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Multiphoton-state-assisted entanglement purification of material qubits
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We propose an entanglement purification scheme based on material qubits and ancillary coherent multiphoton
states. We consider a typical QED scenario where material qubits implemented by two-level atoms fly sequentially
through a cavity and interact resonantly with a single mode of the radiation field. We explore the theoretical
possibilities of realizing a high-fidelity two-qubit quantum operation necessary for the purification protocol with
the help of a postselective balanced homodyne photodetection. We demonstrate that the obtained probabilistic
quantum operation can be used as a bilateral operation in the proposed purification scheme. It is shown that the
probabilistic nature of this quantum operation is counterbalanced in the last step of the scheme where qubits are
not discarded after inadequate qubit measurements. As this protocol requires present-day experimental setups
and generates high-fidelity entangled pairs with high repetition rates, it may offer interesting perspectives for

applications in quantum information theory.

DOI: 10.1103/PhysRevA.93.032317

I. INTRODUCTION

Entanglement purification [1,2] is an important protocol
that overcomes detrimental effects of noisy channels and
generates high-fidelity pure entangled states from a large
number of not-too-low-fidelity states. The controlled-NOT gate
stays at the core of the protocol and it was experimentally
demonstrated earlier than the proposal for the entanglement
purification [3]. First experimental implementations were done
more than a decade ago using photonic qubits [4] and material
qubits [5]. The purification protocol has found application
in the proposals for quantum repeaters [6], which enables
long-distance quantum key distribution [7] and quantum
teleportation [8]. The quantum repeater proposed by Ref. [9]
has three sequentially applied building blocks: in the first step
an entanglement is generated between neighboring nodes;
in the second step entanglement purification is carried out
over the ensemble of low-fidelity entangled pairs; in the last
step the entanglement swapping procedure transforms the
entangled states on the neighboring stations into entangled
states on the second neighboring stations, thus increasing the
distance of shared entanglement. There is a specific quantum
repeater based on hybrid protocols combining continuous and
discrete variables [10-12]. We have already discussed two
building blocks of a hybrid quantum repeater scheme [13—15]
based on coherent multiphoton states and resonant matter-
field interactions, which have advantages in the photonic
postselection measurements [13]. Additionally, multiphoton
coherent states can be produced with high repetition rates and
they have high transmission rates in the channels connecting
the quantum nodes. For example, in long-distance quantum
key distribution scenarios coherent states with both low [16]
and high mean photon numbers [17] have already been
successfully applied. Recently, an entanglement purification
scheme has been proposed in the context of the hybrid
quantum repeater using chains of atoms, optical cavities and
far-off resonant matter-field interactions [18]. The difficulty
in doing this is due to the long interaction times or large
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number of photons involved in such a QED scenario. While
single-mode fields with high mean photon numbers are not an
experimental issue, the justification of far-off resonant matter-
field interactions requires significant difference between the
frequency of the material transition and the frequency of the
single-mode field and this difference has to be further increased
with the increase of the mean photon number in the cavity.

In this paper we discuss entanglement purification schemes,
which are based on resonant interactions between flying
material qubits and a single-mode cavity field [19]. At the
core of our scheme is the one-atom maser, which has been
experimentally investigated over the last few decades [20]. Our
motivation is to augment our previous work with the missing
entanglement purification protocol. Thus, we require that the
chosen scheme, though being not the only possibility to realize
an entangling quantum operation [21], must be compatible
with the architecture of a hybrid quantum repeater based on
coherent multiphoton states and resonant matter-field interac-
tions. We focus on resonant matter-field interactions between
material qubits and a single-mode cavity prepared initially
in a coherent state. The two material qubits fly sequentially
through the cavity and interact with the single-mode field
resulting in a joint quantum state which after a successful
postselective balanced homodyne photodetection yields an
entangling two-qubit quantum operation. We demonstrate
that this probabilistic quantum operation can replace the
controlled-NOT gate in the purification schemes of Refs. [1]
and [2]. Furthermore, in our schemes the qubits do not have
to be discarded after inadequate qubit measurement results.
There is a specific Bell diagonal state, which is generated in
hybrid quantum repeaters and thus being a good example of the
purification scheme of Ref. [2]. We discuss the performance
of our proposed purification protocols in this specific scenario.
Furthermore, we also investigate the role of the spontaneous
decay in the material qubits and the damping of the cavity
field mode. Thus, we present a truly microscopic model of this
QED scenario.

This paper is organized as follows. In Sec. II we introduce
the theoretical model. In Sec. III we determine the form of
the two-qubit quantum operation, which is generated by a
postselective balanced homodyne photodetection. Numerical
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results are presented for the success probability of obtaining
this quantum operation. These results are employed in Sec. IV
to realize entanglement purification. In Sec. V we study the
role of spontaneous decay and cavity losses and their effect on
the purification schemes. Details of the relevant photon states
of the unitary model are collected in the Appendix.

