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Quantum-state transfer in staggered coupled-cavity arrays
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We consider a coupled-cavity array, where each cavity interacts with an atom under the rotating-wave
approximation. For a staggered pattern of intercavity couplings, a pair of field normal modes, each bilocalized
at the two array ends, arises. A rich structure of dynamical regimes can hence be addressed, depending on
which resonance condition is set between the atom and the field modes. We show that this can be harnessed
to carry out high-fidelity quantum-state transfer (QST) of photonic, atomic, or polaritonic states. Moreover, by
partitioning the array into coupled modules of shorter length, the QST time can be substantially shortened without
significantly affecting the fidelity.
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I. INTRODUCTION

The potential of coupled high-quality cavities as a platform
for simulating many-body quantum phenomena has attracted
considerable interest over the past few years [1,2]. Such an
architecture would indeed enable a high degree of control and
addressability of individual sites. Moreover, the coupling to
atoms results in the formation of polaritons (pseudoparticles
involving atomic and photonic excitations), which can give
rise to novel strongly correlated regimes of light and matter.

A prototype of such systems is a coupled-cavity array
(CCA) described by the so-called Jaynes-Cummings-Hubbard
(JCH) model [3,4], where—due to the overlap between evanes-
cent field modes—photons can hop across nearest-neighbor
cavities and, at the same time, interact with two-level quantum
emitters (“atoms”). In the strong atom-field coupling regime,
an effective repulsive photon-photon interaction takes place,
resulting in a Mott-insulator state for the system [3–12]. The
competition between this photon-blockade effect [13] and the
photon hopping creates a Mott-insulator–superfluid quantum
phase transition in analogy with the Bose-Hubbard model [14].

Besides being promising quantum simulators (cf. Ref. [15]
for a recent implementation of a Jaynes-Cummings (JC)
dimer in a superconducting circuit), coupled-cavity networks
are attractive platforms for distributed quantum information
processing and quantum communication [16–18]. Among its
crucial requirements, a quantum network must be capable
of creating entanglement, performing quantum gates, and
transmitting quantum states between arbitrarily distant nodes.
As atomic systems are long-lived quantum memories and
photons can faithfully carry information over long distances,
hybrid atom-photon interfaces indeed appear to be ideal
building blocks of a quantum network architecture [19,20].

From this perspective, a key issue is the study of excitation
transport—in the form of photonic, atomic, or polaritonic
excitations—as well as quantum-state transfer (QST) [21,22]
across CCAs [23–35]. Nontrivial dynamics are also exhibited
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by CCAs featuring only a single cavity coupled to an atom
[36–41].

In this paper, we explore the potential of a CCA to work
as a bus for achieving high-fidelity QST without demanding
any dynamical control or measurement. QST is a pivotal
task in quantum communication, which has been intensively
investigated, mostly in connection with spin chains following
the seminal proposal by Bose [21] (for a review see, e.g.,
Ref. [22]). Given an array of coupled qubits (such as a spin
chain), the goal of QST is transferring an arbitrary quantum
state of a qubit located at one end of the array to the qubit
at the opposite end. This should be performed by simply
letting the many-qubit system evolve in time according to
its Hamiltonian. Achieving this with a high efficiency is, in
general, nontrivial. For instance, this is not possible in chains
(especially long ones) with uniform spin-spin couplings [21]
due to the detrimental dispersion of the initial wave packet.
To get around it, several schemes were thus put forward. It
was shown, in particular, that perfect length-independent QST
can be reached by engineering the spin-spin couplings so as
to induce a linear dispersion relation [42,43]. This yields a
ballistic QST, entailing that the QST time is proportional to
the chain length. A reliable local modulation involving the
entire chain, however, would face several practical difficulties
on the experimental side. Ballistic QST can also be achieved
under appropriate tuning of the outermost couplings [44,45]. A
different approach relies on the weak interaction of the sender
and receiver spins with a bulk embodied by a uniform chain
[46,47]. Schemes of this kind exploit the appearance of a pair of
Hamiltonian eigenstates strongly bilocalized at the outermost
weakly coupled sites (behaving as chain defects), which brings
about an effective Rabi-like dynamics [46]. A similar dynamics
can be triggered by applying strong magnetic fields to the
sender and receiver qubits or their nearest neighbors [48–50].
At variance with ballistic QST protocols, a usual drawback of
Rabi-like mechanisms is that they typically require long QST
times.

Here, we assume a scheme of staggered intercavity coupling
strengths, also known as the Peierls distorted chain [51], which
has been addressed for QST [52,53] and quantum teleportation
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protocols [54–56] in spin systems (CCAs were considered
for implementing distorted chains in Refs. [55,56]). This
model also belongs to the class of QST schemes relying on
Rabi-like dynamics, hence requiring relatively long transfer
times. One of our goals is to keep a high-quality QST via
Rabi-like dynamics but, at the same time, significantly reduce
the required transfer time. We show that this can be achieved by
modularizing the array, namely, connecting identical subunits
of Peierls distorted chains. We first discuss this in detail for
an atom-free CCA, which also applies to any spin chain
(irrespective of its realization) having an analogous pattern of
couplings. We then show how to exploit these findings when
the CCA is coupled to atoms in order to devise schemes for
transferring atomic or polaritonic states.

The present paper is organized as follows. In Sec. II, we
study the single-photon spectrum and stationary states of a
staggered CCA, highlighting, in particular, the features that
are crucial for QST purposes. In Sec. III, we review the basic
ideas of QST in spin chains, with a special focus on those
schemes whose working principle relies on the formation of
bilocalized states. In Sec. IV, we study QST across a staggered
atom-free CCA. In Sec. V, we show how the staggered CCA
can be modified so as to shorten the QST transfer time. In
Sec. VI, we study the CCA dynamics in the presence of atoms
and the regimes that are relevant for QST. In Sec. VII, we show
how to achieve QST of atomic and polaritonic qubits. Finally,
in Sec. VIII we draw our conclusions.

II. CCA WITH STAGGERED HOPPING RATES

Our setup consists of a CCA comprising an even number N

of identical, single-mode, lossless cavities. Nearest-neighbor
cavities are coupled according to a staggered pattern of
hopping rates such that two possible hopping rates J1 and
J2 are interspersed along the array, as sketched in Fig. 1. Each
cavity in turn (see Fig. 1) can be coupled to a two-level quantum
emitter (atom).

In this and the following three sections, we focus on the
free-field Hamiltonian, i.e., that of an atom-free CCA. We
consider the full setup, including the atoms, starting in Sec. VI.

The free-field Hamiltonian of the staggered CCA is mod-
eled as (we set � = 1 throughout)

Ĥhop = −J

N−1∑
x=1

[1 − (−1)xη] (â†
x+1âx + H.c.), (1)

where the bosonic ladder operator â
†
x (âx) creates (annihilates)

a photon at the xth cavity. Note that for odd (even) x the
quantity in brackets in Eq. (1) equals J1 = (1 + η)J [J2 =

J1

g

J2 J1 J2 J1

g g g g g

FIG. 1. Sketch of a CCA with a staggered pattern of hopping
rates, where J1 = (1 + η)J and J2 = (1 − η)J . The protected mode
of each cavity can be coupled to a two-level atom at rate g.

