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We consider the decomposition of arbitrary isometries into a sequence of single-qubit and controlled-NOT

(CNOT) gates. In many experimental architectures, the CNOT gate is relatively costly and hence we aim to keep the
number of these as low as possible. We derive a theoretical lower bound on the number of CNOT gates required to
decompose an arbitrary isometry from m to n qubits and give three explicit gate decompositions that achieve this
bound up to a factor of about 2 in the leading order. We also perform some further optimizations for certain cases
where m and n are small. In addition, we show how to apply our result for isometries to give a decomposition
scheme for an arbitrary quantum operation via Stinespring’s theorem and derive a lower bound on the number
of CNOT gates in this case too. These results will have an impact on experimental efforts to build a quantum
computer, enabling them to go further with the same resources.
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I. INTRODUCTION

Quantum computers would allow us to speed up several
important computations including searching [1,2], quantum
simulation [3], and factoring [4]. The ability to do the latter
would render RSA [5], a widespread cryptographic protocol,
unfit for its purpose. However, constructing a device capable of
performing such computations is one of the biggest challenges
facing the field and many candidate platforms remain in their
infancy, operating only with a few qubits at best.

In spite of this, the theory of quantum computation is
quite advanced. At an abstract level, a quantum computation
corresponds to a unitary operation and a universal quantum
computer should be able to perform arbitrary unitary oper-
ations (each to very high precision). Rather than having a
different component for each unitary operation, it is convenient
to break down such operations in terms of a small family of
simple-to-perform gates. This is the aim of the circuit model
of quantum computation, which mirrors an analogous model
for classical computation, in which an arbitrary computation
can be decomposed in terms of, for example NOT, AND, OR,
and CNOT gates. In the quantum case, several examples of
universal gate libraries are known (see, for example, [6]). In
this work we focus on one involving arbitrary single-qubit
operations and CNOT gates. This gate set is universal for
quantum computation in the sense that an arbitrary n-qubit
unitary can be decomposed in terms of these gates alone [7]
and is particularly well suited to certain architectures in which
these operations are relatively straightforward to implement.
Of these operations, CNOT is often the most difficult to perform
since in all experimental architectures it involves connecting
the qubits using an additional degree of freedom [8,9].
This provides additional channels for the introduction of
decoherence. The mediated interaction also typically requires
longer gate times, increasing susceptibility to direct qubit
decoherence. As an example, the current lowest infidelities
achieved experimentally are <10−6 for single-qubit gates [10]
and ∼10−3 for two qubit gates [11]. Taking this as our

motivation, we use the number of CNOT gates required in
a decomposition as a measure of the complexity of a gate
sequence and we consider circuits that minimize the number
of such gates.

This task has been previously considered both for arbitrary
unitary operations and for state preparation (see, for exam-
ple, [12,13] and references therein). In [12] a decomposition
scheme was found for an arbitrary unitary operation on n qubits
that requires 23

48 4n CNOT gates to leading order, approximately
twice as many as the best known lower bound [14,15].
Similarly, in order to prepare a state of n qubits (starting from
the state |0〉⊗n), the best known construction requires 23

24 2n

CNOT gates to leading order if n is even [13] and 2n to leading
order if n is odd [16], which is again approximately twice the
best known lower bound [13].

State preparation and arbitrary unitaries are special cases
of a wider class of operations: isometries. An isometry is an
inner-product-preserving transformation that maps between
two Hilbert spaces that in general have different dimensions.
Physically, isometries can be thought of as the introduction of
ancilla qubits in a fixed state (conventionally |0〉) followed by
a general unitary on the system and ancilla qubits. However,
because its action only has to be specified when the ancilla
systems start in state |0〉, there is a great deal of freedom when
constructing the general unitary. This freedom can be exploited
to lower the number of CNOT gates needed with respect to
that of a general unitary. In the special case where the input
and output spaces have the same dimensions, the isometry
is a unitary operation, while state preparation corresponds to
an isometry from a (trivial) one-dimensional space to that of
the required output. In this paper we consider the problem of
synthesis of general isometries from m qubits to n � m qubits.

This task was first considered by Knill [17], whose
decomposition scheme is based on a decomposition scheme
for state preparation (and uses such a scheme as a black box).
His decomposition scheme together with the state preparation
scheme of [16] (or [13]) leads directly (without any optimiza-
tions) to a decomposition of m to n isometries requiring about
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TABLE I. Lowest known upper bounds (UBs) and highest known lower bounds (LBs) on the number of CNOT gates required to decompose
m to n isometries for large n. For simplicity, all the counts are depicted to leading order. As is to be expected, the number of required CNOT

gates increases with m (i.e., when fewer of the input qubits start in a fixed state).

m LB UB UB/LB References for UB

m = 0 (SP) 1
2 2n [13] 23

24 2n �1.9 [13] (n even), Remark 5 (n odd)

1 � m � n − 2 1
2 2n+m − 4m−1 2n+m − 1

24 2n <2.3a Eq. (A21) (Theorem 1)b

m = n − 1 3
16 4n 23

64 4n �1.9 Eq. (A22)

m = n (unitary) 1
4 4n [14,15] 23

48 4n �1.9 [12]

aIf 1 � m � n − 5 we have UB/LB � 2 (for large enough n).
bIn the case 5 � m � n − 2 and even n, Theorem 1 achieves a slightly lower CNOT count of 23

24 (2n+m + 2n) to leading order.

2 × 2m+n CNOT gates to leading order. However, this can be
modified (together with the decomposition scheme for state
preparation described in [13]) to achieve 2m+n + 2n to leading
order, which is our first decomposition scheme.

We also introduce two others. Our second scheme is a
column-by-column decomposition of an isometry that requires
about 2m+n CNOT gates to leading order. This decomposition
also performs well for cases where m and n are small. For
our final scheme, we adapt the decomposition of arbitrary
unitaries [12] to isometries, leading to a CNOT count of about
0.16 × (4m + 2 × 4n) to leading order.

To compare the quality of our schemes we give a theoretical
lower bound on the number of CNOT gates required to
decompose arbitrary isometries. These results are summarized
in Tables I and II. As shown in Table I, for large enough n, in the
worst case our decomposition scheme uses roughly 2.3 times
the number of CNOT gates required by the lower bound (the
worst case being an n − 2 to n isometry). This is comparable
to the factor of 1.9 already known in the special cases of state
preparation and of arbitrary unitary operations.

In addition, we optimize the CNOT counts for m to n � 4
isometries in Appendix B (see Table III for a summary). These
are most likely to be of practical relevance for experiments
performed in the near future.

The CNOT counts in Tables I–III can be directly used
to upper bound the total number of gates needed for the
decomposition. Since each CNOT gate can introduce at most

TABLE II. Overview of the number of CNOT gates required to
decompose m to n isometries using different decomposition schemes.
(N.B. For small n we have done some additional optimizations; see
Table III.) Here CCD denotes column-by-column decomposition of
an isometry and CSD decomposition of an isometry using the cosine-
sine decomposition.

CNOT count for an m

Method to n isometry References

Knill 23
24 (2m+n + 2n) + O(n2)2m Theorem 1

(optimized) if n is even
115
96 (2m+n + 2n) + O(n2)2m Theorem 1

if n is odd

CCD 2m+n − 1
24 2n + O(n2)2m Eq. (A21)

CSD 23
144 (4m + 2 × 4n) Eq. (A22)

two single-qubit gates into a quantum circuit without redun-
dancy (see Sec. III for similar arguments1), the number of
single-qubit gates required for an isometry can be bounded by
doubling the counts given in the two tables and adding n, the
number of qubits in question.

Although we have ranked the decompositions in terms of
gate counts above, there may be other features of a given de-
composition scheme that make it preferable to another that may
depend on the physical setup. It is also interesting to note that
our decomposition schemes use others in a black box fashion
(see Sec. V for more details), e.g., the decomposition scheme
of Knill uses a scheme for state preparation as a black box.
An improvement in the decomposition of the black box would
therefore directly improve the corresponding decomposition
for an isometry, potentially altering the ordering in terms of
gate counts.

II. BACKGROUND INFORMATION AND NOTATION

We work in the circuit model of quantum computation
in which the fundamental information carriers are qubits.
A computational basis state of the 2n-dimensional Hilbert
space Hn = H⊗n

1 of an n-qubit register can be written
as |bn−1〉 ⊗ |bn−2〉 ⊗ · · · ⊗ |b0〉 or, in short notation, as
|bn−1bn−2 · · · b0〉, where bi ∈ {0,1}. To abbreviate further we
write |bn−1bn−2 · · · b0〉 = |∑n−1

i=0 bi2i〉
n
, i.e., we interpret the

1Note that we count arbitrary single-qubit gates here (rather than
gates that rotate about a fixed axis).

TABLE III. Smallest known achievable CNOT counts for m to
2 � n � 4 isometries. The counts for n = m are as in [12]. The
counts for state preparation (m = 0) on two and three qubits are
taken from [28] and the count for state preparation on four qubits
follows from the decomposition scheme described in Appendix A 5.
The remaining cases are discussed in Appendix B. Note that the CNOT

counts grow very fast. For example, any unitary on 10 qubits can be
performed using about 500 000 CNOT gates.

�
��n

m
0 1 2 3 4

2 1 2 3
3 3 9 14 20
4 8 22 54 73 100
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bit string bn−1bn−2 · · · b0 as a binary number. If n = 1 we
omit the subindex. Thus, |1〉3 = |001〉 = |0〉 ⊗ |0〉 ⊗ |1〉, for
example.

In the circuit model of quantum computation, information
carried in qubit wires is modified by quantum gates, which
correspond mathematically to unitary operations. In particular,
we will use the following single-qubit gates:

Rx(θ ) =
(

cos[θ/2] −i sin[θ/2]

−i sin[θ/2] cos[θ/2]

)
, (1)

Ry(θ ) =
(

cos[θ/2] − sin[θ/2]

sin[θ/2] cos[θ/2]

)
, (2)

Rz(θ ) =
(

e−iθ/2 0
0 eiθ/2

)
, (3)

which correspond to rotations by angle θ about the x, y, and z

axes of the Bloch sphere, respectively. One important special
case is the NOT gate σx = iRx(π ) in terms of which the CNOT

gate can be written as |0〉〈0| ⊗ I + |1〉〈1| ⊗ σx .
Lemma 1 (ZYZ decomposition). For every unitary operation

U acting on a single qubit, there exist real numbers α, β, γ ,
and δ such that

U = eiαRz(β)Ry(γ )Rz(δ). (4)

A proof of this decomposition can be found in [6]. Note
that (by symmetry) Lemma 1 holds for any two orthogonal
rotation axes. Lemma 1 shows that a single-qubit gate can be
specified by three real parameters neglecting the (physically
insignificant) global phase eiα . This is analogous to the de-
scription of a rotation in three dimensions being parametrized
in terms of three Euler angles, here β, γ , and δ.