II. MODEL

In this section we discuss a QED model consisting of a
single-mode cavity in which two atoms, implementing the
material qubits, are injected sequentially such that at most one
atom at a time is present inside the cavity. The field inside the
cavity is prepared initially in a coherent state and after both
interactions the state of the field gets correlated with the state
of the qubits. This scenario, illustrated in Fig. 1, is motivated
by the progress in atom-cavity implementations, whereas with
the help of cutting-edge technology all the relevant parameters,
which justify our setup are well under control [19,22]. We
present the solution to this model and discuss its properties
with the help of the coherent state approximation [23].

Let us consider two qubits A; and A, with ground states
|0)¢ and excited states |1)¢ (£ € {A|,A,}). These qubits pass
through a cavity in sequence and interact with a single-
mode radiation field, which is in resonance with the qubit’s
transition frequency. This corresponds to the well-known
resonant Jaynes-Cummings-Paul interaction [24,25]. Due to
the resonant condition we are going to work in a time-
independent interaction picture with respect to the free energy
of the cavity and the two qubits. In the dipole and rotating-wave
approximation the Hamiltonian accounting for the dynamics
of qubits and field is given by (h = 1)

H'=g@s! +a'st), te{AA). (1)
We have considered the raising and lowering operators cﬁi =
[1)(0]° and 6¢ = |0)(1]%, and the vacuum Rabi splitting 2g

Ay Ay

FIG. 1. A cavity-QED setup for a probabilistic two-qubit quan-
tum operation. Two qubits A; and A, fly sequentially through
a cavity and they interact resonantly with a single-mode field.
The field is initially prepared in a coherent state |o). After both
qubits passed through the cavity, the field state is postselected by
a balanced homodyne detection, which is depicted as a detector
outside the cavity. Provided that we are successful the resulting two-
qubit quantum operation is applied in the entanglement purification
schemes in Sec. IV.

PHYSICAL REVIEW A 93, 032317 (2016)

for the dipole transition. Furthermore, @ (a') is the destruction
(creation) operator of the field mode.

We are interested in the situation where there are no initial
correlations between the field and the qubits. Therefore, we
choose an initial state of the form

[Wo) = (co0l00) + c01101) 4+ ¢10[10) + ci11)]er),  (2)

with the qubits set in an arbitrary state in the basis |ij) =
[i)41]j)42 (i,j € {0,1}), and the field is in a coherent state

n

N = 7 e'? 3
) ge m"”’ a=+ie 3)

written in terms of the photon-number states |n) (n € Ny)
and with the phase ¢. As stated before, we are interested
in the most simple scenario where the two qubits interact
independently and sequentially with the field. Therefore, the
evolution operator U (t) can be written as a product of separate
evolution operators and the temporal state vector can be
evaluated as

WD) = U(@)|Wo), U(r)=e #7704y

where we considered equal interaction times.

Solving the state vector is not a complicated task as it is
based on the well-known solutions of the resonant Jaynes-
Cummings-Paul model (see, for example, [26]). The result is a
time-dependent quantum state |V (7)) of the tripartite system
that can be expressed in the following form

W (7)) = 100)|g00(7)) + [01)[go1 (7)) + [10)[g10(7))
+11)|g10(7)), ®)

where the unnormalized field states |g;;(t)) are presented in
Appendix A.

In order to obtain a better understanding of the field states
we concentrate on the case of large mean photon number 77 >
1 and interaction times 7 such that the Rabi frequency g/n
can be linearized around 7i. This procedure can be justified for
short interaction times 7 that fulfill the condition g7 < /7.
This corresponds to a time scale well below the well-known
revival phenomena of the population inversion in the Jaynes-
Cummings-Paul model [27,28]. Thus, one can find that the
state of Eq. (5) can be approximated by

W(D) ~ W) |ae ™ ) + [y ) |ae ) + [n)la)  (6)

with the two-qubit unnormalized states

co1 — C1o cooe'® — cre™?

V) = 7 7

cooe'® + cj1ei? F co1 F Cio |d>¢+>> F W)

v + 25, (D)

= 8
) v 5 ®
which have been written in terms of the Bell states
n 1
W) = —(|01) £ [10)), 9

V2

1 . .
—=(e7'?100)  €'?|11)),

V2

One can note that the state in Eq. (6) involves only three
coherent states: two of them are |oe*'87/ Vi ) that rotate with

@) = ©%) = [9F).  (10)
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frequencies of opposite sign and a third one |&), which
corresponds to the initial coherent sate. The approximation in
Eq. (6) makes evident that a postselective field measurement
can be used to prepare an entangled two-qubit state. Of course
the simplest nontrivial situation is when the three coherent
states are nearly orthogonal. For this purpose we consider the
overlaps between |a), |e™87/v") that yield

. . 272
(a’aei’ﬁr)zexp [—a(1 —eil%r)] ~e T, (11)
The last approximation holds for gt « /i and shows that
the overlap nearly vanishes for interaction times gt > +/2. It
can be shown that the overlap between the other two states
vanishes faster in time. Therefore, we consider interaction
times that fulfill the condition

V2 < gt < Vi (12)

We emphasize that the first inequality is to ensure orthogonal
field states, while the second inequality sets a bound in time
where the coherent state approximation is valid. We close this
section by pointing out an interesting fact that a similar result
to Eq. (6) can be obtained by choosing a setup where the two
qubits interact simultaneously with a single-mode field for a
time 7. In our previous works [15,29] we have shown that in the
coherent state approximation the two-atom Tavis-Cummings
model results in a solution where the two-qubit state |1,) is
paired up with |a).