(1 − η)J ], where J sets the hopping scale and −1�η�1
is a dimensionless distortion parameter (rates are always
expressed in units of J ). For η = 0, we retrieve the CCA
with uniform intercavity couplings usually considered in JCH
models [27]. We also point out that, since N is even, for
η → −1+ the two outermost cavities (corresponding to x = 1
and x = N , respectively) are weakly coupled to the remaining
ones (bulk), a property which is crucial for our goals. In
assuming that the free-field Hamiltonian is given by Eq. (1),
we have neglected the usual on-site contribution

∑
x ωc â

†
x âx ,

with ωc being the frequency of the each cavity-protected
mode, which is equivalent to setting the energy scale such that
ωc = 0.

Our first task is to diagonalize Hamiltonian (1) in the
single-photon Hilbert space, which is spanned by the basis
{|x〉}, with |x〉 = â

†
x |vac〉 and |vac〉 being the field vacuum

state. Recalling that N is even, Hamiltonian Ĥhop evidently
enjoys a mirror symmetry with respect to its middle point; i.e.,
it is invariant under the transformation P̂ |x〉 = |N − x + 1〉,
where P̂ is the parity operator. Thereby, Ĥhop can be block-
diagonalized, each block corresponding to a subspace of
a given parity (even or odd). The even (odd) subspace is
N/2-dimensional and spanned by the basis {|x〉+} ({|x〉−})
with |x〉± = (|x〉±|N − x + 1〉)/√2, where x runs from 1
to N/2. For now, we add the requirement that the number
of cavities is such that N/2 must be odd, which is equiv-
alent to demanding that N—besides being even—is not an
integer multiple of 4 (for our purposes, this is only a mild
restriction).

It is straightforward to check that the parity subspaces intro-
duced above yield an effective representation of Hamiltonian
(1) given by

Ĥ
(±)
hop = −J

N/2−1∑
x=1

[1 − (−1)xη] (â(±)†
x+1 â(±)

x + H.c.)

∓ J1â
(±)†
N/2 â

(±)
N/2,

(2)

with â(±)†|vac〉 = |x〉± (if N/2 is even, an analogous expres-
sion holds, but replacing J1 →J2 in the last term). Note that,
unlike in Fig. 1 where the outermost couplings are equal to
J1, here the leftmost and rightmost couplings are J1 and J2,
respectively. Thus, Hamiltonian Ĥ

(±)
hop describes an effective

array comprising an odd number of cavities featuring a
staggered pattern of hopping rates and a defect at the rightmost
cavity x = N/2. This defect consists in a local-frequency
shift ∓J1.

For convenience, let us define M = N/2 and V̂± =
∓J1â

(±)†
M â

(±)
M , where the latter describes the defect term in

Eq. (2). We can now tackle the problem perturbatively by
interpreting V̂± as a perturbation in a defect-free staggered
CCA consisting of an odd number of cavities, a model which
can be exactly solved in the single-excitation subspace [29].

A. Diagonalization of Ĥ (±)
hop for V̂± = 0

Based on Ref. [29], for V̂± = 0 (no defect) the spectrum
of Ĥ

(±)
hop comprises a pair of bands (separated by a gap �ω)
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alongside a discrete frequency ωb = 0 falling in the middle
of the gap. The latter corresponds to a bound eigenstate |αb〉,
which is localized in the vicinity of only one of the array edges
(which of the two depends on the sign of η). This reads

|αb〉 = C
M+1

2∑
x=1

Dx−1|2x − 1〉±, (3)

with

D = J1

J2
= 1 + η

1 − η
, C = 2

η − 1

√
η

DM+1 − 1
, (4)

where D can be interpreted as the distortion ratio. Note that
the spatial amplitude of the bound mode, ±〈x|αb〉, decays
exponentially as x moves away from the weakly coupled edge.
Also, ±〈x|αb〉 = 0 for even |x〉±.

All the remaining eigenvalues, instead, are given by ωkμ =
−μEk , with μ = ± (band index) and

Ek = 2J

√
cos2

k

2
+ η2sin2

k

2
, (5)

where k = 2πj/(M + 1) for j = 1,2, . . . ,(M − 1)/2. These
describe a pair of energy bands separated by a band
gap �ω � 4J , with the identity holding only when |η| =
1 The eigenstates corresponding to ωkμ are worked out
as [29]

|αkμ〉 =
√

2

M + 1

⎛
⎝

M−1
2∑

x=1

sin(kx)|2x〉±

+ μ

M+1
2∑

x=1

sin(kx + ϑk)|2x − 1〉±
⎞
⎠, (6)

where the phase ϑk is defined by the identity eiϑk =
J (1 − η)(e−ik − D)/Ek .

B. Peturbative diagonalization of Ĥ (±)
hop

Let us now tackle the full problem of diagonalizing Ĥ±
hop

(taking the defect into account). If J1 �J2, meaning that the
end cavities are weakly coupled to the bulk (see Fig. 1), V̂±
can be treated as a small perturbation. Applying standard first-
order perturbation theory, the bound-mode frequency ωb = 0
is then straightforwardly corrected as

ωb± � ωb ∓ J1〈αb|â(±)†
M â

(±)
M |αb〉 = ∓ 4JηDM

(η − 1)(DM+1 − 1)
,

(7)

where terms ∼O(J 2
1 ) have been neglected. The perturbation

thereby splits ωb into two discrete frequencies separated by
the energy gap

δω = ωb− − ωb+ = 8Jη

η − 1

( 1+η

1−η

)N/2

( 1+η

1−η

)N/2+1 − 1
, (8)

where we have used Eqs. (4) and (7) and replaced M = N/2.

FIG. 2. (a) Single-excitation spectrum of Hamiltonian (1) (in
units of J ). �ω is the gap between the pair of bands corresponding
to unbound states, while δω = ωb− − ωb+ (inset) is the energy gap
between the localized bound states [cf. Eq. (8)]. (b) Spatial profile
of |αb±〉. Plots were obtained by exact numerical diagonalization of
Eq. (1) for η = −0.25 and N = 50 [comparison with perturbation
theory, Eqs. (7) and (9), is found to be excellent].

The corresponding eigenstates are evaluated as

|αb±〉 � |αb〉 ∓ J1

∑
k,μ

〈αkμ|â†
MâM |αb〉

ωb − ωkμ

|αkμ〉

= |αb〉 ∓ 4JC
(

η + 1

M + 1

)
D M−1

2

∑
k

M−1
2∑

x=1

sin(kx)

Ek

× sin

[(
M + 1

2

)
k + ϑk

]
|2x〉±. (9)

The unbound states of Ĥ
(±)
hop can be easily obtained as well,

though they yield extensive expressions, which we do not
report here for the sake of brevity. In Fig. 2, we con-
sider the paradigmatic instance η = −0.25 and N = 50 and
display the energy spectrum of the full Hamiltonian, (1),
alongside the spatial profile of the bound states, (9), on the
actual array (i.e., in the basis {|x〉}). We see that the two local-
ized bound states are well isolated from the unbound modes
(the latter corresponding to the pair of bands). They exhibit
an energy splitting δω that, although negligible compared to
the band gap �ω, is nonzero. Moreover, each bound state
is strongly localized in the vicinity of the array edges (i.e.,
cavities x = 1 and x = N ), a property which henceforth we
refer to as bilocalization. These features are key sources for
performing QST, as we discuss next.