It is convenient to represent quantum circuits diagrammati-
cally. Each qubit is represented by a wire and gates are shown
using a variety of symbols. Conventionally, time flows from
left to right. We will use the concept of circuit topologies, as
in [14,15], throughout this paper. A general circuit topology
corresponds to a set of quantum circuits that have a particular
structure, but in which some gates may be free or have free
parameters. For example, Lemma 1 can be expressed as an
equivalence of two circuit topologies

The general meaning of a circuit topology equivalence is
the following: For all possible values of the (free) parameters
of the circuit topology on the left-hand side there exist values
for the parameters of the circuit topology on the right-hand
side such that the two sides perform the same operation (up to
a global phase). For example, each of the Rz gates in the above
circuit represents a z-rotation gate with unspecified angle. If
we use symbols for certain gates that have not been introduced
before, they are considered to be arbitrary quantum gates (these
will often be denoted by U ). If the same symbol is used as a
placeholder for more than one quantum gate, we mean that all
gates are of this form, but the gates themselves do not have to
be identical (as in the previous example where, although Rz

appears twice on the right-hand side, each instance can have a
different rotation angle).

III. LOWER BOUND

First we derive a theoretical lower bound on the number
of CNOT gates required to decompose an isometry. For this
purpose we use an argument similar to that used to derive
theoretical lower bounds for general quantum gates [14,15]
or for state preparation [13]. Let m and n be natural numbers
with n � 2 and m � n. An m to n isometry can be represented
by a 2n × 2m complex matrix satisfying V †V = I2m×2m .
Therefore, such an isometry is described by 2n+m+1 − 22m − 1
real parameters, where the −1 accounts for the physically
negligible global phase.

We can think of this isometry in terms of a unitary operation
on n qubits, n − m of which always start in a fixed state, which
we take to be |0〉.2 Without any CNOT gates, all we can do is
apply single-qubit unitaries individually to each of these n

qubits. Each such unitary introduces at most three parameters
(see Lemma 1). However, for the qubits that start in state |0〉,
only two parameters are introduced, since a qubit state is fully
specified by two real parameters. In order to introduce further
parameters, CNOT gates are required.

One might expect each CNOT gate to allow the introduc-
tion of six real parameters by placing arbitrary single-qubit
rotations after the control and target. However, since Rz gates
commute with control qubits and Rx gates with target qubits,
we can introduce at most four parameters for each additional
CNOT gate [14,15]. In essence we are using the circuit identity

(5)

We conclude that we can introduce at most 3m + 2(n − m) +
4r real parameters using r CNOT gates.

In order to be a valid circuit topology, i.e., one that can
generate every m to n isometry by an appropriate choice
of its parameters, the number of parameters introduced into
the circuit by the single-qubit rotations must exceed the
number of parameters required to specify an arbitrary m to
n isometry. Thus, the number of CNOT gates required for
such a circuit topology Niso(m,n) must satisfy 3m + 2(n −
m) + 4Niso(m,n) � 2n+m+1 − 22m − 1. From this we obtain
the lower bound

Niso(m,n) � 1
4 (2n+m+1 − 22m − 2n − m − 1). (6)

We remark that we can rephrase our result (by arguments
similar to those used in [14,15]) as follows: Almost every m

to n isometry cannot be decomposed into a quantum circuit
(comprising single-qubit unitaries and CNOT gates) with fewer

2Note that additional ancilla qubits will not affect the lower bound.
This can be seen by using the same arguments that we use in the
derivation of the lower bound for quantum channels (see Sec. VI).
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than � 1
4 (2n+m+1 − 22m − 2n − m − 1)	CNOT gates. It is worth

saying that the set of measure zero that is excluded from this
statement contains several interesting isometries, for example,
that required for Shor’s algorithm [4]. This lower bound
provides a limitation on a universal quantum computer, rather
than one tailored to a specific task.

IV. DECOMPOSITION SCHEMES FOR ISOMETRIES

Any isometry V from m qubits to n qubits can be described
by a 2n × 2m matrix. This can instead be represented by a
2n × 2n unitary matrix U by writing V = UI2n×2m , where
I2n×2m denotes the first 2m columns of the 2n × 2n identity
matrix. Note that U is not unique (unless m = n). Our aim is
to find a decomposition of a quantum gate of the form U in
terms of CNOT gates and single-qubit gates. We describe three
constructive decomposition schemes for arbitrary isometries.
This section focuses on the ideas behind these decomposition
schemes; the full technical details can be found in Appendix A.
It is also worth noting that the proof of each of these schemes
can be seen as an alternative way to prove the universality of
the gate library containing single-qubit and CNOT gates [7].

A. Notation for controlled gates

We use l-qubit Cu
k (U ) to denote a gate that performs a

different l-qubit unitary for each possible state of k control
qubits, where U is a placeholder for a size 2k set of
2l-dimensional unitary operations. We call an operation of
this type a uniformly controlled gate (UCG). These are also
referred to as multiplexed gates by some authors, e.g., in [12]. If
l = 1 we abbreviate the notation to Cu

k (U ). If we write Rx , Ry ,
or Rz instead of U , we mean that all the 2k single-qubit gates
that determine the UCG are of the form of the corresponding
rotation gate.

In order to write such gates out more precisely, we split
the Hilbert space of n qubits into a 2k-dimensional space
corresponding to the control qubits, a 2l-dimensional space
corresponding to the target qubits, and a 2f -dimensional space,
where f := (n − l − k), corresponding to the free qubits, i.e.,
the qubits we neither control nor act on Hn = Hk ⊗ Hl ⊗ Hf .
If F is an l-qubit Cu

k (U ) gate, then it acts according to

F (|i1〉k ⊗ |i2〉l ⊗ |i3〉f ) = |i1〉k ⊗ (Ui1 |i2〉l) ⊗ |i3〉f , (7)

where i1 ∈ {0, . . . ,2k − 1}, i2 ∈ {0, . . . ,2l − 1}, i3 ∈
{0, . . . ,2f − 1}, and Ui1 denotes the quantum gate acting on
the target qubits if the control qubits are in the state |i1〉k . If
each member of the set Ui1 apart from one (call this one Uj ) is
equal to the identity operation, we drop the word “uniformly”
and call such an operation a k-controlled l-qubit gate, denoted
by l-qubit Ck(Uj ), or more generally a multicontrolled gate
(MCG). If l = 1 and we want to emphasize the total number
n of qubits of the system being considered, we add an n as a
second subindex, i.e., Ck(U ) becomes Ck,n(U ).

By way of example, the following circuit diagram shows a
two-qubit Cu

2 (U ), C3(U ) [or C3,4(U )], and C2(U ) [or C2,4(U )]

gate in this order (from left to right):

Note that the Ck(U ) notation does not specify which are the
control and which are the target qubits and whether we control
on |1〉 (closed circle) or on |0〉 (open circle); these must be
made clear in the particular context.

Each uniformly k-controlled gate can be decomposed into a
sequence of 2k k-controlled gates, as should be clear from the
following example for the case k = 2, l = n − 2, and n � 3:

The backslash stands for a data bus of several (in this case
l) qubits. Note that the UCG above has block structure U0 ⊕
U1 ⊕ U2 ⊕ U3.

Remark 1. In Table IV of Appendix A 2 we give an overview
of CNOT counts for some special controlled gates that are used
for decompositions arising in this paper.

B. Decomposition of isometries using the decomposition
scheme of Knill

In this section we combine the decomposition scheme for
isometries of Knill [17] and the state preparation scheme
described in [13]. The main result is as follows.

Theorem 1. Let m and n be natural numbers with n �
5 and m � n and V be an m to n isometry. There exists a
decomposition of V in terms of single-qubit gates and CNOT

gates such that the number of CNOT gates required satisfies3

Niso(m,n) � (2m + 1)[NU (�n/2�) + NU (�n/2	)]

+ 2m+1NSP(�n/2�) + O(n2)2m, (8)

where NU (n) denotes the number of CNOT gates required for
an arbitrary unitary on n qubits. Using the best known CNOT

counts for unitaries and state preparation (see Table I) this
leads to

Niso(m,n) � 23
24 (2m+n + 2n) + O(n2)2m if n is even,

Niso(m,n) � 115
96 (2m+n + 2n) + O(n2)2m if n is odd.

Remark 2. For large n, the last two terms in (8) are
negligible. The leading order for this scheme is therefore
derived from that of a unitary on n/2 qubits.

Consider a set of unitary operations {Vi}2m−1
i=0 such that

Vi |0〉 = V |i〉, i.e., Vi is a unitary for state preparation on the
state corresponding to the ith column of V . In the proof of
Theorem 3.1 of [17] it is shown that

U = V2m−1Cn−1[P (θ2m−1 )]V †
2m−1 · · ·V0Cn−1[P (θ0)]V †

0 , (9)

3The exact count for this decomposition can be obtained by
replacing O(n2) by 16n2 − 60n + 42.
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where the gate P (θ ) := eiθ |0〉〈0| + |1〉〈1|. Consider decompos-
ing each Vi using the (reverse of the) decomposition scheme
for state preparation described in [13]. This leads to a circuit
containing 2m − 1 instances of the following circuit diagram
(shown in the case where n is even), each corresponding to a
unitary of the form V

†
i+1Vi :

SP
•

U1 U3

•
SP †...

. . . ...
• •

U2 U4
...

. . . ...

We can merge the unitaries and define Ũ1 := U3U1 and Ũ2 :=
U4U2:

SP
•

Ũ1

•
SP †...

. . . ...
• •

Ũ2
...

. . . ...

We decompose all the terms of the form V
†
i+1Vi in Eq. (9) in

this way. The gate V2m−1 and V
†

0 can also be decomposed using
the (reversed) decomposition scheme for state preparation
described in [13]. The Cn−1[P (θi)] gates are special cases
of Cn−1(U ) gates. Hence, each can be decomposed into
16n2 − 60n + 42 CNOT gates (see Theorem 4). This leads to
the claimed CNOT count given in Eq. (8).

C. Column-by-column decomposition

In this section we introduce a circuit topology correspond-
ing to a column-by-column decomposition of an arbitrary
isometry, i.e., we decompose any isometry into single-qubit
and CNOT gates proceeding one column at a time.

Theorem 2. Let m and n be natural numbers with n �
2 and m � n and V be an m to n isometry. There exists a
decomposition of V in terms of single-qubit gates and CNOT

gates such that the number of CNOT gates required satisfies

Niso(m,n) � 2m

( n−1∑
s=0

N	Cu
n−1−s

)
+ O(n2)2m,

where N	Cu
n−1−s

denotes the number of CNOT gates required to
decompose a Cu

n−1−s(U ) gate up to a diagonal gate 	, i.e.,
to decompose the two gates together, where the Cu

n−1−s(U )
gate is determined but we are free to choose the diagonal gate
	. Together with the best known decomposition scheme for
UCGs (up to diagonal gates) [16] this leads to

Niso(m,n) � 2m+n + O(n2)2m.

We defer a rigorous proof of the theorem to Appendix A 3
and instead use this section to explain the main ideas behind
the argument. Our proof is constructive and the exact CNOT

count is given in Eq. (A21).

As before, we represent the m to n isometry V by a
2n × 2n unitary matrix, here G†, by writing V = G†I2n×2m .
Since a CNOT gate is inverse to itself and the inverse of a
single-qubit unitary is another single-qubit unitary, searching
for a decomposition scheme for G† is equivalent to searching
for a decomposition of a unitary operation G satisfying
GV = I2n×2m .