III. ENTANGLING QUANTUM OPERATION

A. Postselection by projection onto |o)

Our subsequent investigation is to determine a field
measurement, which is capable to realize conditionally an
entangling two-qubit quantum operation. Eq. (11) shows
that the overlaps between the coherent states approximately
vanish for interaction times gt > /2. Thus, a postselective
measurement on the field states has the possibility to generate
three two-qubit quantum operations, which used on the initial
state in Eq. (2) result in the states of Egs. (7) and (8). However,
only the two-qubit state in Eq. (7) is a good candidate for an
entanglement purification scheme. The reason is that the states
|Yr1) are separable states. Only the state |, ) has the potential
to be entangled. In order to postselect the state |,) one has
to implement the following quantum operation for any initial
two-qubit state [ir)

Wi(g.m) = (a|UD)¥)le) ~ |¥.). 13)
The operation is performed by first letting the qubits interact
with the field, as depicted in Fig. 1. This is described by the
evolution U (1)|¥)|e), with the evolution operator in Eq. (4).
After the interaction, the state of the field is projected onto
the coherent state |). By appropriate values of i = |«|*> and T
[see Eq. (12)] this operation approaches the quantum operation
W, (p,n) —> M¢ that can be represented as the sum of two
projectors on Bell states:

My = |9 WU |+ (@ 0P, M =M. (14)
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In particular, its action on the atomic states of the standard
basis can be listed as

My)01) = fw> My|10) = — 5 |W ™),

M,|00) = My|11) = —=|®

f |® )s
This entanglement generating property of M¢ allows us to use
it as a bilateral operation in entanglement purification schemes
of Refs. [1] and [2] as we will show in Sec. IV. A practical
question is how to realize the postselective measurement of
the field. In the next subsection we investigate this issue by
means of balanced homodyne photodetection [30].

B. Postselection by balanced homodyne photodetection

In the following we return to our exact calculations
in Eq. (5) and show that this quantum operation can be
probabilistically implemented with fidelity close to unity by
measuring the state of the field with a balanced homodyne
photodetection. First, let us study the evolution of the field in
phase space with dimensionless coordinates x and p. We use
for this purpose the Husimi Q function, defined as
x+ip

N
where we have introduced the reduced density matrix of the
field state o' (t) = Tra, a,{|¥ (7)) (W(7)|} with Tru, 4, being
the partial trace over the qubits. Figure 2 shows the Q function
of the field after the interactions with the two qubits. The initial
field state is characterized by « = 10, i.e., ¢ = 0. Although the
results can be extended to arbitrary values of ¢, for the sake
of simplicity here and in the rest of the paper we consider
¢ = 0. It can be noted that the Q function is composed of
three spots, each of which corresponds to a coherent state in
Eq. (6). During the first interaction the initial coherent state
splits into two spots that evolve with frequencies of opposite
sign. When qubit A, interacts with the field emerged after
the interaction with qubit A, both spots split up again. Due
to the fact that the interaction time for both of the qubits is
equal, the spots moving backwards meet again at the initial
position. Furthermore, the state at the initial position is close
to a coherent state while the two other spots are deformed
due to the nonlinear dependence of the Rabi frequencies on
the photon number. It is an interesting feature that the initial
coherent state is almost restored and this makes the central
contribution to the field state an attractive candidate to be
measured. Provided that we are successful in this measurement
we generate the two-qubit quantum operation in Eq. (14).

In the next step we focus on the postselective field
measurement. We briefly recapitulate the basic features which
lead to a quadrature measurement of the field with the help
of a balanced homodyne measurement [15,30]. The field state,
subject to detection, is superposed with a strong local coherent
state, i.e., high mean number of photons, at a 50% reflecting
beam splitter, and the modes emerging from the beam splitter
are measured measured by two photodetectors. We consider
in our scheme ideal photodetectors. The measured signal is
the difference of photon numbers of the two photodetectors.
Dividing the measured signal by the square root of two times
the local coherent state’s mean photon number results in a

1
Q1) = ;(ﬁlﬁF(f)lﬂ), B = (15)
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FIG. 2. Left: Husimi Q function of the field state defined in Eq. (15) after the interaction between the cavity and the qubits as depicted
in Fig. 1. Right: The corresponding probability distribution P(p) for the p quadrature defined in Eq. (18) in full line and the weighted p
quadrature distribution of the initial coherent state |«) as a reference in dashed line. The interaction time is 7 = 2/g. The initial tripartite state

in Eq. (2) is considered to be [00)|c) with o = 10.

signal, which corresponds to a projective measurement of a
quadrature operator |xg){xg| on the field state. The eigenvalue
equation of the quadrature |xy) reads

—if

1 .
Rolxo) = —=(ae™" +a'e")\xg) = xgx0), (16)

/2

where 6 is the phase of the local oscillator. 4 and a' are the
annihilation and creation operators of the single-mode field to
be measured. Here, we assume that the emerged field state in
the cavity can be perfectly transferred to this single-mode field.
Due to the phase space structure seen in Fig. 2 it is reasonable
to select the phase of the local oscillator to be 6 = %, i.e., the
coordinate p = x,,». The reason is that the field contribution
paired with the two-qubit quantum operation is the farthest
from the other field contributions in this particular quadrature
measurement. We remark that the results can be extended to
arbitrary ¢ # 0 by shifting the phase of the quadrature to be
measured, i.e., Xg47/2.