III. QUANTUM-STATE TRANSFER: REVIEW

QST protocols are typically formulated in one-dimensional
XX-type spin chains, which can be described in terms of ladder
spin operators yielding a Hamiltonian of the general form

Ĥch =
N∑

x=1

Bxσ̂
+
x σ̂−

x +
N−1∑
x=1

Jx(σ̂+
x+1σ̂

−
x + H.c.), (10)

where Bx is a local effective magnetic field and σ̂+
x =[σ̂−

x ]† =
|1〉x〈0|, with {|0〉x , |1〉x} being a single-spin orthonormal basis.
Note that Hamiltonian (10) conserves the total number of
excitations, i.e., [

∑
x σ̂+

x σ̂−
x ,Ĥch] = 0. In the single-excitation
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subspace, the Hamiltonian reduces to a tridiagonal matrix
describing a standard hopping model.

A. Basics of QST

In the usual QST scheme [21], the sender prepares an
arbitrary qubit state |φ〉1 = c0|0〉1 + c1|1〉1 at the first site and
sets the rest of the chain to |0〉2 . . . |0〉N . The initial state of the
whole chain thus reads |�(0)〉 = |φ〉1|0〉2 . . . |0〉N . The system
then evolves according to its Hamiltonian Ĥch so that at time t

its state is given by |�(t)〉 = Û (t)|�(0)〉 with Û (t) = e−iĤcht .
The goal is to exploit such natural dynamics to transfer
the initial sender’s state |φ〉 to the N th spin (receiver) in a
given time τ , meaning that |�(τ )〉 = |0〉1 . . . |0〉N−1|φ〉N . The
received (generally mixed) state is evaluated by tracing out the
remaining spins, i.e., ρN (τ ) = Tr1,...,N−1|�(τ )〉〈�(τ )|. One
thus aims at making the QST fidelity Fφ(τ ) = 〈φ|ρN (τ )|φ〉
as large as possible (the fidelity Fφ measures how close the
receiver’s state is to |φ〉).

The fidelity introduced above depends on the specific input
|φ〉. In order to end up with a state-independent figure of merit
for QST, one needs to average Fφ over all possible input states
on the Bloch sphere (|c0|2 + |c1|2 = 1). For Hamiltonians
of the form of (10), which conserves the total number of
excitations, and given that |�(0)〉 is restricted to evolving
in the zero- and one-excitation subspaces, the former being
unaffected by U (t), the average fidelity is simply given by [21]

F(t) = 1

2
+ |f (t)|

3
+ |f (t)|2

6
, (11)

where

f (t) = 〈N |e−iĤcht |1〉 (12)

is the excitation transition amplitude from the first to the last
spin. (We used the compact notation |x〉 ≡ σ̂+

x |0〉1 . . . |0〉N .)
Note that |f (τ )| = 1 entails F(τ ) = 1 (perfect QST). Also,
the average fidelity is a monotonic function of the transition
amplitude and hence the QST performance can be evaluated
by just tracking down the excitation transport across the array.

When the state to be transferred is encoded in more than two
levels (a qutrit for instance) and/or the chain is not properly
initialized (thus containing unwanted excitations), the average
fidelity is not expressed by Eq. (11), even though it still depends
on the involved transition amplitudes [34,57].

B. Rabi-like QST

In the single-excitation sector, the spectral decomposition
of Hamiltonian (10) reads Ĥch = ∑N

j=1 ωj |υj 〉〈υj |, where ωj

is the j th energy eigenvalue with corresponding eigenstate
|υj 〉 = ∑N

j=1 υjx |x〉. In this representation, the transition
amplitude discussed above is given by

f (t) =
N∑

j=1

e−iωj tυ∗
jNυj1 =

N∑
j=1

e−iωj t 〈υj |σ̂+
1 σ̂−

N |υj 〉. (13)

The last identity shows that each eigenstate contributes to
Eq. (13) through the quantity 〈υj |σ̂+

1 σ̂−
N |υj 〉, evolving in time

at rate ωj . In the remainder of this paper, we refer to it as the
end-to-end amplitude.

Various high-quality QST schemes [46,48,49,52,58] rely on
the situation where the edge states |1〉 and |N〉 have a strong
overlap with only two stationary states, say those indexed
by j = 1,2 (bilocalization). In this case, Eq. (13) can be
approximated as

f (t) � e−i δω t
2 〈υ1|σ̂+

1 σ̂−
N |υ1〉 + ei δω t

2 〈υ2|σ̂+
1 σ̂−

N |υ2〉 (14)

with δω = ω1 − ω2 (we have assumed ω1 > ω2). This entails
a Rabi-like dynamics that occurs with a characteristic Rabi
frequency given by δω. Accordingly, τ ∼ δω−1, showing that
the order of magnitude of the transmission time is set by the
energy gap between the two bilocalized eigenstates.

The above bilocalization effect is usually achieved by in-
troducing perturbation terms in the Hamiltonian that decouple
the outermost spins from the bulk. This can be realized (i)
by applying strong local magnetic fields on the edge spins
[48,58], (ii) by applying such fields on their nearest-neighbors
[49], and (iii) by engineering weak couplings between the edge
spins and the bulk [46,52]. While all these models share that
a pair of Hamiltonian eigenstates exhibits strong bilocalizaton
at the edge sites, the typical energy gap between such
two states—and, accordingly, the transmission time—depend
on the considered model. Calling ξ the model-dependent
perturbation parameter (such as the local magnetic field
strength), for (i) the time scales with N as τ ∼ ξN , resulting
in a QST time that increases exponentially with the array
length, whereas for (ii) and (iii) the time scales as O(ξ 2) and
O(ξ−2), respectively. All these typical transfer times are, in
general, relatively long and may easily exceed the system’s
coherence time scale. Therefore, it is of great importance to
design protocols requiring shorter transfer times.

IV. QST IN AN ATOM-FREE STAGGERED CCA

Comparing Eqs. (1) and (10), it should be evident that
within the single-excitation subspace, one can regard the spin
chain as an atom-free CCA. Indeed, in this case the mapping is
straightforward and reads σ̂+

x → â
†
x , σ̂−

x → âx . Likewise, the
QST protocol discussed in Sec. III A now takes place in the
zero- and one-photon sectors {|vac〉, |x〉}. Until Sec. V we thus
address QST along a staggered CCA with no atoms. This will
introduce one of our main results in Sec. V, where we show
that the staggered CCA QST time can be significantly reduced
by adding modularization on top of the staggered scheme. On
the one hand, this analysis provides the necessary basis for
QST on CCAs coupled to atoms, which we investigate starting
in Sec. VI. On the other hand, it has its own relevance since our
findings are independent of the CCA-based implementation,
hence they apply to any spin chain with an analogous pattern
of couplings.

In the light of Secs. II and III, the atom-free staggered array
is suitable for implementing QST based on bilocalization (see
Sec. III B) in the regime J1 � J2. To see this, consider first the
limiting case J1 = 0, i.e., η = −1. In this limit (dimerization),
the array reduces to a pair of isolated cavities at the outermost
sites and a bulk of uncoupled dimers [see the inset sketch at
the top in Fig. 3(a)]. The pair of bound states [cf. Eq. (9)] then
reduces to the doublet |αb±〉 = (|1〉 ± |N〉)/√2 with ωb± = 0,
these evidently being the only stationary states with nonzero
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FIG. 3. End-to-end amplitude |〈αb±|â†
1âN |αb±〉| vs J1/J2 for

several values of N (in increasing order from top to bottom) in
the case of (a) a staggered array described by Hamiltonian (1) and
(b) a uniform bulk described by Hamiltonian (17). Note that J1/J2

decreases from right to left. Each plot was obtained from an exact
numerical diagonalization of the Hamiltonian.

amplitude at the array ends. This would turn Eq. (14) into an
exact identity, with {|αb±〉} embodying the pair {|υ1〉,|υ2〉}.
Yet, due to ωb± = 0, the transmission time τ would be infinite
since δω = 0. To make this finite, we thus need to work in the
regime J1 �J2, which justifies our perturbative approach in
Sec. II B.

