1, m = 2, and
m = 5. The decay rate (15) decreases exponentially with the
growing distance from the origin. Hence, already for m = 5
persistence essentially saturates on the considered time scale.
The bottom plot shows persistence of site m = 2 on a log-scale.
The figure illustrates that the decay of persistence is indeed
purely exponential.

Next we consider the initial coin state |ψC〉 = |σ−
1 〉. In such

a case the expression (12) reduces to a pure inverse power-law,

P (g1)
m (T ) ∼

(
T

|m|
)−λ

, (17)

with the exponent λ given by (14). To illustrate this feature, we
show in Fig. 6 the probability distribution and persistence for
the three-state walk with the coin parameter ρ = 0.6. The top
plot displays the probability distribution after 100 steps. We
find that for the particular initial state |ψC〉 = |σ−

1 〉 the trapping
effect disappears. Indeed, according to (11) we find that p∞(m)
vanishes if g+ = g2 = 0. The bottom plot displays persistence
of sites m = 2 and m = 5. The log-log scale unravels that the
scaling is given only by the inverse power law (17).

Finally, let us point out that the dependence of the trapping
probability (11) on the initial coin state can be different for
positive and negative m. This leads to different behavior of
persistence for sites on positive and negative half lines. As an
example, consider the initial coin state,

|ψC〉 = 1√
2

(|σ+〉 + |σ−
2 〉). (18)

We find that persistence of sites on positive half line (m > 0)
behaves like

P+
m (T ) ∼

(
T

m

)−λ

e−γ (m)T , (19)
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FIG. 5. Probability distribution and persistence for the three-state
Grover walk starting with the coin state |ψC〉 = |σ−

2 〉. In the top plot
we show the probability distribution after t = 100 steps. The middle
plot displays persistence (16) of sites m = 1, m = 2, and m = 5.
The decay is exponential but the rate drops down very fast with the
growing distance from the origin. The bottom plot with the log scale
on the y axis illustrates that the decay of persistence is indeed purely
exponential (16).

where the exponent reads

λ =
√

1 − ρ2

2πρ
, (20)

and the decay rate is given by

γ (m) = 4(1 − ρ2)

ρ4
Q2m.
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FIG. 6. Probability distribution and persistence for the three-state
walk with ρ = 0.6 starting with the coin state |ψC〉 = |σ−

1 〉. The
top plot shows the probability distribution after t = 100 steps.
For this particular initial state the trapping effect disappears. The
bottom plot displays persistence of sites m = 2 and m = 5 on a
log-log scale. We find that the scaling is given by the inverse power
law (17).

Hence, for positive m persistence decays exponentially in the
asymptotic regime. However, for sites on the negative half line
(m < 0) persistence obeys only the inverse power law,

P−
m (T ) ∼

(
T

|m|
)−λ

, (21)

with the exponent λ given by (20). We point out that coherence
of the initial coin state is crucial for this effect. Indeed, consider
the initial coin state given by an incoherent mixture of the basis
states

ρC = 1
2 |σ+〉〈σ+| + 1

2 |σ−
2 〉〈σ−

2 |.
In such a case persistence is given by the sum of the expres-
sions (16) and (17) with the corresponding exponent (14) and
decay rate (15), independent of the sign of the position m.
Hence, there is no asymmetry between negative and positive
m and persistence of all lattice sites decays exponentially in
the asymptotic regime. Compared to the coherent superposi-
tion (18) the exponent (14) is larger by a factor of two while
the decay rate (15) is smaller by a factor of two.

We illustrate the results for the initial coin state (18) in
Fig. 7, where we consider the three-state quantum walk with
the coin parameter ρ = 0.5. In the top plot we display the
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FIG. 7. Probability distribution and persistence for the three-state
walk starting with the coin state (18). The coin parameter was chosen
as ρ = 0.5. In the top plot we display the probability distribution after
t = 100 steps. Note that the trapping probability is nonzero only on
the positive half line. The bottom plot shows persistence of sites
m = 2 and m = −2 on the log-log scale. For m = −2 the behavior
of persistence is determined only by the inverse power law (21).
However, for m = 2 the decrease of persistence is exponential (19),
as we illustrate in the bottom plot with the logarithmic scale.

probability distribution after 100 steps of the walk. Notice that
the trapping probability, highlighted by the dashed blue curve,
is nonzero only on the positive half line. The bottom plot
illustrates the difference in the scaling of persistence for sites
on the positive or negative half lines. Here we show persistence
of sites m = 2 and m = −2 on the log-log scale. We find that

for m = −2 the behavior of persistence is determined only
by the inverse power law (21). On the other hand, for m = 2
the decrease of persistence is faster. Indeed, for positive m

the behavior of persistence is dominated by the exponential
decay (19) in the long-time limit. This is illustrated in the
bottom plot, where we show the persistence of site m = 2 on
the log-scale.

V. CONCLUSIONS

In the present paper persistence of unvisited sites for two-
and three-state quantum walks on a line was analyzed. We
have found that, in contrast to the classical random walk,
there is no connection between the asymptotic behavior of
persistence and scaling of the variance with the number of
steps. Concerning the two-state walk, we have analytically
confirmed the numerical result obtained in [36] for the
Hadamard walk. Moreover, we have extended the analysis to
a one-parameter set of two-state quantum walks. In particular,
we have shown that persistence of unvisited sites obeys
an inverse power-law independent of the initial condition
and the actual position of the site. The exponent of the
inverse power law is determined by the parameter of the coin
operator.

