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Information propagation and equilibration in long-range Kitaev chains

Mathias Van Regemortel,1,* Dries Sels,1,2 and Michiel Wouters1

1TQC, Universiteit Antwerpen, B-2610 Antwerpen, Belgium
2Department of Physics, Boston University, Boston, Massachusetts 02215, USA

(Received 19 November 2015; published 9 March 2016)

We study the propagation of information through a Kitaev chain with long-range pairing interactions. Although
the Lieb-Robinson bound is violated in the strict sense for long-range interacting systems, we illustrate that a
major amount of information in this model still propagates ballistically on a light cone. We find a pronounced
effect of the interaction range on the decay of the mutual information between spatially disconnected subsystems.
A significant amount of information is shared at timelike separations. This regime is accompanied by very
slow equilibration of local observables. As the Kitaev model is quasifree, we illustrate how the distribution of
quasiparticle group velocities explains the physics of this system qualitatively.
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I. INTRODUCTION

Much of our understanding of the nonequilibrium dy-
namics of a locally interacting closed quantum system is
deduced from Lieb-Robinson bounds [1]. Even without im-
posing Lorenz invariance this bound shows that the effect
of a local perturbation cannot be measured elsewhere in
the system outside an effective causal cone. The emergent
causality puts severe constraints on the dynamical behavior
of the system. Not only does the Lieb-Robinson bound
provide an intuitive picture of the spreading of correlations
in the system, it has also enabled numerous proofs on
the distribution of correlations and entanglement [2,3], as
well as on equilibrium properties [4,5] of condensed-matter
systems.

The perfect isolation of a quantum system from its
environment has never been approached so closely as in
experiments with cold atoms and ions. They offer a versatile
platform to study the nonequilibrium behavior of many-
body systems [6], such as Lieb-Robinson bounds and the
light-cone-like spreading of correlations [7]. Due to recent
advances in cold atoms and trapped ion experiments it has
now become possible to study also the behavior of systems
with long- and variable-range interactions [8–10]. When the
interactions become long range the system correlations do
not need to obey the Lieb-Robinson bound. Until recently
very little was known about the behavior of those systems
as analytical results are scarce and known bounds [4] for
long-range interactions were too loose to provide any insight.
There has been considerable theoretical progress since then
[11–16].

Thanks to its integrability, the Ising chain in a transverse
field is the paradigmatic model for studying the dynamics
of information propagation in short-range interacting systems
[17]. Unfortunately a long-range interaction breaks integra-
bility and full numerical simulations are required [11,12].
Integrable models with long-range interactions that have been
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considered consist of free bosons and fermions with long-range
hopping [14,16], and also the long-range Kitaev (LRK) model
[18]. It is the extension of the short-range Kitaev chain [19]
with pairing interactions that decay as 1/rα . The interaction
range affects the entanglement in the ground state, violating
the area law, as well as the entanglement dynamics after a
quench.

The near perfect isolation of modern many-body systems
has also renewed interest in the fundamental physics of
thermalization in closed quantum systems [6,20]. In the case
of integrable models, it has become clear since the pioneering
experiments by Kinoshita et al. [21] that a generalized Gibbs
ensemble (GGE) [22] is required for the description of the
long-time equilibrated state.

In this paper, we will study the issues of information
propagation and equilibration in the LRK model for quenches
from a product state. We focus on the mutual information
between two subregions after the quench, a quantity that
provides a bound on the correlations functions [23].

Our analysis of the mutual information shows that even for
very long-range interactions α < 1 only a small fraction of the
mutual information violates locality. The largest buildup of
mutual information occurs within a well-defined “light cone.”
Similar behavior was found recently in the bosonic long-range
Bose-Hubbard model [24].

Surprisingly, the most important quantitative difference
between the long- and the short-range case is related to the
decay, rather than the buildup, of mutual information. In
the short-range case, mutual information is strongly peaked
on the light cone itself, implying that information travels
only as a localized wave packet. For long-range interactions,
on the other hand, we find large mutual information at
timelike separations as well. The longer persistence of mutual
information here implies that also equilibration can be slowed
down significantly.

The LRK model and its dispersion relation are presented
in Sec. II. Our results on the correlation functions, the
propagation of the mutual information, its explanation in
terms of the group velocity distribution, and the entanglement
entropy growth are presented in Sec. III. Conclusions are
drawn in Sec. IV.
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II. LRK MODEL AND DISPERSION

We consider the following Hamiltonian on a lattice of
length L:

HLRK = −J

L∑
j=1

(c†j cj+1 + c
†
j+1cj ) − μ

L∑
j=1

(
c
†
j cj − 1

2

)

+�

L∑
j=1

j−1∑
l=1

(
cj cl + c

†
l c

†
j

|l − j |α
)

.