In essence, the idea is to find a sequence of unitary
operations that when applied to V successively brings it closer
to I2n×2m . We will do this in a column-by-column fashion, first
choosing a sequence of quantum gates, corresponding to a
unitary G0 that gets the first column right, i.e., G0V |0〉m =
I2n×2m |0〉m = |0〉n, then using G1 to get the second col-
umn right without affecting the first, i.e., G1G0V |1〉m =
I2n×2m |1〉m = |1〉n and G1G0V |0〉m = G1|0〉n = |0〉n, and so
on (up to the 2mth column). In other words, Gk gets the
(k + 1)th column right and acts trivially on the first k columns
of I2n×2m .

The gate G0 can be decomposed into single-qubit and CNOT

gates by reversing a decomposition scheme for the preparation
of a state (applied to V |0〉m). It is natural to imagine repeating
this construction for each column in turn. However, without
further modification, this procedure does not work since the
action required for the decomposition of later columns affects
those that have already been done. In other words, if we
construct a unitary G̃1 again by reversing a decomposition
scheme for state preparation, we can obtain G̃1G0V |1〉m =
|1〉n, but in general G̃1G0V|0〉m = |0〉n. We therefore introduce
a modified technique that takes this into account while only
slightly increasing the number of CNOT gates needed over that
required for state preparation on each column. This technique
develops an idea used for state preparation using uniformly
controlled gates [16].

Lemma 2. Let |ψ ′〉 ∈ H1 and define r such that 〈ψ ′|ψ ′〉 =
r2. There exist U0,U1 ∈ SU(2) such that

U0

∣∣ψ ′〉 = r|0〉, (10)

U1

∣∣ψ ′〉 = r|1〉. (11)

Proof. Define |ψ〉 = 1
r
|ψ ′〉 and |φ〉 = −〈ψ |1〉|0〉 +

〈ψ |0〉|1〉 ∈ H1. Then U0 = |0〉〈ψ | + |1〉〈φ| is unitary with
det U0 = 1 and obeys Eq. (10); U1 can be obtained analo-
gously. �

As noted above, the unitary operation G0 can be decom-
posed using the reverse of the decomposition scheme for state
preparation as described in [16]. First we act with a UCG
G0

0 = Cu
n−1(U u

0,0) on the least significant qubit. The gate G0
0

has a 2 × 2 block diagonal structure. Using Lemma 2 we
can construct G0

0 such that it zeroes every second entry of
|ψ0

0 〉 := V |0〉m (see Fig. 1). This corresponds to disentangling
(i.e., rotating to product form) the least significant qubit, so we
can write G0

0|ψ0
0 〉 = |ψ1

0 〉 ⊗ |0〉 for some state |ψ1
0 〉 ∈ Hn−1.

Now we apply the same procedure to |ψ1
0 〉 leaving the least

significant qubit invariant. We act with G1
0 := Cu

n−2(U u
0,1),

which corresponds to conditionally rotating the second least
significant qubit, leading to G1

0G
0
0|ψ0

0 〉 = |ψ2
0 〉 ⊗ |0〉 ⊗ |0〉, for

some |ψ2
0 〉 ∈ Hn−2. We continue in this fashion until all the

qubits have been disentangled. Thus we have constructed a
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FIG. 1. Implementing the first column of an isometry V from m � 0 qubits to n = 4 qubits. The action of G0 on |ψ0
0 〉 := V |0〉m can

be decomposed into operators {Gi
0}i∈0,1,2,3, where Gi

0 := Cu
3−i(U

u
0,i). The upper part shows how these gates successively zero the entries of

the column, while the lower part gives the circuit representation. The inverse of this decomposition scheme was introduced in [16] for state
preparation together with an efficient decomposition of the uniformly controlled gates Gi

0 into CNOT gates and single-qubit gates. Each asterisk
denotes an arbitrary complex number.

quantum gate G0 := Gn−1
0 Gn−2

0 · · ·G0
0 such that G0|ψ0

0 〉 =
|0〉n.4

In the following we describe how to construct a unitary G1

setting the second column of G0V to (0,1,0, . . . ,0) without
affecting the first column. We construct G0

1 = Cu
n−1(U u

1,0)
choosing the unitary operations such that the first entry of
each pair becomes zero (see Fig. 2). In other words, defining
|ψ0

1 〉 := G0V |1〉m we have G0
1|ψ0

1 〉 = |ψ1
1 〉 ⊗ |1〉 for some

state |ψ1
1 〉. Note that, by construction, the first column of

G0V in matrix form is (1,0, . . . ,0) and since G0 is unitary
the first row also has the form (1,0, . . . ,0). Hence the first
entry of |ψ0

1 〉 is already 0 and we can set the uppermost
2 × 2 block of the uniformly controlled gate G0

1, i.e., the block
acting on the states |0〉n and |1〉n, to the identity. Therefore,

4Note that G
†
0 is a circuit for preparing the state |ψ0

0 〉; in this sense
we have performed the inverse of state preparation.

we can perform this step without affecting the first column,
i.e., G0

1G0V |0〉m = G0
1|0〉n = |0〉n. The next step would be to

do the same to |ψ1
1 〉 (i.e., zero every second entry). Doing

so using a Cu
n−2(U ) gate would in general have a nontrivial

effect on the basis state |0〉n. Therefore, we modify the
procedure and instead use a Cu

n−2(U ) gate to zero every second
entry except that in the uppermost double block of |ψ1

1 〉 or
equivalently that in the uppermost block of four elements of
G0

1|ψ0
1 〉. We subsequently correct for this using an additional

MCG acting on the second least significant qubit, i.e., we
set G1

1 = Cn−1(U1,1)Cu
n−2(U u

1,1). With this additional MCG
we can directly address the quantum states corresponding to
the two nonzero entries in the uppermost four-element block.
Indeed, controlling on |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 on the first n − 2
qubits and on |1〉 on the least significant qubit, we can zero
the second nonzero entry of the uppermost four-element block
without affecting |0〉n.

FIG. 2. Implementing the second column of an isometry V from m � 1 qubits to n = 4 qubits. The operation of G1 on |ψ0
1 〉 := G0V |1〉m

can be decomposed into operators {Gi
1}i∈0,1,2,3, where G0

1 = Cu
3 (U u

1,0), G1
1 = C3(U1,1)Cu

2 (U u
1,1), G2

1 = C3(U1,2)Cu
1 (U u

1,2), and G3
1 = C3(U1,3).

Note that all these gates act trivially on |0〉n. Each asterisk denotes an arbitrary complex number.
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We conclude that G1
1G

0
1|ψ0

1 〉 = |ψ2
1 〉 ⊗ |0〉 ⊗ |1〉 and

G1
1|0〉n = |0〉n. We continue in this way, until the most sig-

nificant qubit is disentangled. We have therefore constructed
an operation G1 such that G1G0V |1〉m = G1|ψ0

1 〉 = |1〉n and
G1G0V |0〉m = G1|0〉n = |0〉n.

This procedure can be continued in a similar fashion,
leading to unitaries Gk such that GkGk−1 · · ·G0V |k〉m = |k〉n
and Gk|i〉 = |i〉 for all i ∈ {0,1, . . . ,k − 1}. For a general
description of the construction of the unitary Gk see Ap-
pendix A 3. We can hence construct a unitary operator
G := G2m−1G2m−2 · · · G0 satisfying GV = I2n×2m .

In order to compute the number of CNOT gates used for such
a decomposition, we use the following existing results:

(i) N	Cu
k

= 2k − 1 CNOT gates are sufficient to decompose
a UCG with k controls, up to a diagonal gate [16].

(ii) N	(m) = 2m − 2 CNOT gates are sufficient to decom-
pose a diagonal gate acting nontrivially on m qubits [18].

(iii) NCn−1(W ) = O(n) CNOT gates are sufficient to decom-
pose an (n − 1)-controlled special unitary gate W (see [7],
Corollary 7.10).

To take advantage of (i), we require a small modification to
our decomposition scheme. Note that instead of implementing
the UCGs, we do so up to diagonal gates, i.e., for every
k, instead of Cu

k (U ) we implement 	k+1C
u
k (U ), for some

diagonal gate 	k+1 on k + 1 qubits. The effect of these
diagonal gates is then corrected for at the end of the entire
circuit by adding a diagonal gate that acts nontrivially on m

qubits and whose CNOT count is given in (ii). (In fact, the
number of CNOT gates required for this is of sufficiently low
order that it does not feature in the count of Theorem 2.)

Furthermore, as shown in Lemma 2, we only require MCGs
Cn−1(W ) for W ∈ SU(2) and hence can use (iii). In fact, we
have modified the decomposition described in [7] and used
some technical tricks (see Appendix A 1) to obtain a CNOT

count for a Cn−1(W ) gate with leading order 28n.
We conclude that we can decompose each column of an

isometry using at most

Ncol =
n−1∑
s=0

(
N	Cu

n−1−s
+ NCn−1(W )

)

=
n−1∑
s=0

[(2n−1−s − 1) + O(n)] = 2n + O(n2)

CNOT gates. Note that, for simplicity, we have overcounted
the number of additional MCGs, since in the above we
have assumed that each Gs

k requires an additional MCG.
Therefore, to decompose an m to n isometry, we require
at most 2mNcol + N	(m) = 2m[2n + O(n2)] + 2m = 2m+n +
O(n2)2m CNOT gates.

Note that we implement every column of the isometry in a
similar fashion. However, there are many constraints on the last
few columns due to orthogonality or, in other words, the first
k entries of |ψ0

k 〉 := Gk−1Gk−2 · · ·G0V |k〉m are already zero
by construction and so we have only to act on the other 2n − k

entries. Therefore, one might expect that the CNOT count for
Gk decreases when k increases. Since we use 2nCNOT gates
to leading order for each column, our decomposition scheme
does not take advantage of this fact (for large n). Hence the

column-by-column decomposition has some inefficiency in
the case where m � n (by comparison to the case m � n). To
give an improved count in the cases m = n − 1 and m = n, we
introduce a further decomposition scheme based on the CSD,
which is adjusted to the unitary structure, in Sec. IV D. Note
that this scheme corresponds exactly to the decomposition
scheme of [12] in the case m = n.

Remark 3. In some physical realizations it is difficult
to implement CNOT gates between nonadjacent qubits. The
decomposition in this section can be adapted to the gate library
containing only nearest-neighbor CNOT and single-qubit gates
in a relatively efficient way. To do so, note that the UCGs
used to implement one column of an m to n isometry can
be performed with at most (5/3)2n + O(n2) nearest-neighbor
CNOT gates [16]. Furthermore, since a CNOT gate acting
between qubits a distance n apart can be decomposed using
O(n) nearest-neighbor CNOT gates [12], the MCGs used to
implement one column use O(n3) nearest-neighbor CNOT

gates. Therefore, the decomposition of an m to n isometry uses
at most (5/3)2m+n + O(n3)2m nearest-neighbor CNOT gates.

D. Decomposition of isometries using the cosine-sine
decomposition

The most efficient known decomposition scheme for
arbitrary unitary operators in terms of the number of CNOT

gates required uses the CSD [12]. In this section we adapt the
decomposition scheme used in [12] to m to n isometries. To
simplify the exposition, the count given here is not the lowest
we can obtain; an improvement is given in Theorem 7.