Next, with the help of Eqs. (3) and (9), we note that the
end-to-end amplitudes entering Eq. (14) fulfill

〈αb±|â†
1âN |αb±〉 = ± C2

2 + O
(
J 2

1

)
. (15)

Thereby, the transition amplitude’s modulus reads

|f (t)| = 2

∣∣∣∣〈â†
1âN 〉 sin

(
δω

2
t

)∣∣∣∣, (16)

where 〈â†
1âN 〉 is short notation for the end-to-end amplitude.

At times t = 2nπ/δω, with n being an odd integer, Eq. (16)
reaches the value 2|〈â†

1âN 〉|. Hence, ideally, if the absolute
value of the end-to-end amplitude equals 1/2, perfect QST is
attained with transmission time τ = 2π/δω.

In Fig. 3(a), based on exact numerical diagonalization of
Eq. (1), we explore how the end-to-end amplitude is affected by
the array size N and J1/J2. For a set ratio J1/J2, the amplitude
decreases with N , eventually saturating to an asymptotic value.
For J1/J2 = 1 (uniform hopping rates) the asymptotic value
is well below 1/2 but tends to it as J1/J2 approaches 0. At the
same time, remarkably, the rapidity at which |〈â†

1âN 〉| saturates
to such an asymptotic value as a function of N increases in
a way that, for J1/J2 small enough, the amplitude becomes
in fact N independent. This agrees with Eq. (15) [see also
Eq. (4)].

In other words, for a very distorted array, the bilocalization
effect required for high-fidelity QST is almost insensitive to the
system size. This property is related to what is known as true
long-distance entanglement exhibited by the ground state of
staggered spin chains [54], as opposed to quasi-long-distance
entanglement featuring quantum correlations that decrease
with N . The latter occurs, for instance, in spin chains com-

prising a uniform bulk [46,54]. The fundamentally different
nature of those two situations is reflected in the scaling
properties of QST fidelity as well. To show this, consider a
CCA where—unlike the staggered array—the bulk cavities
are coupled uniformly with rate J2 [see inset sketch at the top
in Fig. 3(b)]. The Hamiltonian of such an array thus reads

Ĥ ′
hop = −J1(â†

2â1 + â
†
N âN−1) − J2

N−2∑
x=2

â
†
x+1âx + H.c. (17)

Since the outermost sites are weakly coupled to the bulk, a
pair of bilocalized eigenstates is formed in this case too [46].
In Fig. 3(b), we plot the corresponding end-to-end amplitude
as a function of J1/J2 and N . The differences with respect
to the staggered-CCA case are quite striking. While for
J1/J2 = 1 (fully uniform array) both models coincide, the
end-to-end amplitude in the uniform-bulk case decreases with
N , at variance with the stable behavior found in the staggered
model, taking, moreover, lower values compared to the latter.
This shows some of the attractive features of staggered arrays
in terms of QST fidelity.

V. MODULARIZED ARRAY

The advantages highlighted in the previous section, how-
ever, come with a price in terms of the transmission time
τ required for carrying out QST. Recalling that τ ∼ δω−1,
Eq. (8) indeed shows that, in the regime J1 �J2 (i.e., η�−1),
the bound-state gap δω exponentially decays with the size
N . As a consequence, τ exponentially increases with N . One
thus wonders whether, for a given size, the staggered array
can be modified so as to increase the gap while maintaining
the bilocalization strength of |αb±〉 (necessary to attain high
fidelity). In this section, we show that this can be achieved by
modularizing the staggered CCA.

The setup we put forward is inspired by the concept of
modular entanglement introduced in Ref. [59]. Let us consider
then a set of m identical staggered arrays, having N sites each,
so that the total number of sites is L = mN . Nearest-neighbor
cavities of adjacent modules are coupled with hopping rate
Jmod, hence the total Hamiltonian reads

Ĥmod =
m∑

j=1

Ĥ
(j )
hop − Jmod

m−1∑
j=1

(â†
jN+1âjN + H.c.), (18)

where the free module Hamiltonian Ĥ
(j )
hop is the same as Eq. (1)

[the sum now being over x = (j−1)N + 1,jN − 1].
For Jmod = J2, the whole setup reduces to a standard

staggered array comprising L cavities. In contrast, in the limit
Jmod = 0 (no intermodular couplings), the energy spectrum
and associated eigenstates of Ĥmod are the same as those of
the single N -long module analyzed in Sec. II, but becoming
m-fold degenerate. For intermediate values 0 < Jmod < J2,
this degeneracy is removed, resulting in a manifold of 2m

nondegenerate bound states. Among these, let us call δωm,N

the energy gap between the pair of the most internal ones
and |〈â†

1âL〉| the absolute value of their end-to-end amplitude.
Then, for Jmod = J2, δωm,N and |〈â†

1âL〉| are, respectively, the
same as δω and the corresponding end-to-end amplitude of
a staggered array of size L [see Eq. (8) and Fig. 3(a)]. In the
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FIG. 4. Full-array end-to-end (a, b) amplitude |〈â†
1âL〉| and (c, d)

energy-gap gain δωm,N/δω1,L vs Jmod/J for different values of N in
the case of a modularized staggered CCA. (a, c) Two-module array
(m = 2); (b, d) three-module array (m = 3). For each setup, we have
set the intramodule distortion to η = −0.5 (about J1/J2 = 0.33).

opposite limit Jmod = 0, δωm,N is larger, since now it coincides
with the bound-state gap of a staggered array of size N <L,
while |〈â†

1âL〉| = 0 because the modules are now uncoupled.
To investigate the dependence of δωm,N and |〈â†

1âL〉| on
Jmod, in Fig. 4 we consider the cases of a two- and three-module
array (δωm,N is plotted in units of δω1,L, namely, its value at
Jmod = J2). As Jmod increases from 0, both the gap and the end-
to-end amplitude monotonically tend to their respective values
for Jmod = J2 (i.e., the case discussed above). Remarkably,
the end-to-end amplitude, in particular, exhibits quite a rapid
saturation [see Figs. 4(a) and 4(b)]. Instead, δωm,N undergoes
more regular growth. This means that, starting from Jmod = J2

(L-size staggered array), one can decrease Jmod by a significant
amount—thus modularizing the CCA—and retain the end-to-
end amplitude almost unchanged, but amplifying the energy
gap substantially. For instance [see Figs. 4(a) and 4(c)], in the
two-module (m = 2) case for N = 14 when Jmod � 0.01J the
end-to-end amplitude is unchanged for all practical purposes
while the energy gap is over a hundred times larger, resulting
in the same QST fidelity but with a transfer time about two
orders of magnitude lower. This can be further improved by
increasing the number of modules for fixed overall array length
L since this results in modules of a shorter length.

We also note in Fig. 4 that the saturation of |〈â†
1âL〉| occurs

for lower values of Jmod as N grows. Hence, lower values of
Jmod are required for establishing bilocalization. This can be
attributed to the fact that the gap δω of each (isolated) staggered
module, coinciding with δωm,N for Jmod = 0, decreases with
N . From a perturbative perspective, the effect of switching
on an intermodular coupling will be significant when Jmod be-
comes comparable with δω, which, however, decreases with N .