In order to postselect the two-qubit state |1/, ), one requires
to project the field state with the projector |p)(p| restricted
to the interval p € [—2,2]. This ensures that the measurement
is selecting only the middle contribution in phase space that
corresponds to the coherent state |o) and also the highest
probability of postselecting the two-qubit state [, ). In this
case the postselected two-qubit quantum operation takes the
form

Wa(p.)y) = (plU@)|¥)le) ~ |1,
pe[-22], a=/i. 17)

The probability for such an event is given by

2
Py = / P(p)dp, P(p)=Tr{|p){p| ¥ (D)) (W (T)[},
-2
(18)
which is obtained by integrating the probability distribution of

the field P(p) in the p quadrature. In the limit of high mean
photon numbers, this can be approximated by integrating the

function

19)

2 lpla)? erf(2)
Py =~ dp = .
f /,2 A A AT AL

with the error function erf(2) = 0.995322 [31]. For large mean
photon numbers 7 and with the interaction time fulfilling
condition (12) the postselected two-qubit quantum operation
approaches the quantum operation M in Eq. (14).

In the right panel of Fig. 2 we have plotted in full line the
distribution P (p) rotated 90 degrees clockwise to have a better
comparison with the Q function in the left panel. We have also
plotted by a dashed line the distribution |{p|a)|?/|{W. %) |?
to compare with P(p) and show the difference between the
coherent state |) and the field state p7(r) emerged after
the matter-field interactions. In the case of the coherent state
the integration over all relevant quadrature values p € [—2,2]
results in an almost perfect projection onto the coherent state.
However, in the case of the field state /() this projection
is only achieved for certain interaction times and large mean
photon numbers.

In order to see how well the state |1,) can be generated, we
consider the fidelity

F, = [( | Wa(p,)|¥)|? (20)

after a successful projective measurement on the quadrature
|p). Figure 3 shows the fidelity F, as a function of the
interaction time 7 and for different values of mean photon
number 7. The quadrature measurement was taken always
at the middle of the distribution p =0 and qubits were
considered initially in the state |00), i.e., both in the ground
state. The fidelity increases as a function of time until it reaches
it maximum value around tg = 2. This is the time required
for the coherent states of the field to be distinguishable.
Afterwards, the fidelity drops down again as the coherent state
approximation breaks down with increasing time. However,
this decrease in fidelity is slower for larger values of the
mean photon number 7, in agreement with the limits of the
interaction time given in Eq. (12).
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FIG. 3. The fidelity F, of the two-qubit state in Eq. (17) with
respect to |y,) after a successful projective measurement on the
quadrature |p), with p = 0. The initial state of the two qubits is
set to |00) and the initial coherent state was taken with real o = /7.
Four curves are presented for different values of the mean photon
number 7 € {10,50,100,200} as described in the legend.

IV. ENTANGLEMENT PURIFICATION

In this section it is demonstrated how the two-qubit quantum
operation in Eq. (14) can be used for implementing entangle-
ment purification schemes. The basic idea of entanglement
purification is to increase the degree of entanglement of a
qubit pair at the expense of another qubit pair. Therefore, the
protocol can be assumed to start with a product state of two
entangled qubit pairs

p _ pAl ] R p AAs, Bz (21)

where A and B are two spatially separated quantum systems.
The task has to be accomplished by applying local quantum
operations and measurements on sides A and B separately.
The measurement procedure leads to the destruction of one of
the pairs, say /4252 The final result is a qubit pair p"418' with
a higher fidelity with respect to a maximally entangled sate,
typically chosen to be the Bell state | & ™). Provided one has a
large number of qubit pairs, the iteration of the protocol leads to
the distillation of a maximally entangled state. In the following,
we discuss two of the most well-known protocols [1,2] and
present alternative versions using the quantum operation of
Sec. III.

Scheme 1. The first method presented here is based on
the pioneering work of Ref. [1] where the entanglement
purification protocol distills the entangled state |¥~) from a
large ensemble of states p with the property (W~ |p|W ™) > %
The protocol for two qubit pairs can be summarized in five
steps:

(B1) Transform both p into the Werner form.

(B2) Apply 6;*' and 6, (Pauli spin operators).

(B3) Perform the bllateral operation Ui ® O8>

(B4) Measure the target pair (A, By).

(B5) If the measurement result is either |00) or |11}, perform
a fr}f‘l rotation; otherwise discard pair (A1, B}).

These steps are applied to a whole ensemble and result
in halving the number of pairs and yielding a new ensemble

PHYSICAL REVIEW A 93, 032317 (2016)

with bipartite states p
ensemble F/' = (¥ |

. The fidelity of the pairs in the new
'lW~) is larger than the fidelity of the
pairs in the processed ensemble F = (W~ |p|¥ ™) provided
that initially (¢ ~|p|W ™) > % Now, these steps are repeated
from the beginning and this iteration leads to the purification of
|W ™). The requirement for the initial state F = (V" |p|¥ ™) >
% can be overcome by a certain filtering operation, aimed to
exploit entanglement in a different way [32].