Here cj (c†j ) are the fermionic annihilation (creation)
operators on the chain. The exponent α characterizes the range
of the fermion pairing interactions, while the fermion hopping
is only between nearest neighbors. We will set J = � = 1 and
send L → ∞ throughout.

In the limit α → ∞, also the pairing term in Eq. (1) is
between nearest neighbors only and Hamiltonian (1) can be
mapped via a Jordan-Wigner transformation to the transverse-
field Ising model [25]. In this situation, the phase diagram
is symmetric for μ ↔ −μ and the model has two critical
points: μ = ±1. They separate a ferromagnetic (|μ| < 1) and
a paramagnetic phase (|μ| > 1) [26]. For finite α the critical
point at μ = 1 persists, while the critical point at μ = −1
disappears for α < 1.

By defining ck = L−1/2 ∑L
l=1 e−iklcl , with the lattice mo-

mentum k = 2π (n + 1/2)/L, we arrive at

H =
∑

k

[−(cos k + μ)c†kck + f (α)(k)(ckc−k + H.c.)]

where we define the functions f (α)(k) = ∑L
u=1 sin ku/uα .

Via a Bogoliubov transformation ck = ukξk − iv−kξ
†
−k , the

Hamiltonian (1) can be brought to diagonal form H = E0 +∑
k ε(k)ξ †

k ξk , with the quasiparticle dispersion

ε(k) =
√

(cos k + μ)2 + f (α)(k)2, (1)

and uk = cos(θk/2) and vk = sin(θk/2), where tan θk =
−f (α)(k)/(μ + cos k) [18].

The quasiparticle spectrum (1) is gapped for all α > 1,
except for the critical lines |μ| = 1, where the gap closes.
When α < 1 the dispersion diverges in the thermodynamic
limit as kα−1 for k → 0. While this divergence at k = 0 leads to
a massive spectrum for μ = −1, criticality is still preserved at
μ = 1 [see Figs. 1(a) and 1(b)]. The diverging zero-momentum
mode implies that the thermodynamic energy of the system
scales superextensively and that, at small k, the model is
dominated by the LR pairing interactions from Eq. (1).

While gapped systems with finite-range interactions have
an area law for entanglement entropy in the ground state [27],
long-range interactions can lead to logarithmic corrections. In
particular, a conformal field theory (CFT) with effective central
charge can be related to any system with α < 1. Likewise, the
correlation function, which decays exponentially for short-
range noncritical systems, has algebraic tails [18], as was also
observed in long-range Ising models [28–31].
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FIG. 1. Spectrum of the LRK model for (a) μ = −1 and
(b) μ = 1. (c) and (d) show the quasiparticle group velocity
distribution for μ = −1 and 1, respectively.

III. RESULTS

A. Correlation functions

To study the propagation of information through the system,
we will consider quenches in Hamiltonian (1) from μ = −∞,
the noninteracting fermionic vacuum state, to μ = ±1, and
compute the subsequent time evolution (see Appendix A).

The quantities 〈α†
kαk〉 = sin2(θk/2) are conserved in time

and must be included in the maximum-entropy ensemble at
equilibrium [22,32] (see Appendix B).

For short-range interacting systems there is no correlation
between two points at a distance �x up to a time �t = �x/2c,
where c is the Lieb-Robinson velocity. This is the minimal time
it takes for an entangled particle-hole pair to be shared between
both points and is generally referred to as the light-cone effect
[1,17].

Long-range interactions in turn can lead to an immediate
correlation between distant points. In particular, we find for
α < 1 that at large r = |m − n| the correlations behave as
〈c†mcn〉 = i〈cmcn〉 = −F (α)(r,t) cos [η(α)(r,t)]. The envelope
has a power-law dependence in both time and distance:
F (α)(r,t) = C(α) · tγ r−χ , with C(α) a constant. The scaling
exponents are derived as (see Appendix C)

γ = 1

2(2 − α)
, χ = 3 − α

2(2 − α)
. (2)
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FIG. 2. Mutual information in the LRK chain after a global
quantum quench as a function of subsystem separation (�r) and time
(t), as schematically depicted in (a). Subsystems are composed of
16 sites. All quenches start from the noninteracting ground state and
go to (b) α = 1,μ = −1, (c) α = 0.7,μ = 1, (d) α = 1.5,μ = −1,
and (e) α = 10,μ = 1. The side panels show the mutual information
at a fixed separation of 30 sites. Note the very slow dynamics observed
in (d), which is caused by the corresponding peak at very small c in
Fig. 1(c).