To summarize, for a staggered array of a given length,
partitioning it into several modules can result in shorter
QST times without significantly affecting the corresponding
fidelity. In Fig. 5, we provide further explicit evidence of this

FIG. 5. Maximum achievable average QST fidelity F
[cf. Eq. (11)] after one Rabi-like oscillation period, that is,
τ = 2π/δωm,N , vs Jmod/J . We have set L = 24, J1 = 0.3J , and
J2 = J and considered different modularization schemes (each
specified by the value of m). Inset: Transfer time τ (in units of J−1)
vs Jmod/J on a log-lin scale. For the unmodularized array (m = 1),
the maximum fidelity and transfer time are, respectively, F � 0.98
and τ � 3 × 106J −1.

phenomenon by considering a CCA of length L = 24 in the
case of four modularizations, defined by m = 2, 3, 4, and
6. Note, for instance, that a six-block modularization leaves
the fidelity above �95%, while the QST time is shortened
by three orders of magnitude. A significant QST speedup is
nevertheless attainable even for lower m. Note that while the
QST time increases polynomially with Jmod, the fidelity shows
nonmonotonic behavior due to residual contributions from
other eigenstates to the transition amplitude [see Eq. (13)].

The possibility of reducing QST times over relatively short
distances—say of the order of up to 30 sites as in Fig. 5—is
relevant itself, e.g., to carry out short-haul communications
tasks between quantum processors in a quantum computing
architecture. Concerning longer CCAs, a thorough analysis of
the scalability of a modularized array is beyond the scope of
the present work and will thus be presented elsewhere [60].
However, in order to test the potential of modularized chains to
perform QST over longer distances, in Fig. 6 we additionally
consider the paradigmatic case of a CCA having L=102 sites.
Note that high-quality QST is still achievable within times
that, although inevitably longer, are far shorter compared to
the unmodularized staggered CCA.

As mentioned previously, all the above clearly applies not
only to atom-free CCAs, but also to spin chains in general
(regardless of their implementation). In the following, we
address CCAs coupled to atoms with the goal of putting
forward QST schemes in which both atomic and photonic
degrees of freedom are involved.
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FIG. 6. Maximum achievable average QST fidelity F
[cf. Eq. (11)] after one Rabi-like oscillation period, that is,
τ = 2π/δωm,N , vs Jmod/J . We have set L = 102 and η = −0.8
(about J1/J2 = 0.11) using the modularization scheme m = 17, the
length of each module thus being N = 6. Inset: Transfer time τ (in
units of J −1) vs Jmod/J on a log-lin scale. For the corresponding
unmodularized CCA, the transfer time is infinite for all practical
purposes.

VI. CCA WITH ATOMS

We now consider a CCA where each cavity is additionally
coupled to a two-level atom of frequency ωa , according to the
JC interaction Hamiltonian [61],

Ĥ (JC)
x = ωcâ

†
x âx + ωaσ̂

+
x σ̂−

x + g (σ̂+
x âx + σ̂−

x â†
x), (19)

where now σ̂+
x ≡ |e〉x〈g|, with |g〉 (|e〉) denoting the atomic

ground (excited) state, and g the atom-field coupling strength.
In the following, we again set ωc = 0 for simplicity. For
a staggered pattern of hopping rates (see Fig. 1), the total
Hamiltonian reads

Ĥ = Ĥhop +
N∑

x=1

Ĥ (JC)
x , (20)

where the hopping Hamiltonian is the same as in Eq. (1). Here-
after, we adopt the short notation |1x〉 ≡ â

†
x |vac〉|g〉1 . . . |g〉N

and |ex〉 ≡ σ̂+
x |vac〉|g〉1 . . . |g〉N , where the former is the state

where a single photon lies in the xth cavity with all the
atoms unexcited, while in the latter state only the xth atom
is excited (with the field and all of the remaining atoms
unexcited). The single-excitation sector of the joint Hilbert
space is 2N -dimensional and spanned by the basis {|1x〉,|ex〉}.

Moreover, let us denote {|αn〉} the set of N eigenstates
of the free-field Hamiltonian Ĥhop, i.e., Ĥhop|αn〉 = ωn|αn〉,
each having the form |αn〉 = ∑

x αnx |1x〉. These states solely
comprise photonic excitations (the index n is intended to run
over both bound and unbound states). Correspondingly, one
can define a set of N states {|βn〉} such that |βn〉 = ∑

x αnx |ex〉,
hence featuring only atomic excitations (excitons). By con-
struction, each |βn〉 has the same spatial profile as |αn〉 and can
thus be regarded as its excitonic analog. States {|αn〉} ({|βn〉})
can be regarded as arising from the normal-mode field (atomic)
operators {α̂n} ({β̂n}), defined, accordingly, as α̂n = ∑

x αnxâx

(β̂n = ∑
x αnxσ̂

−
x ).

Note that in Eq. (20) both g and ωa are uniform throughout
the array. Using this, Ĥ can be rearranged as (see Refs. [26],

[27], [29])

Ĥ =
∑

n

[ωnα̂
†
nα̂n + ωaβ̂

†
nβ̂n + g(β̂†

nα̂n + H.c.)]. (21)

Therefore, within the single-excitation sector, the system
behaves as a set of N decoupled effective JC models, each
corresponding to a photonic mode of frequency ωn coupled
to its excitonic counterpart of frequency ωa with coupling
strength g. This allows for a straightforward diagonalization
of Ĥ once the eigenstates of the free-field Hamiltonian Ĥhop,
{|αn〉}, are known. Using the standard JC-model theory, indeed,
the eigenstates are worked out as

|ψ (±)
n 〉 = A(±)

n |αn〉 + B(±)
n |βn〉, (22)

where

A(±)
n = 2g√

(�n±�n)2 + 4g2
, B(±)

n = �n±�n√
(�n±�n)2 + 4g2

,

(23)

with �n = ωa − ωn and �n = √
�2

n + 4g2 being the detuning
and vacuum Rabi frequency, respectively, of the nth effective
JC model. The corresponding energy levels read

ε(±)
n = 1

2 (ωa + ωn ± �n). (24)

A. Single-mode resonance

Of all the N effective JC dynamics [cf. Eq. (21)] one
can selectively excite only one of them upon a judicious
tuning of the atomic frequency ωa . Now we particularly show
how to trigger only the JC dynamics corresponding to the
bound eigenstate |αb+〉 [cf. Eq. (9)]. In the interaction picture,
Hamiltonian (21) is turned into (we now highlight explicitly
the contributions of the bound and unbound states)

ĤI(t) = g

⎡
⎣∑

j=±
β̂
†
bj α̂bj e

i�bj t +
∑
kμ

β̂
†
kμα̂kμei�kμt + H.c.

⎤
⎦ (25)

with �b± = ωa − ωb± and �kμ = ωa − ωkμ. By tuning ωa on
resonance with ωb+, namely, setting ωa =ωb+, the first term
becomes time independent. If, additionally, g� {�kμ,�b−},
all the remaining terms in Eq. (25) are rapidly rotating so that
they effectively do not affect the dynamics and, hence, can be
neglected. Returning to the Schrödinger picture, we thus end
up with an effective Hamiltonian of the form

Ĥeff =
∑

n

(ωnα̂
†
nα̂n + ωaβ̂

†
nβ̂n) + g(β̂†

b+α̂b+ + H.c.). (26)

An analogous conclusion holds if we set the atomic frequency
on resonance with ωb−. The dynamics thus consists of a
resonant JC-like dynamics involving |αb+〉 and its excitonic
analog, while all the remaining photonic and atomic modes
evolve freely. Accordingly, only the pair of dressed states
|ψ (±)

b+ 〉 is thus formed [cf. Eq. (22)]. Note that, due to the

resonance condition �b+ = 0, we get |A(±)
b+ | = |B(±)

b+ | [cf.