Theorem 3. Let m and n be natural numbers with 2 � m � n

and V be an isometry from m qubits to n qubits. There exists
a decomposition of V in terms of single-qubit gates and CNOT

gates such that the number of CNOT gates required satisfies

Niso(m,n) � 3 × 22n−3 − 2n + 2m−4(3 × 2m − 8). (12)

The cosine-sine decomposition (CSD) [19] was first used
in [20] in the context of quantum computation. In particular,
the CSD states that every unitary matrix U ∈ C2n×2n

can be
decomposed in terms of unitaries A0,A1,B0,B1 ∈ C2n−1×2n−1

and real diagonal matrices C and S satisfying C2 + S2 = I :

U =
(

A0 0
0 A1

)(
C −S

S C

)(
B0 0
0 B1

)
. (13)

The CSD can be summarized by the gate identity

(14)

(which is Theorem 12 of [12]) it allows a recursive decompo-
sition of an arbitrary unitary operation in terms of single-qubit
gates and uniformly controlled Ry and Rz gates.

In the case of an isometry, we again use a representation in
terms of a unitary matrix Vn such that V = VnI2n×2m . Now, if

032318-7



ITEN, COLBECK, KUKULJAN, HOME, AND CHRISTANDL PHYSICAL REVIEW A 93, 032318 (2016)

n > m, we can take the control qubit of the first (n − 1)-qubit
Cu

1 (Un−1) gate to be in the state |0〉 and hence this gate need not
be uniformly controlled. Thus, the following circuit identity
holds:

Note that Vn−1 represents an m to n − 1 isometry. In the matrix
representation the circuit identity above corresponds to setting
B1 = B0 in Eq. (13). We can decompose the (n − 1)-qubit
Cu

1 (U ) gate as above so that

We can use this idea to recursively decompose Vn. The
uniformly (n − 1)-controlled rotations can be decomposed
using at most 2n−1 CNOT gates [18,21]. The two Un−1

gates can be decomposed by using the CSD and the circuit
equivalence (14) recursively until two-qubit gates remain5

(each of which can be implemented with three CNOT gates).
In this way it can be shown that each Un−1 requires at most
(9/16)4n−1 − (3/2)2n−1 CNOT gates [12]. Note that this is not
the optimal count reached in [12], but we use this slightly
weaker count here for simplicity (a count that takes into
account the additional optimizations of the Appendix of [12]
can be found in Appendix A 4). The CNOT count for an m to n

isometry Niso(m,n) hence satisfies the recursion relations

Niso(m,i + 1) = Niso(m,i) + 9
8 4i − 2i if m � i < n, (15)

Niso(m,m) = 9
16 4m − 3

2 2m. (16)

Solving these leads to the claimed count.
Remark 4 (CSD approach zeroes too many entries). Re-

call that constructing a gate Vn such that V = VnI2n×2m is
equivalent to constructing a gate V

†
n such that V

†
n V = I2n×2m .

Therefore, rewriting Eq. (13), the first recursion step of the
CSD approach leads to(

C S

−S C

)(
A

†
0 0

0 A
†
1

)
U =

(
B0 0
0 B1

)
. (17)

If m < n − 1 we apply the same procedure to B0. However,
in this case, we already zeroed more entries than necessary in
the first recursion step. Specifically, it was unnecessary to zero
at least half of the entries in the upper right and in the lower left
2n−1 × 2n−1-dimensional block of the matrix on the right-hand
side of Eq. (17) and the number of unnecessary zeros grows as
m decreases. This intuitively explains why the CSD approach
is not well suited to m to n isometries, where m < n − 1:
By zeroing too many entries, more CNOT gates are used than
needed.

5We could finish the recursion at any stage such that only ñ-qubit
unitaries remain. Therefore, an improvement of the CNOT count for
ñ-qubit unitaries could help to improve the CNOT count given in
Eq. (12) [and Eq. (A22)].

Remark 5 (optimized state preparation). As a by-product
of the above we obtain an improved bound over that of [16]
on the number of CNOT gates required for state preparation
on an odd number n = 2k + 1 � 5 of qubits. The optimized
decomposition is based on [13] and described in Appendix A 5.
The count (A30) using state preparation on k qubits, which
requires 2k − k − 1 CNOT gates (as in [16]), gives the following
count for state preparation starting from the basis state |0〉⊗n:

NSPopt (n) � 23
24 2n − 3

2 2(n+1)/2 + 4/3. (18)

Previously, the bound of 23
24 2n CNOT gates to leading order

was only known to be achievable for an even number of
qubits [13] with a slightly weaker bound of 2n CNOT gates to
leading order in the odd case [16]. It is interesting to note the
parallelizability of our circuit for state preparation, similarly
to [13]. The form of the circuit means that, for large (odd)
n, the circuit depth (i.e., the number of computational steps
needed to perform the circuit) is about 3/4 of the total gate
count. Measuring the circuit depth only in terms of CNOT gates,
our decomposition scheme has depth 23

32 2n to leading order,
improving the previous best known bound of 23

24 2n [13]. In the
case of even n, the minimum known circuit depth is 23

48 2n [13].

V. COMPARISON OF DECOMPOSITIONS

We introduced three constructive decomposition schemes
for arbitrary isometries from m to n qubits and derived a
lower bound on the number of CNOT gates required for such
decompositions. The asymptotic results are summarized in
Tables I and II. To compare the three decomposition schemes,
we consider the ratios cK (m,n), cCC(m,n), and cCSD(m,n)
of the CNOT count for the optimized decomposition scheme
of Knill, the column-by-column approach, and the CSD
approach, respectively, to that of the lower bound for an
m to n isometry. First note that for m � 5 and for large
enough n the optimized decomposition scheme of Knill
performs similarly to the column-by-column decomposition
[i.e., cK (m,n) � cCC(m,n)]. For m � 4 we have cCC(m,n) � 2
and cK (m,n) varies between cK (4,n) � 2 (if n is even) and
cK (0,n) � 4.8 (if n is odd). Hence the column-by-column
decomposition requires fewer CNOT gates if m � 4 (and n is
large). In the case m � n, the CSD approach may outperform
the other two decompositions. For any natural number d and
for sufficiently large n, we have cCC(n − d,n) = 2d+2/(2d+1 −
1) [and cCC(n − d,n) � cK (n − d,n)] and cCSD(n − d,d) =
23(22d+1+1)
36(2d+1−1) . In particular, cCC(n − 2,n) � 2.3 and cCC(n −
1,n) � 2.7 for large n. For m = n − 1 we can use the CSD
approach to again reach cCSD(n − 1,n) � 1.9 for large n.

The column-by-column decomposition and the CSD ap-
proach also perform well for small m and n. We give a step-by-
step description of how to decompose m to n � 4 isometries
in Appendix B. The results are summarized in Table III.

In addition we could use the CSD approach (and a technical
trick) to lower the CNOT count for state preparation. In
particular, we could lower the lowest known CNOT count for
state preparation on 4 qubits from 9 [13] to 8 CNOT gates and on
5 qubits from 26 [13,16] to 19 CNOT gates (see Appendix A 5).

The column-by-column decomposition performs similarly
to the optimized decomposition of Knill with respect to the
CNOT count, but there are other differences that should be
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noted. For example, the column-by-column decomposition
adapts quite well to implementations where we only allow
nearest neighbor CNOT gates (see Remark 3). The optimized
decomposition scheme of Knill has the advantage that some of
the gates can be performed in parallel (see the circuit diagrams
in Sec. IV B).

Another important difference between the column-by-
column decomposition and the optimized decomposition of
Knill is their dependence on the efficiency of the decomposi-
tion of their building blocks. In the first case, any improvement
of the leading order of the CNOT count of uniformly controlled
gates (up to diagonal gates) leads to an improvement of the
leading order of the CNOT count for isometries (see Theorem 2),
whereas in the second case, the leading order of the CNOT count
depends on the leading order of the CNOT count for arbitrary
unitary gates (see Theorem 1).

Remark 6. Another interesting black box relation can
be extracted from [22], where the Sinkhorn normal form
for unitary matrices is used to decompose a unitary into a
sequence of diagonal gates and discrete Fourier transforms
(see Corollary 1 of [22]). Since we can perform the discrete
Fourier transform with a polynomial number of gates, they
do not contribute to the leading order of the CNOT count of
this decomposition. Therefore, this decomposition allows us
to relate the efficiency with which we can decompose a unitary
with the decomposition of diagonal gates.

VI. APPLICATION TO QUANTUM OPERATIONS

Experimental groups strive to demonstrate their ability to
control a small number of qubits and the ultimate demonstra-
tion would be the ability to do any quantum operation on them
[i.e., any completely positive trace-preserving (CPTP) map].
Since any such operation can be implemented via an isometry
followed by partial trace (using Stinespring’s theorem), we
can use our decomposition scheme for isometries to efficiently
synthesize arbitrary CPTP maps.

Indeed, we can use a similar parameter counting argument
as used to derive the lower bound for isometries to find a lower
bound on the number of CNOT gates required to implement arbi-
trary CPTP maps via a fixed quantum circuit topology. First we
use the Choi-Jamiolkowski isomorphism [23–25] to simplify
the parameter count. This isomorphism states that the set of all
CPTP maps from a system A consisting of m qubits to a system
B consisting of n qubits is isomorphic to the set of all density
operators ρAB onHA ⊗ HB satisfying trB(ρAB) = 1

2m IA. Since
a density operator ρAB is Hermitian, it can be described
by 22(n+m) real parameters. The condition trB(ρAB) = 1

2m IA

corresponds to 22m constraints and hence the determination of
a CPTP map requires 22(n+m) − 22m real parameters.

We restrict our analysis of the lower bound to the following
setting: For the implementation of a CPTP map E from an
m-qubit system A to an n-qubit system B we allow the
use of an arbitrary number k of qubits on which we can
perform CNOT and single-qubit gates, before we trace out a
system C consisting of k − n qubits. (Since tracing out qubits
commutes with quantum gates on the other qubits, without
loss of generality, we can defer tracing out to the end of the
circuit.) We then use an argument similar to that used to derive
the lower bound for isometries, but instead of commuting the

Rx and Rz gates to the left of each CNOT, we commute them
to the right so that we perform arbitrary single-qubit unitaries
on all of the qubits at the end of the circuit [reversing the
order of circuit diagram (5)]. Since we have unitary freedom
on the system C (because trC[(IB ⊗ UC)ρBC(IB ⊗ U

†
C)] =

trC(ρBC)), the single-qubit gates on each qubit of the system C

at the end of the circuit cannot introduce additional parameters.
Hence, using r CNOT gates, we can introduce at most 4r + 3n

real parameters. By the parameter count for a CPTP map given
above, we conclude that a circuit topology has to consist of
at least � 1

4 4m(4n − 1) − 3
4n	 CNOT gates in order that it can

implement arbitrary CPTP maps from m to n qubits.6

By Stinespring’s theorem, every CPTP map E from an
m-qubit system A to an n-qubit system B can be implemented
with an isometry V from system A to system BC, where the
system C consists of (at most) n + m qubits, followed by par-
tial trace on C. We can use the column-by-column approach7

to decompose the isometry V , which requires 4m+n − 1
24 22n+m

CNOT gates to leading order (without exploiting the unitary
freedom on C). Therefore, we have found a way to implement
an arbitrary quantum channel from m to n qubits in a
constructive and exact way using about four times the number
of CNOT gates required by the lower bound (for large enough n).