Let us briefly recapitulate step (B1) due to its use in
our subsequent discussions. A general bipartite state can be
converted to the Werner state

A - - 1-F o+ +
pw(F) = FI¥T) W] + —— W) (V7]

1-r 1-F
Ttz |+T|¢+)(<D+I, (22)

with the help of a linear projection [33], called also as the
twirling operation. It has also been shown that 12 local random
unitary operations from the SU(2) group, are necessary and
sufficient to bring any two-qubit state p into a Werner state
[34]; four operations are needed to bring p into a state Pgp,
which is diagonal in the Bell basis and in turn three more
operations transform pgp into a Werner state py (we will omit
the dependence on F when no ambiguity arises). This can be
written as

4
> BIBIpB;B;. (23)

"

R 1 Ata o n R

pw =3 Z BJT-PBDB]', fBD =
j=1 j=1

where we have used the four unitary transformations

N ~l N
e ., b 4iet ., T —ié&!f
b} ®b?, b:—j;%x, b§=—ﬁy,
, (24)
By = |1)(11* +il0)(0l°, b =T, ¢e{A,B},

which have been expressed in terms of the local unitary
transformations b ; acting on a single qubit, the Pauli spin
operators &, and &, and the identity map fi. All three states
have the same fidelity with respect to |[W ™), i.e

“lplT) = (W |pp W) =

In our scheme we consider that each qubit pair flies through
cavities on side A and B and after two sequential interaction
of the qubits with the single-mode fields two postselective
field measurements are performed. This method generates
two probabilistic two-qubit quantum operations on the two
pairs on side A and B as shown in Sec. II. These quantum
operations replace the controlled-NOT operations used in the
original purification procedure. Our alternative version of the
protocol (aB) requires the following four steps:

(aB1) We assume that the every spatially separated pair is
entangled and is brought in the Werner state by local random
unitary operations. This is equivalent to (B1). We denote a
four-qubit state by p. Therefore, the four-qubit input state
reads

F=(V (W™ pwl¥™). (25)

i) — ,5“,AV] By ®p AAz B, (26)

with the Werner state defined in Eq. (22).
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(aB2) We apply now the two-qubit quantum operations,
which results in the state

-
Tr{ QT O p}
where M is the matrix M in Eq. (14) acting on qubits £,

and ¢,, with £ € {A, B}. The success probability to obtain this
state is given by the normalization factor

0=mrremBP (27)

_ 5—4F 4+ 8F?
N 18 '

(aB3) One of the pairs is now locally measured, for instance
(A3, By). We remark that in our scheme the two qubit pairs can
be treated symmetrically.

(aB4) Depending on the four possible measurement events
we use the following strategy: in the cases when both qubits
are in |0) or |1) we apply a local unitary transformation
&M on the unmeasured pair; otherwise do nothing. This step
is fundamentally different from (BS) because there are no
inadequate measurement results and we do not have to discard
the unmeasured pair.

It is interesting to note that the success probability of
the protocol is determined by step (aB2) compared with the
original scheme of Ref. [1] where the selective measurement
on the qubit pairs in step (B5) specifies this probability.
Provided that we are successful in the photonic postselection
we generate a bipartite state p’ with fidelity

Tr(Q 0p) (28)

ey = o L2t 10F?
p = T S 4F 82

This is exactly the same equation obtained in Ref. [1] and our
scheme has a success probability P = (5 — 4F + 8F?)/18.
The dependency on F for both the new fidelity F’ and the
success probability P are shown in Fig. 4.

Let us consider now an input four-qubit state with different
fidelities

(29)

p =0y " (F) @ by (F2). (30)

Applying the purification protocol we obtain the following
fidelity

| — F, — F, + 10F\F,

F' = 31
5—-2F -2F+8F F,
with success probability
5-2F —-2F,+8F F
p= sl ALY (32)

18

If one chooses F| = 0.4 and F, = 0.75, then the purification
protocol generates a bipartite state with fidelity F' = 0.558. In
general this means that the ensemble of pairs can have different
fidelities and the only condition of a successful purification is
that the average fidelity of the ensemble is larger than 0.5.
Scheme 2. Now we turn our attention to the method in
Ref. [2], which is conceptually similar to Ref. [1] and operates
not on Werner states but on states diagonal in the Bell basis

PeD(F, F1,F2, F3) = FIW ) (W™ | + Fi|[®7)(P7|
+ BTN (DT + F|w) (et (33)
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0.7

F

FIG. 4. Top: The success probability of the entanglement pu-
rification protocols. Bottom: The achieved new fidelities after a
successfully applied protocol. Both figures are shown for the initial
state in Eq. (36). The plots show in full line the results of protocol
(aB) and in dashed line the results of protocol (aD).

with F + F| + F> + F3 = 1.Inthe case when we start initially
with an arbitrary state, then a twirling operation with four
unitary operators [see Eq. (23)] is required in order to bring
this state in a Bell diagonal form. We remark that this scheme
purifies state |®*), therefore increasing the value of F,. The
protocol for two qubit pairs can be summarized in four steps:

(D1) Apply the unitary operation EJ{A‘ ® IQIAZ RbP @b,
see Eq. (24).