B. Mutual information

For the study of correlations between spatially separated
parts of the system, the quantum mutual information plays a
central role, since it forms an upper bound on the correlation
functions [23]. It is defined as IA,B = SA + SB − SA,B [33],
where SA = −trρA log ρA is the von Neumann entropy of the
reduced density matrix on region A (see Appendix A).

The Lieb-Robinson bound for short-range interacting sys-
tems is seen in the mutual information in Fig. 2(e). At the time
t = �x/2c there is a strong peak in the mutual information,
which decays to zero again when the wave fronts have crossed
each other. This is also the point where the joint system
A ∪ B thermalizes. This image makes clear that information
can propagate solely ballistically in a short-range interacting
system [1,17].

The situation changes drastically for long-range inter-
actions. Immediately after the quench, information from
one subsystem is shared with the other, regardless of their
separation. Apart from the instantaneous rise of the mutual
information, we also observe peaks in the mutual information,
reminiscent of short-range systems. The increase of the mutual
information due to the ballistic peaks is actually much larger
than the nonlocal mutual information. The limiting case
α = 1, μ = −1 is quite peculiar, with almost perfect causality,
despite the long-range nature of the interactions.

We furthermore observe a strong dependence of the decay
time of the mutual information on the interaction range. For
short-range interactions, the decay is quite fast, as can be seen
clearly in Fig. 2(e), where the region inside the light cone has

very small mutual information. For long-range interactions
on the other hand, the decay can be much slower. The most
striking examples are displayed in Figs. 2(b) and 2(d), where
the mutual information inside the light cone remains significant
at late times. We come back to this point below.

C. Group velocity distribution

Since the LRK model is quadratic, the behavior of the
quantum mutual information as a function of time and distance
can be most easily understood from the quasiparticle group
velocities c = dω/dk, which determine the rate at which
information can propagate through the system. For α � 1,
the quasiparticle velocity distribution N (c) is strongly peaked
around its maximum velocity c = ±1. Therefore information
is carried ballistically across the system in strongly localized
wave packets that travel at unit speed.

As was illustrated for short-range interacting systems,
we can relate ballistic propagation to peaks in the velocity
distribution N (c). In general the number of peaks and their
location varies as a function of the Hamiltonian parameters α

and μ. Each peak corresponds to a wave front of information
that travels at a finite speed through the system after the quench
[see Figs. 1(c) and 1(d)].

For μ = 1 there are three peaks for α < 1, which reduce to
two at the crossover α = 1. For α � 1 both peaks converge to
c = 1, the group velocity of the short-range transverse Ising
model.

The case μ = −1 shows a much richer behavior. Here there
is only one peak at α < 1, which splits in two at α = 1. At
α ≈ 1.3 one peak drops to zero velocity, corresponding to a
ballistic wave packet with c ≈ 0. Around α ≈ 3, the peaks
join and a new peak appears at high c. For α � 1 both peaks
converge again to c = 1.

For α < 1 the spectrum becomes singular around k = 0,
implying that the group velocity of modes with k ≈ 0 diverges.
In contrast with short-range interacting systems, there no
longer exists an upper bound for the group velocity. In the
velocity distribution N (c), this manifests itself as long tails
for c � 1. Immediately after the quench, these ultrafast modes
will cross large distances and correlate distant points in the
chain.

The case μ = −1 shows even more interesting behavior.
For α > 1, we find that c(k)|k→0 = ζ (α − 1) = ∑∞

k=1 k1−α ,
which in the limit α → ∞ converges to c(k) = 1, the ballistic
velocity in the transverse Ising model. Interestingly, when
1 < α < 2, the spectrum ε(k) is finite everywhere, but the
group velocity c still diverges around k = 0. Therefore this
case displays quasi-long-range behavior in terms of ultrafast
propagation of information. Most strikingly, the limiting
case α = 1 has a finite spectrum and finite group velocity
everywhere. A dominant quasiparticle velocity c = 1/2 can
be determined from the velocity distribution, thus recovering
an effective light cone as in short-range interacting systems as
shown in Fig. 2(b).