Note that the results of this section are derived in the setting
where the CPTP map is implemented in the quantum circuit
model. However, this is not the only possibility. For exam-
ple, alternative methods for the implementation of quantum
channels are described in [26,27], which allow for additional
classical randomness. In future work we will investigate how
to use our approach in an alternative model that allows either
measurements or classical randomness as additional resources,
in order to further improve the CNOT counts.

Note also that, by Naimark’s theorem, any positive-
operator-valued measure (POVM) on a system A can be imple-
mented using an isometry from system A to an enlarged system
AB followed by a measurement on system B. Therefore, our
decomposition schemes for isometries can also be used for the
implementation of arbitrary POVMs.
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APPENDIX A: TECHNICAL DETAILS

In this appendix we give a rigorous proof that the column-
by-column decomposition works for arbitrary m to n isome-
tries and we give an explicit CNOT count in the case n � 8.
Since MCGs arise in the column-by-column decomposition,
we first optimize the decomposition of such gates, based on the
decomposition scheme of [7]. In addition, we perform some
optimizations for the CSD approach (based on the Appendix
of [12]) and for state preparation.

1. Decomposition of MCGs

In this section we describe how to efficiently decompose
MCGs Cn−1,n(U ), where we focus on the special case
of Cn−1,n(W ) gates, where W ∈ SU(2). The decomposition
schemes are based on those in [7], except that we use some
technical tricks to reduce the number of CNOT gates needed.
Note that the number of CNOT gates required is the same
whether we control on one or zero, because we can always
transform a gate controlled on |0〉 on a certain control qubit
of a MCG into a gate controlled on |1〉 using two σx gates, as
illustrated by

We denote a k-controlled NOT gate acting on n qubits by
Ck,n(σx). In the case k = 2 with control on |1〉 ⊗ |1〉, we call
such a gate a Toffoli gate.

Lemma 3 [C1,2(U ) gates (Ref. [7], Corollary 5.3)]. Any
C1,2(U ) gate can be decomposed using two CNOT gates, three
special unitary gates A, B, and C, and a diagonal gate of the
form E = |0〉〈0| + eiδ|1〉〈1|, where δ ∈ R:

Lemma 4 [C2,3(U ) gates (Ref. [7], Lemma 6.1)]. Any
C2,3(U ) gate can be decomposed as follows:

where V 2 = U .
Lemma 5 [Toffoli gates (Ref. [7], Sec. VI A)]. A Toffoli

gate can be performed with six CNOT gates using the following
circuit:

where A = Rz(−π
2 )Ry(π

4 ), B = Ry(−π
4 ), C = Rz(π

2 ), and
E = |0〉〈0| + eiπ/4|1〉〈1|.

Remark 7 (Ref. [7], Corollary 6.2). By adjusting A, B, C,
and E, the circuit topology in Lemma 5 can be used to generate
C2,3(U ) for any unitary U .

Proof. This circuit equivalence follows from Lemmas 3 and
4 together with the following circuit identities:

�
We can halve the CNOT count if we are only interested in

performing the Toffoli gate up to a diagonal gate.
Lemma 6 (Ref. [7], Sec. VI B). Let A := Ry(π

4 ). We can
decompose a Toffoli gate up to a diagonal gate with the
following decomposition:

Proof. To see this, note that if the second control qubit
is in the state |0〉, the least significant qubit is unchanged,
since AA† = I . If the second control qubit is in the state |1〉
and the first control qubit in the state |0〉, the action on the
least significant qubit is A2σxA

†2
, which is −|0〉〈0| + |1〉〈1|.

If both control qubits are in the state |1〉, the action on the
least significant qubit is AσxAσxA

†σxA
† = σx . We choose the

diagonal gate 	 such that |010〉 is mapped to −|010〉. �
Lemma 7 [diagonal gates commute with UCGs].

Proof. By inspection. �
Lemma 8 [Ck,n(σx), k � � n

2 	]. Let n � 5 denote the total
number of qubits considered and k ∈ {1, . . . ,� n

2 	}; then we can
implement a Ck,n(σx) gate with at most 8k − 6 CNOT gates.

Note that the case k = 1 is trivial and the case k = 2 is
implied by Lemma 5 (although we know of a tighter bound in
both cases).

To illustrate the idea in the remaining cases, consider the
decomposition leading to the desired CNOT count for k = 4
and n = 7. Lemma 7.2 of [7] shows that
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However, we consider instead the alternative decomposition

To see that this is also valid, note that the diagonal gates 	i

are of the same kind as introduced in Lemma 6 and therefore
	i = 	

†
i . By Lemma 7 the two 	2 and 	1 gates cancel each

other out. In addition, the combination of all gates between
the two 	0 gates together correspond to a UCG acting only on
the least significant (lowest) qubit and hence the two 	0 gates
cancel each other out by Lemma 7.

The Toffoli gates that do not act on the least significant
qubit can be decomposed together with the diagonal gates
using Lemma 6. This leads to the following decomposition of
the action part of the last circuit:

where A = Ry(π
4 ). The marked gates cancel each other out,

because they commute with the gates between them. The reset
part can be decomposed analogously.

Proof. First we apply Lemma 7.2 of [7] (a circuit diagram
for the case k = 5 and n = 9 can be found in [7]). By arguments
similar to those used in the special case above, we introduce a
corresponding diagonal gate for each Toffoli gate apart from
the two that act on the least significant qubit [i.e., on the target
qubit of the Ck,n(σx) gate].

The required CNOT count for Ck,n(σx) is thus equal to twice
that required for the reset part plus the number of CNOT gates
needed to implement the Toffoli gates that form the first and
last gates in the action part. By Lemma 5, the two Toffoli gates
can be decomposed using 12 CNOT gates. One reset part uses
N reset

Ck,n(σx ) = 4(k − 3) + 3 CNOT gates. This leads to the claimed
count. �

Lemma 9 [Ck,n(σx) (Ref. [7], Lemma 7.3)]. Let n � 5
denote the total number of qubits considered. A Cn−2,n(σx) gate
can be decomposed into two Ck,n(σx) and two Cn−k−1,n(σx)
gates, where k ∈ {2,3, . . . ,n − 3}.

For example, the decomposition for n = 7 and k = 4 is
shown in the following circuit diagram:

Theorem 4 [Cn−1,n(U )]. Let n � 3 and U be a single-qubit
unitary. We can decompose a Cn−1,n(U ) gate using at most
16n2 − 60n + 42 CNOT gates.

Proof. The idea is contained in the following diagram in
which V is chosen such that V 2 = U (see Lemma 7.5 of [7]):

Using Lemma 3, this gives the relation NCn−1,n(U ) =
NCn−2,n(U ) + 4 + 2NCn−2,n(σx ). For simplicity, we consider the
Cn−2,n(U ) gate as a Cn−2,n−1(U ) gate. This will lead to
an overcount in our final CNOT count. Using Lemma 9 we
have NCn−2,n(σx ) = 2(NC�n/2	−1,n(σx ) + NC�n/2�,n(σx )) for n � 5 and
hence, from Lemma 8, NCn−2,n(σx ) � 16n − 40 for n � 5. Note
that Lemma 5 implies that the same bound also holds for n = 4
(although we know of a tighter bound in this case). Thus, we
wish to solve the recursion NCn−1,n(U ) = NCn−2,n−1(U ) + 32n −
76. Noting that NC2,3(U ) = 6 (see Remark 7), we obtain the
stated count. �

Note that this count could be improved. However, it turns
out that the case W ∈ SU(2) is particularly useful. In this case
we make more effort with the optimizations leading to the
following.

Theorem 5 [Cn−1,n(W ), where W ∈ SU (2)]. Let n � 8 and
W ∈ SU(2). We can decompose a Cn−1,n(W ) gate using at
most 28n − 88 CNOT gates if n is even and 28n − 92 CNOT

gates if n is odd.
Proof. To aid the proof, we provide illustrations for the

case n = 8. By Lemma 7.9 of [7] there exist quantum gates
A,B,C ∈ SU(2) such that we can decompose the Cn−1,n(W )
gate as follows:

By Lemma 9 we can decompose the Cn−2,n(σx) gates using two
Ck1,n(σx) and two Ck2,n(σx) gates, where we set k2 = �n/2	
and k1 = n − k2 − 1. In our example k1 = 4 and k2 = 3:

Since the Cn−2,n(σx) gate is its own inverse, we can use
the inverted decomposition scheme to decompose the second
Cn−2,n(σx) gate. We can decompose the gates Ck1,n(σx) and
Ck2,n(σx) using Lemma 8. Note that this works for all n � 8,
since 3 � k1,k2 � �n/2	. We can lower the CNOT count with
some technical tricks. As in the proof of Corollary 7.4 of [7],
we can decompose all Toffoli gates not acting on the least

032318-11



ITEN, COLBECK, KUKULJAN, HOME, AND CHRISTANDL PHYSICAL REVIEW A 93, 032318 (2016)

TABLE IV. CNOT counts and numbers of real parameters that can be introduced into a circuit by a specific gate, for various controlled gates.

Gate Notation CNOT count (upper bound) No. of real parameters

UCG (up to a diagonal gate) 	Cu
n−1(U ) 2n−1 − 1a 2n

uniformly controlled rotation Cu
n−1(Rz)/Cu

n−1(Ry) 2n−1b 2n−1

multicontrolled unitary gate Cn−1,n(U ) 16n2 − 60n + 42 if n � 3c 4
multicontrolled special unitary gate Cn−1,n(W ) 28n − 88 if n � 8 is evend 3

[W ∈ SU(2)] 28n − 92 if n � 8 is oddd

multicontrolled Toffoli gate Ck,n(σx) 8k − 6 if n � 5, k ∈ {3, . . . ,� n

2 	}e 0

aReference [16].
bReferences [18,21].
cTheorem 4.
dTheorem 5.
eLemma 8.

significant qubit up to diagonal gates. This can be seen
by reversing the decomposition scheme of Lemma 8 for
the second and fourth Ck1,n(σx) gates and using Lemma 7.
Therefore, using the same technique as in Lemma 8, but
implementing all Toffoli gates up to diagonal gates, we can
decompose each of the Ck1,n(σx) gates using NCk1,n(σx ) − 2 ×
6 + 2 × 2 = 8k1 − 14 CNOT gates.

Now consider the marked part of the last circuit. By Lemma
8 this can be decomposed using

where, to simplify, we have not explicitly illustrated the diag-
onal gates. The two reset parts commute with the controlled
B gate, since they do not act on the two least significant
qubits, and cancel out. Therefore, each of the marked Ck2,n(σx)
gates uses NCk2 ,n(σx ) − N reset

Ck2 ,n(σx ) = 4k2 + 3 CNOT gates. We
decompose the other two Ck2,n(σx) gates exactly as in Lemma
8. Using Lemma 3 for the three single controlled gates then
leads to the claimed CNOT count. �

2. Overview of CNOT counts for controlled gates

We summarize CNOT counts for some commonly used
uniformly and not uniformly controlled gates in Table IV. Note
that implementing a uniformly controlled Cu

n−1(U ) gate up to
a diagonal gate 	 means that we implement 	Cu

n−1(U ), for
some diagonal gate 	. The number of real parameters required
to specify a particular gate is shown in the final column and
follows from Lemma 1 and the block diagonal form of the
uniformly controlled gates (see also the argument used to
derive the lower bound for isometries in Sec. III). For example,
a Cu

n−1(U ) gate is described by 2n−1(2 × 2) unitaries. By
Lemma 1 this corresponds to 4 × 2n−1 real parameters. Since a
diagonal gate 	 on n qubits is described by 2n real parameters,
a 	Cu

n−1(U ) gate is described by 4 × 2n−1 − 2n = 2n real
parameters.