(D2) Perform the bilateral operation 0&8{‘2 ®

(D3) Measure the target pair (A;, By).

(D4) If the measurement result is either |00) or [11) then
the unmeasured pair is kept; otherwise is discarded.

In our alternative scheme (aD) we purify again with respect
to | ™). Provided that an ensemble of Bell diagonal states
is generated among the flying qubits we proceed with the
following four steps:

(aD1) To the four-qubit input state

Ny B— B,
UCNOT .

b= s (F.F1, P2, F3) ® gy ™ (F.Fy. Fo, F3). (34)
we directly apply the two-qubit quantum operation of Eq. (27).
We obtain a p’ with success probability (F + F;)?/2 + (F, +
F3)?/2.
(aD2) The same as (aB3).
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(aD3) The same as (aB4).

(aD4) Apply the rotation 5?‘ ® l;f "

Provided that we are successful we obtain the following
Bell diagonal state:

o (F*+ F} 2FF3 2FF, F} + F3
pBD( p D D D )
with D = (F + F})?> + (F, 4+ F3)?. Our step (aD4) is analog
to the step (D1) and flips the Bell states |®*) while leaving
|W+) invariant. This map redistributes the fidelities in order to
obtain a purification by iteration. This result is similar to the
one obtained in Ref. [2], with the only difference that protocol
(aD) purifies with respect to the state | ~) and protocol (D)
purifies with respect to the state |® ).

An interesting feature arises when one considers the
following special Bell diagonal state

pu(F) = FI¥" W7+ (1 = W)W, (36)

(35)

which is naturally generated in proposals for hybrid quantum
repeaters [10,13,35]. The four-qubit state reads

p=py" P (F)® py B (F). 37)

The step (aD4) in our protocol is actually not required for
this type of initial states, as we never populate the states | ).
However, this step will prove to be of crucial importance when
applying a noisy version of the operation M of Eq. (27) such
as our proposed cavity-QED version in Eq. (17).

Thus, our protocol (aD) yields the bipartite state

FZ
po | —— ), 38
p“’<1—2F+2F2) (38)

with success probability

1 —2F +2F?
po-_—=t*=l (39)
2
In the case of different input fidelities
b= P (F)® pyr P (Fy) (40)
we obtain the bipartite state
. F\F>
P (41)
(1 —=F)(l - F)+ FiF
with success probability
l—F— F,+2FF
p— 1 2+ 2F 2 (42)

2

In Fig. 4 we compare the fidelity and success probability
obtained from both of our protocols (aB) in full line and (aD)
in dashed line for initial states of the form of Eq. (36). The
function F’(F) in dashed line shows a more concave shape
than the full line counterpart. This means that less iterations
are required in order to attain almost unit fidelity as shown
in the top panel of Fig. 5. The success probability for the
protocol (aD) is slightly lower than that of (aB) as shown in
the bottom panel of Fig. 4. However, the number of the average
qubit pairs needed for the purification is more sensitive to the
number of iterations required as it is shown in the bottom panel
of Fig. 5. These numbers were obtained with the help of the
fidelity-dependent probabilities in Eqgs. (28) and (39). Thus
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FIG. 5. Top: The fidelity of the states achieved after N successful
iterations and based on Eqs. (29) (normal dots) and (38) (thicker dots).
Bottom: The average number of qubit pairs N, required to reach the
final fidelity of 0.99 as a function of the initial fidelity F. As an
initial condition we considered a special Bell diagonal state given in
Eq. (36). The plots show that the purification scheme (aD) (thicker
dots) outperforms the purification scheme (aB) (normal dots).

the protocol (aD) is more efficient than protocol (aB) and it
is also the most robust against noisy implementations as it is
demonstrated in the subsequent section.

V. EFFECTS OF A ONE-ATOM MASER ON THE
PURIFICATION SCHEME

In this section we analyze the physical boundaries of
our model proposed in Sec. II in the application of the
entanglement purification protocols of Sec. IV. We consider
the two-qubit quantum operation W (p,ii) of Eq. (17) as an
approximation of the entangling two-qubit quantum operation
M of Eq. (14), which is the core element in our protocol. The
value of the quadrature p is obtained by a balanced-homodyne
measurement of the field. The approximation becomes more
accurate with increasing values of the mean photon number 7
of the initial coherent state and provided that the interaction
time t for each atom fulfills the condition of Eq. (12). In the
experimental setting of Haroche [36,37] the interaction time T
is not equal for each atom. However, it can be shown that for
any two atoms A, A, the interaction times fulfill the inequality
|ta,/Ta, — 1| < 0.01. This is achieved by Doppler-selective
optical pumping techniques [36,37] that significantly reduce
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FIG. 6. The achieved new fidelities with respect to the Bell state
|W~) after several successful iterations and for different values of
the mean photon number 7. Top: Protocol (aB). Bottom: Protocol
(aD). Both figures are considered for the same initial state of Eq. (36)
with fidelity F' = 0.7. We employ the two-qubit quantum operation
W»(0.5,7)in Eq. (17) with different values of the mean photon number
i1 and use nonidentical interaction times for system A; and A,, i.e.,
TAZ/TAI =1.1.

the width of the velocity distribution, which directly affects
the matter-field interaction times.