Eq. (23)]. Hence, |ψ (±)
b+ 〉 are fully dressed states featuring

maximal atom-photon entanglement.
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B. Strong-coupling regime

Clearly, an implicit requirement for the above regime
to hold is that g�δω (since |αb−〉 is the nearest state
in energy). If not, additional coupling terms between field
modes and the respective excitonic analogues would appear in
Eq. (26). Consider, in particular, the strong-coupling regime
[27,32] such that g is far larger than the entire range of the
field frequencies (ωa = 0, for simplicity). Then none of the
coupling terms in Eq. (21) can be neglected in a way so that
each corresponding JC dynamics is activated. Also, due to
the negligible detunings, all the pairs of states in Eq. (22)
are formed, each reading |ψ (±)

n 〉� (|αn〉 ± |βn〉)/
√

2 and, thus,
embodying fully dressed states. Accordingly, the energy
spectrum [cf. Eq. (24)] reduces to ε(±)

n � ωn/2 ± g (since �n �
2g). Thereby, in this regime two independent polaritonic bands
are formed, each corresponding to even (odd) dressed states
|ψ (+)

n 〉 (|ψ (−)
n 〉). In either of these, the dynamics thus reduces

to a single polariton subjected to an effective Hamiltonian that
is analogous to the free-field hopping Hamiltonian, (1) [or
(18) in the case of modularization] but with all the hopping
rates rescaled by a factor of 1/2. If the CCA is prepared in
a state such as (|e1〉 ± |11〉)/

√
2, then only the corresponding

band will be excited and the dynamics will be the same as
that analyzed in previous sections [with each single-photon
state |x〉 now replaced with the single-cavity polariton state
(|ex〉±|1x〉)/

√
2].

VII. TRANSFER OF ATOMIC AND POLARITONIC STATES

Depending on the single-mode resonance or strong-
coupling regimes discussed in Secs. VI A and VI B, respec-
tively, we now show that one can carry out transfer of an
atomic or polaritonic state.

A. Atomic QST through single-mode resonance

Setting ωa = ωb+ and g�δω, the latter being the gap
between the bilocalized states |αb±〉, the JCH Hamiltonian
takes the effective form of Eq. (26). If the parameters entering
Eq. (1) [or Eq. (18) for modularized CCAs] are such that
strong bilocalization occurs (see Secs. II, IV, and V), then
both the excitonic states, |e1〉 and |eN 〉, can be decomposed
to a good approximation only in terms of |βb±〉. This gives
|e1〉�

∑
j=±〈βbj |e1〉|βbj 〉, and, using the parity properties

of |βb±〉, |eN 〉�−〈βb−|e1〉|βb−〉 + 〈βb+|e1〉|βb+〉. Expressing
next |βb+〉 in terms of dressed states [see Eq. (22)], we
get |βb+〉 = 1√

2
(|ψ (+)

b+ 〉 − |ψ (−)
b+ 〉), where |ψ (±)

b+ 〉 has energy
ω0 ± g. Replacing it in the above decomposition for |e1〉 and
letting this evolve in time through to the usual time-evolution
operator Û (t), we get

Û (t)|e1〉�〈βb−|e1〉|βb−〉+〈βb+|e1〉√
2

(e−igt |ψ (+)
b+ 〉 − eigt |ψ (−)

b+ 〉)

(27)

up to an irrelevant global phase factor. Expressing again the
dressed states in terms of |αb+〉 and |βb+〉,
Û (t)|e1〉 � 〈βb−|e1〉|βb−〉

+ 〈βb+|e1〉[cos(gt)|βb+〉 − i sin(gt)|αb+〉]. (28)

units of

FIG. 7. Time evolution of (a) the photonic and (b) the atomic
excitation and (c) of the transition amplitude across a 10-cavity
staggered CCA for an initial state |�(0)〉 = |e1〉. In (a) [(b)], we
display the probability of finding the photonic [atomic] excitation in
the first cavity (thin black line), in the last one (thick red line), and in
the bulk sites 2�x �N − 1 (dashed blue line). Plots were obtained
from an exact numerical diagonalization of Eq. (20) for η = −0.5
and g = 10−6J .

For gt = π (up to an irrelevant global phase factor), we thus get
(see above) Û (t)|e1〉�|eN 〉. Noting that, in the light of Sec. III,
the state in which the CCA has zero excitations (both photonic
and atomic) does not evolve, the two-level atom constitutes a
natural choice for encoding the logical qubit. Therefore, a QST
protocol can be carried out between the outermost atoms in a
transfer time τ = π/g. Likewise, one can accordingly define a
transition amplitude (cf. Sec. III) as f (t) = 〈eN |Û (t)|e1〉 and
evaluate the QST efficiency using Eq. (11) for the average
fidelity.

In Fig. 7, we study in a paradigmatic instance (such that
|�(0)〉 = |e1〉) the time evolution of the photonic and atomic
excitations alongside the transition amplitude just introduced.
We denote pf,x(t) = |〈1x |�(t)〉|2 and pa,x(t) = |〈ex |�(t)〉|2
the probability of finding one photon and one exciton at
cavity x, respectively. As shown in Fig. 7, the transfer takes
place through the involvement of the entire CCA, including
the bulk (especially in the form of excitons). Note that,
while the considered array is only moderately distorted (we
take η = −0.5), |f | attains a maximum � 0.9.

B. Polariton transmission in the strong-coupling regime

Note that in the scheme discussed previously, the transfer
time τ is in fact set by the atom-field coupling strength g,
which is required to be much smaller than the energy gap
between bilocalized modes δω. As the latter decreases with the
array distortion (see Sec. II), this scheme can be demanding
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for highly distorted CCAs. In this scenario, the properties of
an atom-free CCA, as shown in Secs. II, IV, and V, can be
exploited to transfer polaritonic states across the array.

In the strong-coupling regime (see Sec. VI B), the dynamics
reduces to that of a pair of fully dressed polaritonic bands.
In either of these, a single-cavity polariton of a given parity
hops through the array just like a photon propagates through
an atom-free CCA (see Secs. II, IV, and V) apart from
a factor-of-1/2 rescaling of the hopping rates (hence half
the propagation speed). Given that the polaritonic bands are
uncoupled, the preparation of a polariton of a given parity in
a given cavity, say 1√

2
(|e1〉 + |11〉), will trigger a dynamics

where solely polaritons of the same parity are involved.
Hence, at least in principle, one can encode a qubit in each
cavity in terms of atom-photon logical states |vac〉|g〉1 . . . |g〉N
and 1√

2
(|ex〉 + |1x〉). Accordingly, in this framework and by

virtue of Sec. III, this leads to a transition amplitude defined
as f (t) = 1

2 (〈eN | + 〈1N |)Û (t)(|e1〉 + |11〉). Regardless of the
feasibility of such a qubit implementation, f (t) can be used
as a figure of merit to measure how reliably a polaritonic state
can be transmitted across the CCA in line with other studies
[23,24,26,27].