3. Rigorous proof of the decomposition scheme described in
Sec. IV C and exact CNOT count

We begin this section by introducing some additional
notation. For m′ ∈ N and k ∈ {0,1, . . . ,2m′ − 1} we use the
notation k = [km′−1,km′−2, . . . ,k0] := ∑m′−1

i=0 ki2i , i.e., {ki} are
the binary digits of k. For s ∈ N0 we define ak

s ,b
k
s ∈ N0 by

k = ak
s 2s + bk

s such that ak
s is maximal. For s ∈ {1,2, . . . ,n′ −

1}, where n′ ∈ N�2 and n′ � m′, we can also write ak
s =

[kn′−1,kn′−2, . . . ,ks] and bk
s = [ks−1,ks−2, . . . ,k0].

We now consider an elementary step in the decomposition
scheme. Let n ∈ N�2, m ∈ N with n � m, k ∈ {1,2, . . . ,2n −
1}, and s ∈ {0,1, . . . ,n − 2}. Furthermore, suppose |ψ〉 is an
n-qubit state of the form

|ψ〉 =
⎛
⎝2n−s−1∑

l=ak
s

cl|l〉
⎞
⎠ ⊗ |ks−1ks−2 · · · k0〉, (A1)

where cl ∈ C for all l ∈ {ak
s ,a

k
s + 1, . . . ,2n−s − 1}. Since it is

clear from the context that, e.g., |l〉 ∈ Hn−s , we shorten the
notation and write |l〉 instead of |l〉n−s .

[Note that we use the following convention: If s − 1 <

0, we mean that the part |ks−1ks−2 · · · k0〉 in Eq. (A1) does
not exist, i.e., for s = 0 the statement of Eq. (A1) is |ψ〉 =∑2n−1

l=ak
0
cl|l〉. Analogously, I⊗0 means that no such part exists in

the considered expression. Similarly, we set {ns, . . . ,ne} = ∅
if ne < ns .]

Lemma 10. Take |ψe〉 := ∑2n−s−1
l=ak

s
cl|l〉, where e stands for

entangled and assume that

c2ak
s+1+1 = 0 if ks = 0, bk

s+1 = 0. (A2)

There exists a UCG A := Cu
n−1−s(U ) of the form

A =
2n−1−s−1∑

l=0

|l〉〈l| ⊗ Ul ⊗ I⊗s (A3)

such that |ψ ′〉 := A|ψ〉 has the form

∣∣ψ ′〉 =
⎛
⎝2n−(s+1)−1∑

l=ak
s+1

c′
l|l〉

⎞
⎠ ⊗ |ksks−1 · · · k0〉, (A4)
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FIG. 3. Using a quantum gate A to disentangle the (n − s)th qubit into the state with ks = 0 (left) or ks = 1 (right).

where c′
l ∈ C for all l ∈ {ak

s+1,a
k
s+1 + 1, . . . ,2n−(s+1) − 1}.

Additionally, A has the property that

A|i〉 = |i〉 for all i ∈ {0,1, . . . ,k − 1}. (A5)

Proof. The following proof depends on whether ks = 0
or ks = 1. In the case ks = 0 we also have to distinguish
between the cases bk

s+1 = 0 and bk
s+1 = 0. The reader might

find it useful to read the proof first considering only the case
ks = 1 (and therefore bk

s+1 = 0). Considering blocks of two
elements, there exist two possible forms of |ψe〉, depending
on whether ks = 0 or ks = 1. If ks = 0, then ak

s = 2ak
s+1 is

even and therefore |ψe〉 begins with an even number of zeros
(assuming cak

s
= 0). If ks = 1, then ak

s = 2ak
s+1 + 1 is odd and

|ψe〉 begins with an odd number of zeros (see Fig. 3). By
Eq. (A3) the quantum gate A leaves the s least significant
qubits invariant and we can write A|ψ〉 = (

∑2n−s−1
l=0 c′e

l |l〉) ⊗
|ks−1ks−2 · · · k0〉 for some coefficients c′e

l ∈ C. We define

|ψ ′e〉 := ∑2n−s−1
l=0 c′e

l |l〉. We want to find a gate A such that for
l′ ∈ {0,1, . . . ,2n−s−1 − 1}, c′e

2l′+1 = 0 if ks = 0 and c′e
2l′ = 0

if ks = 1, i.e., we want to disentangle the (n − s)th qubit into
the state |ks〉.

We now determine the UCG A. To ensure that A fulfills
Eq. (A5) we set

Ul =
{

I for l ∈ {0,1, . . . ,ak
s+1} if bk

s+1 = 0

I for l ∈ {0,1, . . . ,ak
s+1 − 1} if bk

s+1 = 0.

(A6a)

(A6b)

If the gate A is not already fully specified by Eq. (A6), we use
Lemma 2 to determine the gates Ul for l ∈ {ak

s+1 + 1,ak
s+1 +

2, . . . ,2n−1−s − 1} if bk
s+1 = 0 and for l ∈ {ak

s+1,a
k
s+1 +

1, . . . ,2n−1−s − 1} if bk
s+1 = 0:

Ul

(
c2l

c2l+1

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r

(
1
0

)
if ks = 0

r

(
0
1

)
if ks = 1,

(A7a)

(A7b)

where r ∈ R. (Note that if bk
s+1 = 0 and l = ak

s+1, the gate
A acts trivially on |i〉 for all i ∈ {0,1, . . . ,k − 1} because
of the form of the gate A and since ak

s+1 > ai
s+1 for all

i ∈ {0,1, . . . ,k − 1} in the considered case.)
With this choice of the gate A we conclude that for all

l ∈ {ak
s+1 + 1,ak

s+1 + 2, . . . ,2n−1−s − 1} we have c′e
2l+1 = 0 if

ks = 0 and c′e
2l = 0 if ks = 1. Because of the initial form of

|ψe〉 and the construction of the gate A we conclude further that
c′e

l′ = 0 for l′ ∈ {0,1, . . . ,2ak
s+1 − 1}. It remains to consider

the two coefficients c′e
2ak

s+1
and c′e

2ak
s+1+1.

If ks = 0 and bk
s+1 = 0, then we can zero the coefficient

c2ak
s+1+1 with the gate A [see Eq. (A7a)]. In the case ks = 0 and

bk
s+1 = 0 the coefficient c2ak

s+1+1 is zero by assumption and we
act trivially on it with the gate A by Eq. (A6a). If ks = 1, then
c′e

2ak
s+1

= 0 because the corresponding entry in |ψe〉 is initially
zero by Eq. (A1) and A acts trivially on it by Eq. (A6a). So
in all cases we can write |ψ ′e〉 = (

∑2n−(s+1)−1
l=ak

s+1
c′
l|l〉) ⊗ |ks〉 for

some c′
l ∈ C (see Fig. 3). Therefore, A|ψ〉 is of the desired

form (A4) and by construction A satisfies Eq. (A5). �
Lemma 11. Let k ∈ {1,2, . . . ,2n − 1} and s ∈ {0,1, . . . ,n −

1} be such that ks = 0 and bk
s+1 = 0. Let |ψ〉 be an n-qubit

state of the form (A1). Then there exists a MCG B :=
Cn−1(U ) whose nontrivial part is of the form |K1〉〈K1| ⊗
U ⊗ |K0〉〈K0|, where K1 = [kn−1,kn−2, . . . ,ks+1] and K0 =
[ks−1,ks−2, . . . ,k0] such that we can write

∣∣ψ ′〉 := B|ψ〉 =
⎛
⎝2n−s−1∑

l=ak
s

c′
l|l〉

⎞
⎠ ⊗ |ks−1ks−2 · · · k0〉, (A8)

where c′
l ∈ C for all l ∈ {ak

s ,a
k
s + 1, . . . ,2n−s − 1} and

c′
2ak

s+1+1
= 0. In addition, B leaves the first k basis states

invariant

B|i〉 = |i〉 for i ∈ {0, . . . ,k − 1}. (A9)

Proof. Since ks = 0 the condition (A9) is satisfied by
construction of the gate B. We define the gate U with Lemma 2
such that

U

(
c2ak

s+1

c2ak
s+1+1

)
= r

(
1
0

)
, (A10)

where r ∈ R. �
Lemma 12 [one column of an isometry]. Let k ∈

{1,2, . . . ,2n − 1}. Let |ψ〉 ∈ Hn be an n-qubit state such that
〈i|ψ〉 = 0 for i ∈ {0,1, . . . ,k − 1}. There exists a quantum
gate Gk with the following properties:

Gk|i〉 = eiϕi |i〉, i ∈ {0,1, . . . ,k − 1}, (A11)

Gk|ψ〉 = eiϕk |k〉, (A12)

where ϕi ∈ R for all i ∈ {0,1, . . . ,k}.
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FIG. 4. Decomposition scheme of a quantum gate Gk . The asterisk surrounded by a square signifies a control on either one or zero.

Proof. We claim that we can implement the operator Gk

with a circuit of the form as shown in Fig. 4.
(Note that we have interchanged the order of the MCGs and

the UCGs compared with Sec. IV C. We are allowed to do this
since the gates commute by their construction.)

The structure of this decomposition is based on the idea
used for state preparation in [16]. The diagonal gates in
{	i}i∈{0,1,...,n−1} are present so we can use the efficient
decomposition of the UCGs up to diagonal gates in [16]. Note
that we never use the MCG Cn−1(U0) since we can absorb it
into the UCG Cu

n−1(U u
0 ). Formally we write

Gk =
n−1∏
s=0

Os :=
n−1∏
s=0

(	s ⊗ I⊗s)Cu
n−1−s

(
U u

s

)
Cn−1(Us).

To keep the notation simple, we do not write down which of
the n qubits are the control or target qubits. The target qubit of
the controlled gates with lower index s is the (n − s)th qubit.
We consider all controlled gates as n qubit gates. If there are
free qubits, i.e., qubits that are neither controlled nor acted on,
they are the least significant ones.

We use Lemma 10 recursively to disentangle one qubit
after another starting from the state |ψ〉. More formally, we
define the state |ψs〉 := ∏s−1

s ′=0 Os ′ |ψ〉 for s ∈ {1,2, . . . ,n} and
we set |ψ0〉 := |ψ〉. To determine the gate Cu

n−1−s(U
u
s ) for

s ∈ {0,1, . . . ,n − 2} we apply Lemma 10 on the state |ψ ′
s〉 :=

Cn−1(Us)|ψs〉. If ks = 0 and bk
s+1 = 0, |ψs〉 does not satisfies

the condition (A2) for Lemma 10 in general. In this case we
can determine the MCG Cn−1(Us) by Lemma 11 such that
|ψ ′

s〉 satisfies the condition (A2). In all other cases we set
Cn−1(Us) = I . Note that the diagonal gate 	s ⊗ I⊗s leaves
the form of the state Cu

n−1−s(U
u
s )|ψ ′

s〉 invariant up to phase
shifts.