In Fig. 6, we have plotted the fidelities as a function of
the iterations N for the protocols presented in Sec. IV, where
we employ W»(0.5,7) in place of M. Additionally, we have
taken into account that the first (second) atom interacts for a
time 2/g (2.2/g) with the field in order to demonstrate the
stability with respect to deviations in the interaction times.
The result for protocol (aB) is in the top panel and for (aD)
in the bottom panel for an initial states of the form of Eq. (36).
With this initial state the step (aD4) is unnecessary when using
the perfect two-qubit quantum operation M. In contrast this
step (aD4) plays a crucial role with the operation W5 and initial
states of (36). We ran simulations (not shown here) without
step (aD4) and found that the fidelity drops after few iterations
due to the noisy quantum operation W,(p,i) that populates
the other Bell states |®*). We have considered an ensemble of
qubit pairs with moderate input fidelity F = 0.7. We see that
the protocol (aD) attains high fidelities quite rapidly in N = 5
iterations outperforming protocol (aB) in regard to the average
number of qubit pairs needed for the purification. Taking into
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account the success probability of protocol (aD), one would
require an average number of 2600 qubit pairs to obtain a final
fidelity of 0.999999. This simple analysis suggests that the core
mechanism of our purification scheme is feasible taking into
account typical experiments where 35700 atomic samples are
sent through a cavity [22]. For the interaction times we have
chosen realistic parameters based on Ref. [22] that reports
an interaction time of 24 us (6 mm waist/250 m s~'), atoms
separated by 70 pus time intervals, and coupling strengths of
g =2m x 51 kHz.

Now we turn our attention to the effects of photonic
losses in our protocol described by the cavity damping rate
k and the spontaneous emission y of the atoms. State of
the art microwave cavities present very low values of « [22].
However, our protocol requires the cavity field to leak in order
to implement a balanced homodyne photodetection. For this
reason it would be more favorable to use a cavity with a Q factor
in between the current technology and previous realizations
that present ratios of roughly g/« = 60 [19]. In such case 3 ms
is enough to empty the cavity (e~ ~ 0.05) and measuring a
single quadrature takes 1 us [38] or 5.5 ns [39]. Considering
these time scales and the fact that the Rydberg atoms used in
the Haroche experiments have a ratio of g/y = 3000, itis to be
expected that atomic spontaneous decay does not play a major
destructive effect in one step of our protocol. Nevertheless, it
could play a role during the iteration procedure and therefore
the qubits coherency must be kept in order that the purification
procedure works. We do not elaborate on this here, but merely
estimate that if the realization of one iteration is dominated
by cavity leakage of time 3 ms, then protocols above N = 10
iterations are sensitive to the spontaneous decay of the atoms.

In the presence of losses the ideal two-qubit quantum
operation p — M pM has to be replaced by a more general
quantum operation p — £, which depends on « and y . In the
following we investigate numerically the effect of this general
quantum operation on the entanglement purification protocol.
We consider a Markovian description in which the evolution
of an initial density matrix 9y, describing both atoms and the
cavity, is given by

@(T»Tf) = V(r’rf)@o, V(‘L’,‘[f) — eLAzrelifrfeliAlr_ (43)
The evolution operator V(t,7 ) is generated by the Liouvillians
Lo =ilp. A+ Ls0, Ly = Lyo + Ly + L2, (44)

with £ € {A{,A,}, that have been written in terms of the
dissipators

Luod = tk(nr + 1)(2a0a" — a'ap — pa'a)
+ Yinr(2a'0a — aa'o — paat),

cho=1y(26%06L — 6650 — 00'6"), (45)

which describe the losses of the cavity and spontaneous
emission of the atoms respectively. The evolution operator
V(t,ts) reflects the fact that at all times the dissipation
mechanisms are active in the system, while the interaction
only happens first for time t between cavity and atom A; and
for the same amount of time t between cavity and atom A,.
In between the interactions there is a time of free evolution 7
where only dissipation effects take place. In typical microwave
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experiments, the average number of thermal photons ny is
equal to 0.05 towards which the field evolves with rate « (see
Ref. [22]). The initial condition is taken to be the same as in
Eq. (2).