Apart from the fast modes in the tail of the velocity
distribution of long-range interacting systems, also very slow
dynamics can be observed. Saddle points in ε(k) lead to
occupations of modes with c ≈ 0. This effect is visible for
μ = −1, where the spectrum has a minimum at nonzero k
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for α � 1.3. In the case α ≈ 1.3 this is most pronounced,
as now there is even ballistic peak with c ≈ 0. At late
times, these modes will spread information at a very slow
rate and delay equilibration of the system. Note that the
slowing down of the group velocity for μ = −1 occurs in the
intermediate interaction range and is not directly related to the
range of the interactions. For decreasing α, the equilibration
of local observables speeds up again. The case μ = 1 in
turn does not exhibit these ultraslow group velocities for
any α.

D. Entanglement entropy

The slowing down of local equilibration is also reflected
in the time evolution of the entanglement entropy itself. In
general, the direct measurement of entanglement entropy is
believed to be very hard, due to its strongly nonlocal nature,
but recently promising methods were proposed [34,35] and
implemented [36].

In Fig. 3 we see in all cases that the entropy converges at late
times to the GGE value, as is expected from the proof of [37]
(see Appendix B). However, the way in which the equilibration
occurs is strongly dependent on the range of interactions. For
short-range interactions (α � 1) the effective light cone set up
by the quasiparticles traveling at unit velocity implies a linear
growth of entanglement entropy before equilibration, as was
also predicted for the corresponding CFT’s [17]. There is an
abrupt saturation at tsat = LA/2, the time it takes for the last
particle-hole pair, coming from the middle of the subsystem, to
leave. The curves for different LA coincide up to the saturation
time tsat, as shown in Fig. 3.

For long-range interactions the initial entropy increase is
faster than linear because of the ultrafast propagating modes.
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FIG. 3. (a) Entanglement entropy as a function of time after a
global quench in a LRK chain. Results are shown for subsystem sizes
from 128 to 2048 sites. All quenches start from the noninteracting
ground state to a value of μ = 1 and α = 0.7. For comparison, the
dashed lines show the result for α = 10. (b) The time τsat it takes
to reach 95% of the GGE entropy as a function of α, for μ = −1
(blue solid line) and μ = 1 (red dashed line). The subsystem size
is 200.

In particular, we find a power-law growth SA ∼ tβ , with β < 1.
Surprisingly, this in contrast with previous results on the
LRK model [18], on long-range spin chains [11] and coupled
harmonic oscillators [16], where the initial entropy growth
was found to be logarithmic. The time it takes to thermalize
is prolonged by the slow modes in the velocity distribution
[see Fig. 1(c)]. The transition to an equilibrated state is
smooth and there is no clearly distinguishable saturation
time.

IV. CONCLUSIONS

In conclusion, it is possible to understand the main features
of the information propagation and equilibration of local
observables in long-range Kitaev chains in terms of its
quasiparticle dispersion. Long-range (α < 1) as well as quasi-
long-range interactions (μ = −1 and 1 < α < 2) give rise to
an immediate increase of the mutual information after a quench
from the noninteracting ground state, with the exception of
the case μ = −1,α = 1. For μ = −1 and around α = 1.3,
we also find large mutual information at timelike separation
and slow equilibration to the generalized Gibbs ensemble,
due to a vanishing of the dominant group velocity. It is an
intriguing question whether a connection between long-range
interactions and slow thermalization also exists for generic
interacting quantum systems.

Note added in proof. Recently, we became aware of similar
ongoing work by Buyskikh et al. [38].
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APPENDIX A: CONSTRUCTION OF THE
DENSITY MATRIX

We study systems with Hamiltonians of the general
quadratic form

HF,B =
∑
ij

[
c
†
i Vij cj + 1

2
(c†i Wij c

†
j + H.c.)

]
, (A1)

where the c
†
i (ci) denote fermionic creation (annihilation)

operators on a lattice.
The two-point normal and anomalous correlation functions,

defined as G
(n)
ij = 〈c†i cj 〉 and G

(a)
ij = 〈cicj 〉, respectively, allow

for the reconstruction of the reduced density matrix of a
subsystem A, consisting of a set of NA lattice sites.