In the case s = n − 1 we have bk
n = 0 and so either the

most significant qubit is initially disentangled (kn−1 = 1) or
can be disentangled with the MCG Cn−1(Un−1), determined
by Lemma 11 (kn−1 = 0). Therefore, we set Cu

0 (U u
n−1) = I

and 	n−1 = I . By construction, the operators Os leave the
states {|i〉}i∈{0,1,...,k−1} invariant (up to phase shifts caused by
the diagonal gates). �

Lemma 13 [CNOT count for one column]. Let k ∈
{1,2, . . . ,2n − 1}. We can decompose a quantum gate Gk ,
which is of the form as describe in Lemma 12, using
at most [(2n − n − 1) + Qk(n)NCn−1(U )] CNOT gates, where
Qk(n) := |{s : ks = 0 ∧ bk

s+1 = 0, s ∈ {0,1, . . . ,n − 1}}| and
NCn−1(U ) denotes the number of CNOT gates used to decompose
a Cn−1(U ) gate.

Proof. To decompose the quantum gate Gk we use the
decomposition scheme described in the proof of Lemma
12. The number of CNOT gates used to decompose the
UCGs (together with the diagonal gates) give a count of∑n−1

s=0 (2n−1−s − 1) = 2n − n − 1 CNOT gates [16]. By the
construction of the proof of Lemma 12 we conclude that the
quantity of MCGs used for the decomposition of Gk is at most
Qk(n). We add the number of CNOT gates used to decompose
Qk(n) MCGs to the CNOT count used to decompose the UCGs
and get the claimed count. �

Corollary 1. The number of MCGs Q(m,n) used to decom-
pose all operators in {Gi}i∈{1,2,...,2m−1} using the decomposition
scheme as in the proof of Lemma 12 is given by

Q(m,n) = 2m
(
n − m

2
− 1

)
− n + m + 1. (A13)

Proof. We define the indicator function I (k,s) by

I (k,s) :=
{

1 if ks = 0 ∧ bk
s+1 = 0

0 otherwise.
(A14a)

(A14b)

In other words I (k,s) = δks ,0(1 − δbk
s+1,0

) = δks ,0 − δbk
s+1,0

since bk
s+1 = 0 implies ks = 0. Now we can write Qk(n) =∑n−1

s=0 I (k,s). By Lemma 13,

Q(m,n) =
2m−1∑
k=1

Qk(n) =
n−1∑
s=0

Qs(m), (A15)

where Qs(m) := ∑2m−1
k=1 I (k,s) denotes the number of MCGs

acting on the (n − s)th qubit used to decompose all the gates
in {Gi}i∈{1,2,...,2m−1}. If m � s � n − 1 we have

Qs(m) =
2m−1∑
k=1

I (k,s) = 2m − 1 (A16)

since I (k,s) = 1 for the whole index range. If 0 � s �
m − 1 we include k = 0 in the index range to simplify the
combinatorial idea behind the following calculation:

Qs(m) =
2m−1∑
k=0

δks ,0 − δk mod 2s+1,0 = 2m−1 − 2m−s−1. (A17)

Here we have used that δbk
s+1,0

= δkmod2s+1,0 by definition of

bk
s+1. Plugging everything into Eq. (A15), we get the claimed

count. �
Lemma 14 [column-by-column decomposition]. Let V be

an m to n isometry, described by a 2n × 2m matrix, and I2n×2m
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denote the first 2m columns of the 2n × 2n identity matrix.
There exist quantum gates G1,G2, . . . ,G2m−1 of the same form
as in Lemma 12, as well as a quantum gate G0, which satisfies
Eq. (A12) for an arbitrary n-qubit state |ψ〉, and a diagonal
gate 	 acting on m qubits such that

G
†
0G

†
1 · · ·G†

2m−1(I⊗(n−m) ⊗ 	†)I2n×2m = V. (A18)

Proof. Assume that we know a decomposition of a quantum
gate G into one-qubit and CNOT gates. We can inverse its order
and take the conjugate transpose of the one-qubit gates to get
a decomposition of G†, since a CNOT gate is inverse to itself.
In particular, G† and G can be implemented using the same
number of CNOT gates. This allows us to replace Eq. (A18) by

I2n×2m = (I⊗(n−m) ⊗ 	)G2m−1G2m−2 · · · G0V. (A19)

By definition of the gate G0, we can choose it such that
G0V |0〉m = eiϕ0

0 |0〉n, where ϕ0
0 ∈ R. Since the columns of an

isometry are orthonormal and G0 is unitary, the columns of
G0V are also orthonormal (for example, |n〈0|G0V |0〉m| = 1
implies that n〈0|G0V |1〉m = 0). We can therefore choose
G1 such that G1G0V |1〉m = eiϕ1

1 |1〉n, where ϕ1
1 ∈ R. By

definition of G1, G1G0V |0〉m = eiϕ1
0 |0〉n, where ϕ1

0 ∈ R. If we
continue this procedure, we get G2m−1G2m−2 · · · G0V |i〉m =
eiϕ2m−1

i |i〉n for i ∈ {0,1, . . . ,2m − 1}, where ϕ2m−1
i ∈ R. We

clear up the phases with a diagonal gate 	 acting
on the m least significant qubits such that (I⊗(n−m) ⊗
	)G2m−1G2m−2 · · ·G0V |i〉m = |i〉n for i ∈ {0,1, . . . ,2m − 1},
which is equivalent to Eq. (A19). �

Theorem 6 [CNOT count for an isometry]. Let m and n be
natural numbers with n � 8 and V be an isometry from m

qubits to n qubits. There exists a decomposition of V in terms
of single-qubit gates and CNOT gates such that the number of
CNOT gates required satisfies

Niso(m,n) � NSP(n) + NG(m,n) + N	(m), (A20)

where NSP(n) denotes the number of CNOT gates required
for state preparation on n qubits starting from the state |0〉n,
N	(m) � 2m − 2 denotes the number of CNOT gates required
to decompose a diagonal gate acting on m qubits [18], and
NG(m,n) is the number of CNOT gates used to decompose the
gates in {Gi}i∈{1,2,...,2m−1}.

Proof. We decompose V as described in Lemma 14 and
{Gi}i∈{1,2,...,2m−1} as in the proof of Lemma 12. By Lemma 13
we have

NG(m,n) =
2m−1∑
k=1

2n − n − 1 + Qk(n)NCn−1(U )

= (2m − 1)(2n − n − 1) + Q(m,n)NCn−1(U ),

where Q(m,n) = 2m(n − m
2 − 1) − n + m + 1 is the number

of MCGs used, as given by Corollary 1, and NCn−1(U ) denotes
the number of CNOT gates needed to decompose a MCG
Cn−1(U ), given by Theorem 5. Note that we require U ∈
SU(2) to use Theorem 5. This causes no problems in our
construction since Lemma 11 holds for U ∈ SU(2). The gate
G

†
0 can be decomposed using a decomposition scheme for state

preparation, which finishes the proof. �
Corollary 2 [explicit count for an isometry]. The number of

CNOT gates required to decompose an m to n � 8 isometry V

satisfies

Niso(m,n) �
⌈

2m+n − 1
24 2n − 2 × 2n/2

+ 2m[28n2 + m(44 − 14n) − 117n + 88]

− 28n2 + m(28n − 88) + 117n − 87
⌉
. (A21)

Proof. Theorem 5 implies that NCn−1(U ) � 28n − 88 for all
n (for simplicity we overcount in the case that n is odd). The
asymptotic best known CNOT counts for state preparation (see
Table I) give us the upper bound NSP(n) � 23

24 2n − 2 × 2n/2 +
2. The number of CNOT gates used to decompose a diagonal
gate 	 acting on m qubits is at most N	(m) = 2m − 2 [18].
Using the inequality (A20), this leads to the claimed count. �

4. Optimization of the decomposition of an isometry
using the CSD

Theorem 7 [optimized CSD approach]. Let m and n be
natural numbers with 2 � m � n and V be an isometry from
m qubits to n qubits. There exists a decomposition of V in terms
of single-qubit gates and CNOT gates such that the number of
CNOT gates required satisfies

Niso(m,n) � 23
144 (4m + 2 × 4n) − 2m−1 − 2n + 1

3 (m − n + 4).
(A22)

Note that we recover the optimized CNOT count for general
quantum gates [12] setting n = m in the inequality (A22).

Proof. We optimize the CNOT count of Sec. IV D using
the two ideas described in the Appendix of [12]. There it is
shown how one can combine the decomposition of the Cu

i (Ry)
gates with neighboring i-qubit-Cu

1 (U ) gates to save one CNOT

gate over what would be required if the Cu
i (Ry) gates were

decomposed on their own. The essential idea is to use the
circuit identity

The same idea also works for the CSD adapted to isometries,
allowing us to save one CNOT per uniformly controlled Ry gate.

To count the number of uniformly controlled Ry gates
QRy

(m,n) used for an m to n isometry using the decomposition
scheme of Sec. IV D we use the following recursion relation:

QRy
(m,i + 1) =QRy

(m,i) + 2 × 4i−2 − 2

3
+ 1

if m � i < n, (A23)

QRy
(m,m) = 4m−2 − 1

3
, (A24)

where the last relation comes from Appendix A of [12].
Solving these gives

QRy
(m,n) = 1

144 (22n+1 + 4m) + 1
3 (n − m − 1). (A25)

The CSD decomposition is used until the only generic
unitaries that remain are on two qubits. In Appendix B of [12] it
is shown how to save one CNOT gate for each of the remaining
two-qubit gates apart from one. Again this idea also works
using the CSD adapted to isometries. The number of two-qubit
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gates QU2 (m,n) arising in the decomposition scheme described
in Sec. IV D satisfies the following recursion relations:

QU2 (m,i + 1) = QU2 (m,i) + 2 × 4i−2 if m � i < n,

(A26)

QU2 (m,m) = 4m−2, (A27)

where the second of these relations is taken from Appendix B
of [12]. Solving these gives

QU2 (m,n) = 1
48 (22n+1 + 4m). (A28)

The optimized CNOT count is thus given by

Niso(m,n) = Ñiso(m,n) − QRy
(m,n) − QU2 (m,n) + 1,

(A29)
where Ñiso(m,n) is bounded by the inequality (12). This leads
to the claimed count. �

5. Optimized state preparation

For state preparation on two and three qubits there exist ad
hoc methods using one and three CNOT gates, respectively [28].
For state preparation on n � 4 qubits we use the decomposition
scheme described in [13]. In the case that n is even, this uses
the following iterative circuit:

|0

SP

|0
SP

•
U1

...
...

. . .
|0 |0 •

=
|0 |0

U2
...

...
. . .

|0 |0

where we have divided the qubits into two groups of n/2. In
other words, state preparation on n qubits is equivalent to state
preparation on n/2 qubits, n/2 CNOT gates, and then two n/2
qubits unitary operations. If n is odd, the unitary U1 is replaced
by an �n/2�-qubit unitary and U2 by an �n/2� to �n/2� + 1
isometry.