Interestingly, in order for the polariton transfer to be
effective, the requirement that g must be strong enough in
order to enable the entire set of dressed states to form is
not strict. Indeed, the nature of QST across an atom-free
CCA investigated in Secs. II, IV, and V should make clear
that, for a sufficiently distorted array, it is enough that g is
strong enough to enable the formation of the four bilocalized
dressed states |ψ (±)

b± 〉 only. In Fig. 8, we show how the onset
of such dressing benefits polaritonic transfer, as the CCA
is progressively distorted for a fixed value of the atom-field
coupling strength g. For the uniform array, i.e., η = 0 [see
Fig. 8(a)] the transmission has a poor efficiency. As we have set
ωa = 0 (middle of the free-field spectrum), thus not matching
any field normal mode, and because g is small, the evolution
is dominated by its free-field dynamics. Hence, the atomic
component of the initial polariton is almost frozen [27,32],
while the photonic component propagates freely along the
array, bouncing back and forth, with the dynamics ruled mostly
by the unbound modes. The polaritonic transition amplitude
significantly increases already upon the introduction of a
small amount of distortion [see Fig. 8(b)]. Now, the bound
bilocalized modes dominate the dynamics and the transition
amplitude accordingly exhibits a periodic behavior. A small
contribution from the photonic unbound states, which results
in short-time beatings, is still present. Moreover, g is still
not much higher than δω, hence the dressing of the bilocalized
modes is not maximum. In Fig. 8(c), we further distort the CCA
in a way that the transition amplitude reaches considerably
higher values. As a consequence, the required transmission
time grows since the array distortion causes the gap δω

to decrease. However, based on the modularization scheme
introduced in Sec. V, this drawback can be gotten around.
This is shown in Fig. 8(d), where we consider a CCA split
into 3 (5) weakly connected modules each comprising 10 (6)
cavities. Note that, compared with Fig. 8(c), the time required
to complete the polaritonic-state transfer is considerably
shortened, while the maximum transition amplitude is almost
unaffected.

units of

units of

units of

units of

FIG. 8. Time evolution of the transition amplitude for an initial
symmetric polariton set in the first cavity in the case of a staggered
30-cavity array for (a) η = 0, (b) η = −0.25, and (c) η = −0.5 (solid
black line). (d) The case of a modularized CCA for m = 3 with
Jmod = 0.1J (dotted red line) and m = 5 with Jmod = 0.3J (thick
gray line). Note that Jmod was slightly increased in order to assure
the formation of bilocalized states (cf. Sec. V). The intramodular
distortion parameter was fixed at η = −0.5. We set g = 0.01J and
ωa = 0 throughout. Plots were obtained from an exact diagonalization
of Eq. (20) [with Ĥhop being replaced with Ĥmod in (d)].

Regardless of the interaction regime (single-resonance or
strong coupling), the crucial factor affecting the transfer
fidelity is the end-to-end localization amplitude, i.e., the
occurrence of bilocalization in the case of either the standard
staggered CCA or the modularized (partitioned) one. The
key ingredient is thus inducing the formation of bilocalized
field normal modes and tuning the atoms on resonance with
those. The QST speed, however, can be managed by setting
the appropriate regime and/or modularizing the CCA as in
Sec. V.

VIII. CONCLUSIONS

In this work, we have addressed the problem of faithfully
transferring quantum states across a CCA. We have shown
that, while a staggered pattern of hopping rates offers shorter
QST times with respect to a uniform pattern, a further
significant reduction in the transfer time is achievable by
imposing modularization on top of the staggered pattern. The
modularization scheme yields transfer times that are up to three
orders of magnitude shorter with respect to an unmodularized
staggered array already for 20-site CCAs, while the gain
increases for longer CCAs without affecting the performance
in terms of QST fidelity.
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To accomplish this task, we first focused on QST through a
staggered atom-free CCA. By devising a perturbative approach
to diagonalize analytically the Hamiltonian for a highly dis-
torted array, we showed that distortion induces the appearance
of bound modes that are strongly bilocalized at the array
edges. In line with QST schemes exploiting bilocalization,
this allows for high-fidelity QST. As a distinctive property of
the staggered configuration, though, the scaling behavior of
the fidelity as a function of the CCA size has ideal features
since, for the high-distortion scenario, the fidelity is nearly
insensitive to the array length (unlike in the case of a uniform
bulk with weak outermost couplings). This, however, comes at
the cost of having relatively long transfer times. To get around
this drawback, we devised a strategy based on an engineered
modularization of the array into identical staggered subunits.
We showed that in some paradigmatic instances this can result
in a significant reduction in the transfer time while retaining
the transfer fidelity almost unchanged. Although we focused
on an atom-free CCA, those findings apply to any spin chain
regardless of the way it is implemented.

We then turned to a CCA where each cavity is coupled to an
atom, with the aim of exploring how the previous outcomes can
be harnessed to transfer atomic or polaritonic states between
the two array ends. In the weak-coupling regime where the
atomic frequency is resonant with one of the two bilocalized
field modes, QST of atomic states can be achieved in a time set
by the atom-field coupling strength. For stronger atom-photon
couplings, one can instead exploit the formation of pairs of
bilocalized dressed states to efficiently transfer a polariton of
a given parity across the CCA in a time set by the energy gap
between the pair of field bilocalized modes.
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A 89, 025801 (2014).
[39] S. Felicetti, G. Romero, D. Rossini, R. Fazio, and E. Solano,

Phys. Rev. A 89, 013853 (2014).
[40] F. Lombardo, F. Ciccarello, and G. M. Palma, Phys. Rev. A 89,

053826 (2014).