In order to efficiently compute the dynamics for high photon
numbers, we evaluate the quantum operation

Ex,17,p)p = (pI(V(z,7p)ple) (@) p)
3
D &uimijledial,  (46)

i, j k=0

where |g;) € {]00),]01),[10),[11)} and p; ; = (¢;|plg;). One
can find that the entries of & = £(z, 1y, p) are given by

ki = Trflon) (el @ Ip) (P V(D)) (@] @ l@i) (@1} (47)

The quantum operation in Eq. (46) is the noisy analog to
the quantum operation in Eq. (17). Ideally, when 7 > 1
and the decay constants tend to zero then £0 — MpM. In
the same way as the quantum operation M - M, £- also does
not preserve the trace. For the quantum purification protocol,
the noisy analog to Eq. (27) takes the following form

. gAl»Angl,sz
b= Tr{gAlvAZEBleZi)}-

In Fig. 7 we plot the achieved fidelity after several suc-
cessful iterations using different values of the decay constant
k and an average thermal photon number ny = 0.1. We have
numerically evaluated the quantum operation £- as indicated
in Eq. (47). We have considered a chopped Hilbert space
with Ny = |ii + 4+/71] [40] Fock states and constructed an
4N% X 4N§ matrix describing the Liouvillians in (44). We
have chosen the value of the quadrature p to be 0.15, on
which the field state is projected. Numerical investigations
show that an increase in the absolute value of p implies a
slightly decreased performance in the purification protocols.
This is due to the lossy dynamics, which brings closer the
outer field contributions and thus distorting the boundaries
of the central peak (see Fig. 2 for the ideal case). Therefore,
for quadrature values being farthest from the origin in the
interval [—2,2] we obtain more noisy versions of the ideal
two-qubit quantum operation p — M pM. Provided that we
use the parameters of the experimental setup in Ref. [22]
the quadrature measurements around the central peak always
generate a high-fidelity two-qubit quantum operation in regard
to the ideal one. The time of the free evolution is set to be larger
than the interaction time in order to simulate almost the same
conditions, which are present in experimental scenarios. It can
be noticed that protocol (aD) is more robust against the effects
of losses and surprisingly N =5 iterations are required to
achieve its maximum fidelity. In this case, the step (aD4) plays
a crucial role in the stabilization of the protocol.

(48)

VI. CONCLUSIONS

We have discussed implementations of entanglement purifi-
cation protocols in the context of a hybrid quantum repeater.
Our scheme is based on the one-atom maser, thus making
our proposal a good experimental candidate. It has been
demonstrated that a probabilistic two-qubit quantum operation
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FIG. 7. The achieved fidelities with respect to the Bell state |W ™)
after several successful iterations and for different values of the cavity
decay rate k. Top: Protocol (aB). Bottom: Protocol (aD). Both figures
are considered for the same initial state of Eq. (36) with fidelity F =
0.7. We employ the quantum operation £(2/g,3/g,0.15) in Eq. (46)
for a mean photon number 7i = 500. The crosses show the ideal
two-qubit quantum operation p — M pM. Spontaneous decay rate
was set to g/y = 3000 and we considered an average thermal photon
number ny = 0.1.

can be realized with the help of ancillary multiphoton states.
The two qubits fly sequentially through a single-mode cavity,
initially prepared in a coherent state, and interact with the
radiation field. The emerged field state is measured by a
balanced homodyne photodetection. We have shown that for
resonant matter-field interactions and large values of the
mean photon number, the two-qubit quantum operation in
Eq. (14) can be implemented with high fidelity. This is
based on the fact that for interaction times characterizing the
collapse phenomena in the Jaynes-Cummings-Paul model the
field contribution correlated with this quantum operation can
be perfectly distinguished from the other field contributions
correlated with other components of the two-qubit state. We
have shown that the obtained probabilistic two-qubit quantum
operation can replace the controlled-NOT gate in standard
purification protocols [1,2]. This approach have resulted in
two alternative purification protocols, called in the main
text (aB) and (aD), which are conceptually similar to their
standard versions. These new protocols discard qubit pairs
due to unsuccessful photonic postselection, but in the case
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of qubit measurements all the unmeasured qubit pairs are
kept and only a measurement dependent unitary rotation is
performed on them. We have compared these protocols for
initial states, which are in a special Bell diagonal form and they
are generated in the proposals for hybrid quantum repeaters.

Finally, we have investigated the role of the losses in our
proposed scheme. We have taken into account the damping
rate of the cavity and the spontaneous decay of the qubits. We
have conducted numerical investigations, which show that our
scheme is sensitive to the cavity damping rate in the sense
that high fidelities F > 0.95 can be achieved but never unit
fidelity. These numerics were based on parameters taken from
real experimental setups. There is also a tradeoff between good
and bad cavities because high-Q cavities enhance the fidelity
of the two-qubit quantum operation, but on the other hand the
leakage of the field, which has to be measured takes a longer
time, thus increasing the chance of a spontaneous decay in the
qubits. In general, we have found that protocol (aD), which
does not employ the twirling operation is more efficient than
protocol (aB) by means of the average number of qubit pairs
needed for obtaining high-fidelity Bell states. Furthermore,
protocol (aD) can correct errors in the implementation of the
two-qubit quantum operation.

In view of recent developments in quantum communication
and quantum state engineering this work might offer interest-
ing perspectives. The results clearly show the limitations of
a purification protocol in a hybrid quantum repeater based
on multiphoton states, but on the positive side the proposed
scheme has a high repetition rate. The proposed scheme can
be already implemented in a one-atom maser setup. However,
other implementations may include condensed-matter qubits,
which are coupled to single-mode radiation fields [41], trapped
ions inside a cavity [42], and neutral atoms coherently
transported into an optical resonator [43].
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APPENDIX: STATES OF THE FIELD

In this Appendix we present the unnormalized field states,
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which appear in Eq. (5). They are defined by
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where 2, = g+/n + 1.
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