The main result of the paper is the behavior of persistence
for three-state quantum walks. We have focused on a one-
parameter family of walks which includes the familiar three-
state Grover walk. Due to the trapping effect displayed by the
considered set of quantum walks, the behavior of persistence
is more involved than for the two-state quantum walks. In
particular, we have shown that the asymptotic scaling of
persistence is in general determined by a combination of
an inverse power law and an exponential decay. However,
both the exponent of the inverse power law and the decay
rate of the exponential decline depend on the initial coin
state. Therefore, it is possible to obtain various asymptotic
regimes of persistence by choosing proper initial conditions.
Moreover, one can employ the asymmetry of the trapping
effect to achieve different asymptotic scaling of persistence
for sites on the positive and negative half line. All obtained
results have been facilitated by using a suitable basis formed
by the eigenvectors of the coin operator. This makes it possible
to express persistence in closed and compact form and trace
back the ways it is influenced by the initial state and its
coherence.

The present study is limited to the quantum walks on a line.
A natural extension is to consider persistence of unvisited sites
in quantum walks on higher-dimensional lattices. It would
be interesting if similar effects, such as the dependency of
persistence on the initial condition and various regimes of
persistence for different lattice sites, can be found on more
complicated lattices.
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APPENDIX A: INTEGRAL Im(T ) FOR A TWO-STATE WALK

We dedicate this Appendix to evaluating integral Im(T ) defined in (3) for the two-state walk. The limit density w(v) is given
by the formula (6). Since the limit density (6) is nonzero only for |v| � ρ, we replace the lower bound in the integral (3) with
|m|/ρ. With the substitution u = m

ρt
we rewrite Im(T ) into the form

Im(T ) =
√

1 − ρ2

ρπ

∫ 1

|m|
ρT

1 − sgn(m)u(2|h+|2 − 1)

u(1 − ρ2u2)
√

1 − u2
du.

Evaluating the integral we obtain

Im(T ) =
√

1 − ρ2

ρπ
ln

⎡
⎣ρT

|m|

⎛
⎝1 +

√
1 − m2

ρ2T 2

⎞
⎠
⎤
⎦+ 1

π
arctan

⎛
⎝ ρ√

1 − ρ2

√
1 − m2

ρ2T 2

⎞
⎠

+ sgn(m)
2|h+|2 − 1

ρ

⎡
⎣ 1

π
arctan

⎛
⎝ |m|

ρT

√√√√ 1 − ρ2

1 − m2

ρ2T 2

⎞
⎠− 1

2

⎤
⎦.

Moreover, for large number of steps T this function tends to

Im(T ) ≈
√

1 − ρ2

ρπ
ln

(
2ρT

|m|
)

− arcsin ρ

π
+ sgn(m)

2|h+|2 − 1

2ρ
.

Therefore, for large T the function Im(T ) grows like a logarithm,

Im(T ) ∼ λ ln

(
T

|m|
)

,

where the prefactor reads

λ =
√

1 − ρ2

ρπ
.

APPENDIX B: INTEGRAL Im(T ) FOR A THREE-STATE WALK

In this Appendix we evaluate the integral (3) for a three-state quantum walk, i.e., the limit density is given by (10). Using the
substitution u = m

ρt
, we rewrite Im(T ) into the form

Im(T ) =
√

1 − ρ2

ρπ

∫ 1

|m|
ρT

1 − |g2|2 − (g1g2 + g1g2)u + (|g2|2 − |g+|2)u2

u(1 − u2)
√

1 − u2
du.

Evaluating the integral we obtain the following result:

Im(T ) =
√

1 − ρ2

πρ
(1 − |g2|2)

⎡
⎣ln

(
ρT

|m|
)

+ ln

⎛
⎝1 +

√
1 − m2

ρ2T 2

⎞
⎠
⎤
⎦− 1

2π
(1 − |g2|2) arctan

⎡
⎣2ρ

√(
1 − m2

ρ2T 2

)
(1 − ρ2)(

2 − m2

ρ2T 2

)
ρ2 − 1

⎤
⎦

+ 1

πρ2

(|g2|2 − |g+|2) arctan

⎛
⎝ρ

√
1 − m2

ρ2T 2

1 − ρ2

⎞
⎠− 1

2πρ
(g1g2 + g1g2)

⎡
⎣π − 2 arctan

⎛
⎝ |m|

ρT

√
1 − ρ2√

1 − m2

ρ2T 2

⎞
⎠
⎤
⎦.

For large number of steps T this function approaches

Im(T ) ≈
√

1 − ρ2

πρ

(
1 − |g2|2

)
ln

(
2ρT

|m|
)

+ 1

2π

(
1 − |g2|2

)
arctan

(
2ρ
√

1 − ρ2

1 − 2ρ2

)

+ 1

πρ2

(|g2|2 − |g+|2) arctan

(
ρ

√
1

1 − ρ2

)
− 1

2ρ
(g1g2 + g1g2).
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We see that Im(T ) asymptotically grows like a logarithm,

Im(T ) ∼ λ ln

(
T

|m|
)

,

where the prefactor reads

λ =
√

1 − ρ2

πρ

(
1 − |g2|2

)
.
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[24] M. Štefaňák, T. Kiss, and I. Jex, Phys. Rev. A 78, 032306 (2008).
[25] N. Inui, Y. Konishi, and N. Konno, Phys. Rev. A 69, 052323

(2004).
[26] N. Inui, N. Konno, and E. Segawa, Phys. Rev. E 72, 056112

(2005).
[27] N. Inui and N. Konno, Phys. A (Amsterdam, Neth.) 353, 133

(2005).
[28] S. Falkner and S. Boettcher, Phys. Rev. A 90, 012307 (2014).
[29] K. Watabe, N. Kobayashi, M. Katori, and N. Konno, Phys. Rev.

A 77, 062331 (2008).
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