032310-10

http://dx.doi.org/10.1002/lpor.200810046
http://dx.doi.org/10.1002/lpor.200810046
http://dx.doi.org/10.1002/lpor.200810046
http://dx.doi.org/10.1002/lpor.200810046
http://dx.doi.org/10.1364/JOSAB.27.00A130
http://dx.doi.org/10.1364/JOSAB.27.00A130
http://dx.doi.org/10.1364/JOSAB.27.00A130
http://dx.doi.org/10.1364/JOSAB.27.00A130
http://dx.doi.org/10.1103/PhysRevA.76.031805
http://dx.doi.org/10.1103/PhysRevA.76.031805
http://dx.doi.org/10.1103/PhysRevA.76.031805
http://dx.doi.org/10.1103/PhysRevA.76.031805
http://dx.doi.org/10.1038/nphys466
http://dx.doi.org/10.1038/nphys466
http://dx.doi.org/10.1038/nphys466
http://dx.doi.org/10.1038/nphys466
http://dx.doi.org/10.1038/nphys462
http://dx.doi.org/10.1038/nphys462
http://dx.doi.org/10.1038/nphys462
http://dx.doi.org/10.1038/nphys462
http://dx.doi.org/10.1103/PhysRevLett.99.186401
http://dx.doi.org/10.1103/PhysRevLett.99.186401
http://dx.doi.org/10.1103/PhysRevLett.99.186401
http://dx.doi.org/10.1103/PhysRevLett.99.186401
http://dx.doi.org/10.1103/PhysRevLett.100.216401
http://dx.doi.org/10.1103/PhysRevLett.100.216401
http://dx.doi.org/10.1103/PhysRevLett.100.216401
http://dx.doi.org/10.1103/PhysRevLett.100.216401
http://dx.doi.org/10.1103/PhysRevA.80.023811
http://dx.doi.org/10.1103/PhysRevA.80.023811
http://dx.doi.org/10.1103/PhysRevA.80.023811
http://dx.doi.org/10.1103/PhysRevA.80.023811
http://dx.doi.org/10.1103/PhysRevLett.103.086403
http://dx.doi.org/10.1103/PhysRevLett.103.086403
http://dx.doi.org/10.1103/PhysRevLett.103.086403
http://dx.doi.org/10.1103/PhysRevLett.103.086403
http://dx.doi.org/10.1103/PhysRevA.80.033612
http://dx.doi.org/10.1103/PhysRevA.80.033612
http://dx.doi.org/10.1103/PhysRevA.80.033612
http://dx.doi.org/10.1103/PhysRevA.80.033612
http://dx.doi.org/10.1103/PhysRevLett.104.216402
http://dx.doi.org/10.1103/PhysRevLett.104.216402
http://dx.doi.org/10.1103/PhysRevLett.104.216402
http://dx.doi.org/10.1103/PhysRevLett.104.216402
http://dx.doi.org/10.1103/PhysRevB.81.104303
http://dx.doi.org/10.1103/PhysRevB.81.104303
http://dx.doi.org/10.1103/PhysRevB.81.104303
http://dx.doi.org/10.1103/PhysRevB.81.104303
http://dx.doi.org/10.1038/nature03804
http://dx.doi.org/10.1038/nature03804
http://dx.doi.org/10.1038/nature03804
http://dx.doi.org/10.1038/nature03804
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevX.4.031043
http://dx.doi.org/10.1103/PhysRevX.4.031043
http://dx.doi.org/10.1103/PhysRevX.4.031043
http://dx.doi.org/10.1103/PhysRevX.4.031043
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.96.010503
http://dx.doi.org/10.1103/PhysRevLett.96.010503
http://dx.doi.org/10.1103/PhysRevLett.96.010503
http://dx.doi.org/10.1103/PhysRevLett.96.010503
http://dx.doi.org/10.1038/nature04315
http://dx.doi.org/10.1038/nature04315
http://dx.doi.org/10.1038/nature04315
http://dx.doi.org/10.1038/nature04315
http://dx.doi.org/10.1038/nature11023
http://dx.doi.org/10.1038/nature11023
http://dx.doi.org/10.1038/nature11023
http://dx.doi.org/10.1038/nature11023
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1142/S0217979213450355
http://dx.doi.org/10.1142/S0217979213450355
http://dx.doi.org/10.1142/S0217979213450355
http://dx.doi.org/10.1142/S0217979213450355
http://dx.doi.org/10.1080/09500340601108851
http://dx.doi.org/10.1080/09500340601108851
http://dx.doi.org/10.1080/09500340601108851
http://dx.doi.org/10.1080/09500340601108851
http://dx.doi.org/10.1080/09500340701515120
http://dx.doi.org/10.1080/09500340701515120
http://dx.doi.org/10.1080/09500340701515120
http://dx.doi.org/10.1080/09500340701515120
http://dx.doi.org/10.1103/PhysRevA.76.013819
http://dx.doi.org/10.1103/PhysRevA.76.013819
http://dx.doi.org/10.1103/PhysRevA.76.013819
http://dx.doi.org/10.1103/PhysRevA.76.013819
http://dx.doi.org/10.1103/PhysRevA.78.063805
http://dx.doi.org/10.1103/PhysRevA.78.063805
http://dx.doi.org/10.1103/PhysRevA.78.063805
http://dx.doi.org/10.1103/PhysRevA.78.063805
http://dx.doi.org/10.1103/PhysRevA.80.043842
http://dx.doi.org/10.1103/PhysRevA.80.043842
http://dx.doi.org/10.1103/PhysRevA.80.043842
http://dx.doi.org/10.1103/PhysRevA.80.043842
http://dx.doi.org/10.1103/PhysRevA.81.062111
http://dx.doi.org/10.1103/PhysRevA.81.062111
http://dx.doi.org/10.1103/PhysRevA.81.062111
http://dx.doi.org/10.1103/PhysRevA.81.062111
http://dx.doi.org/10.1103/PhysRevA.83.043802
http://dx.doi.org/10.1103/PhysRevA.83.043802
http://dx.doi.org/10.1103/PhysRevA.83.043802
http://dx.doi.org/10.1103/PhysRevA.83.043802
http://dx.doi.org/10.1103/PhysRevA.85.023833
http://dx.doi.org/10.1103/PhysRevA.85.023833
http://dx.doi.org/10.1103/PhysRevA.85.023833
http://dx.doi.org/10.1103/PhysRevA.85.023833
http://dx.doi.org/10.1063/1.4800914
http://dx.doi.org/10.1063/1.4800914
http://dx.doi.org/10.1063/1.4800914
http://dx.doi.org/10.1063/1.4800914
http://dx.doi.org/10.1103/PhysRevA.87.033804
http://dx.doi.org/10.1103/PhysRevA.87.033804
http://dx.doi.org/10.1103/PhysRevA.87.033804
http://dx.doi.org/10.1103/PhysRevA.87.033804
http://dx.doi.org/10.1103/PhysRevA.88.053843
http://dx.doi.org/10.1103/PhysRevA.88.053843
http://dx.doi.org/10.1103/PhysRevA.88.053843
http://dx.doi.org/10.1103/PhysRevA.88.053843
http://dx.doi.org/10.1103/PhysRevA.92.022350
http://dx.doi.org/10.1103/PhysRevA.92.022350
http://dx.doi.org/10.1103/PhysRevA.92.022350
http://dx.doi.org/10.1103/PhysRevA.92.022350
http://dx.doi.org/10.1140/epjd/e2013-40309-9
http://dx.doi.org/10.1140/epjd/e2013-40309-9
http://dx.doi.org/10.1140/epjd/e2013-40309-9
http://dx.doi.org/10.1140/epjd/e2013-40309-9
http://dx.doi.org/10.1103/PhysRevLett.101.100501
http://dx.doi.org/10.1103/PhysRevLett.101.100501
http://dx.doi.org/10.1103/PhysRevLett.101.100501
http://dx.doi.org/10.1103/PhysRevLett.101.100501
http://dx.doi.org/10.1103/PhysRevLett.104.023602
http://dx.doi.org/10.1103/PhysRevLett.104.023602
http://dx.doi.org/10.1103/PhysRevLett.104.023602
http://dx.doi.org/10.1103/PhysRevLett.104.023602
http://dx.doi.org/10.1103/PhysRevA.89.025801
http://dx.doi.org/10.1103/PhysRevA.89.025801
http://dx.doi.org/10.1103/PhysRevA.89.025801
http://dx.doi.org/10.1103/PhysRevA.89.025801
http://dx.doi.org/10.1103/PhysRevA.89.013853
http://dx.doi.org/10.1103/PhysRevA.89.013853
http://dx.doi.org/10.1103/PhysRevA.89.013853
http://dx.doi.org/10.1103/PhysRevA.89.013853
http://dx.doi.org/10.1103/PhysRevA.89.053826
http://dx.doi.org/10.1103/PhysRevA.89.053826
http://dx.doi.org/10.1103/PhysRevA.89.053826
http://dx.doi.org/10.1103/PhysRevA.89.053826


QUANTUM-STATE TRANSFER IN STAGGERED COUPLED- . . . PHYSICAL REVIEW A 93, 032310 (2016)

[41] T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R.
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