A new set of operators γq = ∑
i∈A Uqici + Vqic

†
i exists,

such that

ρA =
∏
q

1

n
(γ )
q

exp

(
−

∑
q

�qγ
†
q γq

)
, (A2)

with n
(γ )
q = 〈γ †

q γq〉 = 1/(1 + e−�q ) the density of γq modes.
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The transformation matrices U and V and the pseu-
doenergies �q are obtained by solving PG(+)

A = �AQ and
QG(−)

A = �AP , where we defined

G(±)
A =

(
2G

(n)
A − 1 ±2G

(m)
A

±2G
(m)
A

∗
2G

(n)
A − 1

)
, �A =

(
� 0
0 �

)
,

(A3)

with �qp = δqp(2n
(γ )
q − 1), and the unitary matrices

P =
(

U V

V ∗ U ∗

)
, Q =

(
U −V

−V ∗ U ∗

)
. (A4)

The entanglement entropy of A with its environment can now
be evaluated as SA = ∑

q h(n(γ )
q ), with the entropy per mode:

h(x) = −x log x − (1 − x) log(1 − x). (A5)

APPENDIX B: RELAXATION TO GGE

The generalized Gibbs ensemble is the maximum-entropy
ensemble at equilibrium [22]. It is constructed by inclusion of
all conservation laws:

trρGGE = Z−1 exp

(
−

∑
k

λknk

)
, (B1)

with nk = v2
k , given in the main text, and λk = log (u2

k/v
2
k ), as

set by the initial state.
The matrix constructed on A, of which the eigenvalues

μq = (2n
(γ )
q − 1)2 yield SA, reads

�A = G(+)
A × G(−)

A =
(

�
(d)
A �

(a)
A

�
(a)
A

∗
�

(d)
A

∗

)
. (B2)

We find that 〈c†kcl〉 = n(c)δkl and 〈ckcl〉 = m(c)δkl , with the
density and anomalous correlation

n
(c)
k = sin2 θk sin2 εkt,

m
(c)
k = sin θk(1 − cos2 (θk/2)e−i2εk t + sin2 (θk/2)ei2εk t ).

Using these, Eq. (B2) can be written as

�(d)
mn = δmn − 4

L

∑
k

e−ik(m−n)n
(c)
k

+ 4

L2

∑
kl

e−ikmeiln WA
kl

(
n

(c)
k n

(c)
l + m

(c)
k m

(c)
l

)
, (B3)

�(a)
mn = 4

L2

∑
kl

e−ikmeikn WA
kl

(
m

(c)
k n

(c)
l − n

(c)
k m

(c)
l

)
,

with WA
kl = ∑

n∈A e−i(k−l)n.
It is now easy to verify that the long-time limits of

matrices (B3), with m,n on a finite subsystemA, are equivalent
to their time averages

�
(d)
mn =

∑
k

e−ik(m−n)
(
2v2

k − 1
)2

, �
(a)
mn = 0, (B4)

leading indeed to construction (B1), the correct ensemble at
equilibrium.

0

40

80

120

160

0

40

80

120

0

40

80

120

0

40

80

120

160

tL

20

40

60

80

0

50

10

20

30

40

0

120

40

80

0

0

40

80

120

200 400 6000 0 200100 300 400

α
=

1
α

=
0.

7
α

=
1.

5
α

=
4

t=50,100,150,200 L=100,200,300,400,500

FIG. 4. The scaling of entanglement entropy as a function of
subsystem size (left) and time (right) for μ = −1 and different values
of α. The black dotted line marks the GGE result.

Figure 4 shows the scaling of the entanglement entropy
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various values of the interaction range. It is clear that for
longer interaction ranges (except for the special case α = 1),
the thermalization slows down, with a very slow approach to
the GGE (dotted lines) for large subsystems.

APPENDIX C: DERIVATION OF THE CORRELATION
FUNCTION

The decay of the correlation functions at large distances
can be evaluated for α < 1. The spectrum in the vicinity of
the divergence can be approximated as εk ≈ ξ (α)kα−1, with
ξ (α) = cos (πα/2)�(1 − α) (see the Supplemental Material of
[18]). Only modes close to the divergence will contribute at
large distances.

Furthermore we have that θk ≈ −π/2 around the diver-
gence, such that at large r = |m − n|

〈c†mcn〉 = i〈cmcn〉 ≈ − 1

4π



(∫ π

−π

e−i(kr+2εk t)dk

)
. (C1)

The integral can be evaluated with a static-phase approxima-
tion and yields expression (2) from the main text, with

F (r,t) = 1

2
√

2π (2 − α)
(2(1 − α)ξ (α)t)γ r−χ ,

(C2)
η(r,t) = π

4
+ (2 − α)(2ξ (α)t)2γ ((1 − α)r)1−2γ .

See Fig. 5 for a comparison between the correlation function
and this approximation.
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