If n is odd we can implement U2 using the CSD approach.
Furthermore, we can use a technical trick similar to that
described in Appendix B of [12] to save one CNOT gate when
implementing U1: As noted in Appendix B of [12], all apart
from one of the two-qubit gates arising in the decomposition
of a general unitary can be decomposed using two CNOT gates.
For the last one we can also extract a diagonal gate and merge
it with the state preparation, since the diagonal gate commutes
through the control qubits of the CNOT gates that precede U1.
In other words, for n even, we have

NSP(n) � NSP

(n

2

)
+ n

2
+ 2Niso

(n

2
,
n

2

)
− 1,

NSP(n + 1) � NSP

(n

2

)
+ n

2
+ Niso

(n

2
,
n

2

)
+ Niso

(n

2
,
n

2
+ 1

)
− 1,

(A30)

where for the purpose of evaluating Niso in these counts
we use the inequality (A22). Starting from NSP(2) = 1 and
NSP(3) = 3 [28], this allows us to iteratively compute NSP(n)
for increasing n. For illustration purposes, the circuit for state

preparation on four qubits is shown in the following circuit
diagram:

Note that the depth of the circuit is, to leading order, the number
of steps required to perform U2, since U1 and U2 can be done
in parallel and dominate the gate count.

APPENDIX B: ISOMETRIES ON A SMALL NUMBER
OF QUBITS

1. Isometries from one to two qubits

We present an ad hoc decomposition for a 1 to 2 isometry V

reaching the theoretical lower bound of two CNOT gates. Our
result is based on the following decomposition of an arbitrary
two-qubit operator U described in [12,14,15]:

We represent V by a unitary matrix V2 such that V = V2I22×21 .
Since we are only interested in the first two columns of V2,
we can replace the diagonal gate 	 of the last circuit by a
single-qubit diagonal gate acting on the least significant qubit.
Absorbing this gate into the neighboring (arbitrary) single-
qubit gate, we conclude the following circuit equivalence:

2. Isometries leading to three-qubit states

In this section we explain the steps needed to decompose
isometries from m to 3 qubits for m = 1 and m = 2. Note
that for m = 0 one can use the decomposition scheme for state
preparation given in [28,29], and for m = 3 the decomposition
scheme of [12].

a. Isometries from one to three qubits

We use the column-by-column approach described in
Sec. IV C to decompose an isometry V from one to three
qubits. As in Sec. IV, we represent the 8 × 2 matrix corre-
sponding to V by an 8 × 8 unitary matrix G† by writing V =
G†I8×2. The unitary G

†
0 (defined in Sec. IV C) corresponds

to state preparation on three qubits (G†
0|0〉⊗3 = V |0〉 =: |ψ0

0 〉)
and can therefore be implemented with the techniques de-
scribed in [28,29].

We now consider constructing a circuit for the unitary G1.
We define |ψ0

1 〉 := G0V |1〉 and note that its first entry is zero.
One can use Lemma 2 to choose the gates depicted in the
circuit diagram below such that they have the following action
on |ψ0

1 〉 (as previously each asterisk represents an arbitrary
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complex entry):

Note that all the gates in the circuit above act trivially on the
state |0〉⊗3. Therefore, this represents a valid circuit for the
unitary G1.

Remark 8. The notation in the circuit diagram above is as
introduced in the general case in Sec. IV C. The difference
between the circuit above and the circuit we would get by
the techniques of Sec. IV C is that we switch the order of the
UCG and the MCG (note that they commute by construction)
and leave out some controls of the MCGs. Indeed, similar
simplifications are possible for most MCGs, which arise in
the column-by-column decomposition of arbitrary isometries
from m to n qubits. We have not taken this into account in the
general CNOT count since it does not affect its leading order.

Since MCGs are a special case of UCGs, we can implement
the MCGs using UCGs instead. Furthermore, we can imple-
ment all the UCGs up to diagonal gates (i.e., implement 	C

rather than C for each UCG C) and correct for these at the
end using a diagonal gate applied to the least significant qubit.
Doing so we can save some CNOT gates, because for small n,
we know how to implement 	Cu

n−1(U ) more efficiently than
Cn−1(U ). For example, we need eight CNOT gates to implement
a C2,3(U ) gate (see Lemmas 3 and 4) and only three CNOT gates
to implement a 	Cu

2 (U ) gate (see Table IV):

We implement each UCG together with its subsequent di-
agonal gate as described in [16]. Together with the circuit
for the unitary G0, this leads to the following circuit for the
isometry V :

where we have not depicted the single-qubit gates for
simplicity.

b. Isometries from two to three qubits

We use the CSD approach described in Sec. IV D to
decompose an isometry V from two to three qubits. As in
Sec. IV, we represent the 8 × 4 matrix corresponding to V by
an 8 × 8 unitary matrix G†, by writing V = G†I8×4. Then we

apply Theorem 10 of [12] to G†, which gives us

where each of the symbols A and B is a placeholder for
two two-qubit unitaries denoted by {A0,A1} and {B0,B1},
respectively. Since we can assume that the first qubit is initially
in the state |0〉, we always implement A0 on the last two
qubits at the start of the circuit (on the right-hand side) above.
Therefore, we can simplify the above circuit

We apply Theorem 8 of [12] to the uniformly controlled
Ry gate. Together with Appendix A of [12], this leads to the
following circuit for the isometry V :

where we can absorb the Ry(π
2 ) and Ry(−π

2 ) gates into
the neighboring uniformly controlled Ry gates. We apply
Theorem 12 of [12] to the last uniformly controlled gate in
the circuit above, which gives us two two-qubit unitaries U

and W and the following circuit for the isometry V :

Decomposing the uniformly controlled rotations as described
in [12] and using the techniques described in Appendix B
of [12] leads to the following circuit for V :

where the single-qubit gates are not depicted for simplicity.

3. Isometries leading to four-qubit states

In this section we explain the steps needed to decompose
isometries from m to 4 qubits for m = 1 and m = 2. Note that
for m = 0 one can use the decomposition scheme for state
preparation described in Appendix A 5 and for m = 4 the
decomposition scheme of [12]. The case m = 3 can be done
with the CSD approach requiring 73 CNOT gates [see Eq. (A22)
and Appendix B 2 b for an example using the CSD approach].

a. Isometries from one to four qubits

As in Sec. IV, we represent the 16 × 2 matrix corresponding
to V by a 16 × 16 unitary matrix G† by writing V = G†I16×2.
The unitary G

†
0 (defined in Sec. IV C) corresponds to state

preparation on four qubits (G†
0|0〉⊗4 = V |0〉 =: |ψ0

0 〉) and can
therefore be implemented with the techniques described in
Appendix A 5 with eight CNOT gates. We construct the unitary
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FIG. 5. Implementing the second column of an isometry V from one to four qubits with optimized controlling of the MCGs. Note that all
gates act trivially on |0000〉. Each asterisk denotes an arbitrary complex number.

G1 in a fashion similar to the case of a 1 to 3 isometry
(see Appendix B 2 a) using the column-by-column approach
described in Sec. IV C. This leads to a circuit for the unitary
G1 given in Fig. 5. We implement all MCGs of the circuit
for G1 with UCGs up to diagonal gates by the techniques
described in [16] and correct for this at the end of the circuit
with a diagonal gate acting on the least significant qubit
(see Appendix B 2 a). Therefore, we use 22 CNOT gates to
implement an isometry from one to four qubits.

b. Isometries from two to four qubits

As in Sec. IV, we represent the 16 × 4 matrix corresponding
to V by a 16 × 16 unitary matrix G† by writing V = G†I16×4.
We can construct the unitaries G0 and G1 as described in
Appendix B 3 a. Similarly, we find the circuit for the unitary
G2,

and the circuit for the unitary G3,

Note that two controls are required for the MCGs for the
unitary G3, such that G3 acts trivially on the states |0000〉,
|0001〉, and |0010〉.

We implement all MCGs with UCGs up to a diagonal gate
by the techniques described in [16] and correct for this at the
end of the circuit with a diagonal gate acting on the two least
significant qubits. Since a diagonal gate on two qubits requires
two CNOT gates [18], we conclude that we need 54 CNOT gates
to implement a 2 to 4 isometry.
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[29] O. Giraud, M. Žnidarič, and B. Georgeot, Phys. Rev. A 80,

042309 (2009).

032318-19

http://dx.doi.org/10.1103/PhysRevA.69.062321
http://dx.doi.org/10.1103/PhysRevA.69.062321
http://dx.doi.org/10.1103/PhysRevA.69.062321
http://dx.doi.org/10.1103/PhysRevA.69.062321
http://dx.doi.org/10.1103/PhysRevA.71.052330
http://dx.doi.org/10.1103/PhysRevA.71.052330
http://dx.doi.org/10.1103/PhysRevA.71.052330
http://dx.doi.org/10.1103/PhysRevA.71.052330
http://arxiv.org/abs/arXiv:quant-ph/9508006
http://dx.doi.org/10.1016/0024-3795(94)90446-4
http://dx.doi.org/10.1016/0024-3795(94)90446-4
http://dx.doi.org/10.1016/0024-3795(94)90446-4
http://dx.doi.org/10.1016/0024-3795(94)90446-4
http://arxiv.org/abs/arXiv:quant-ph/9902062
http://dx.doi.org/10.1103/PhysRevLett.93.130502
http://dx.doi.org/10.1103/PhysRevLett.93.130502
http://dx.doi.org/10.1103/PhysRevLett.93.130502
http://dx.doi.org/10.1103/PhysRevLett.93.130502
http://dx.doi.org/10.1016/j.laa.2014.12.031
http://dx.doi.org/10.1016/j.laa.2014.12.031
http://dx.doi.org/10.1016/j.laa.2014.12.031
http://dx.doi.org/10.1016/j.laa.2014.12.031
http://dx.doi.org/10.2140/pjm.1967.23.129
http://dx.doi.org/10.2140/pjm.1967.23.129
http://dx.doi.org/10.2140/pjm.1967.23.129
http://dx.doi.org/10.2140/pjm.1967.23.129
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1103/PhysRevLett.111.130504
http://dx.doi.org/10.1103/PhysRevLett.111.130504
http://dx.doi.org/10.1103/PhysRevLett.111.130504
http://dx.doi.org/10.1103/PhysRevLett.111.130504
http://dx.doi.org/10.1103/PhysRevA.84.032304
http://dx.doi.org/10.1103/PhysRevA.84.032304
http://dx.doi.org/10.1103/PhysRevA.84.032304
http://dx.doi.org/10.1103/PhysRevA.84.032304
http://dx.doi.org/10.1103/PhysRevA.77.032320
http://dx.doi.org/10.1103/PhysRevA.77.032320
http://dx.doi.org/10.1103/PhysRevA.77.032320
http://dx.doi.org/10.1103/PhysRevA.77.032320
http://dx.doi.org/10.1103/PhysRevA.80.042309
http://dx.doi.org/10.1103/PhysRevA.80.042309
http://dx.doi.org/10.1103/PhysRevA.80.042309
http://dx.doi.org/10.1103/PhysRevA.80.042309



