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We examine the effect of network heterogeneity on the performance of quantum search algorithms. To this
end, we study quantum search on a tree for the oracle Hamiltonian formulation employed by continuous-time
quantum walks. We use analytical and numerical arguments to show that the exponent of the asymptotic running
time ∼Nβ changes uniformly from β = 0.5 to β = 1 as the searched-for site is moved from the root of the tree
towards the leaves. These results imply that the time complexity of the quantum search algorithm on a balanced
tree is closely correlated with certain path-based centrality measures of the searched-for site.
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I. INTRODUCTION

In this paper we study continuous-time quantum search
on balanced binary trees, on which all leaves have the same
distance from the root and where no branches are missing.
Our goal is to determine (i) how network heterogeneity
influences the performance of the algorithm and (ii) whether
there is speedup over the O(N ) time complexity of classical
approaches, where N is the total number of sites. Suppose
a quantum walker undertakes a blind search on such a tree
structure that provides no global information and where edges
leading to descendent sites cannot be distinguished from edges
leading to parent sites. The walker is only given an oracle
Hamiltonian that allows one to check whether the searched-for
site (which we will also call the marked site) has been reached.
Then, starting from a uniform initial state, how long does it
take to find that site?

Grover’s algorithm [1] provides a way to perform a discrete-
time quantum search in an unstructured space with O(

√
N )

oracle queries, which is optimal [2]. A continuous-time
version with the same running time was presented in Ref. [3].
Reference [4] describes a discrete-time algorithm capable of
searching a d-dimensional periodic lattice in O(

√
N ) time for

d � 3 and O(
√

Npoly(log N )) for d = 2. In the continuous-
time setting, the problem on the lattice is analyzed in Ref. [5].
The authors show that (i) we have quadratic speedup O(

√
N )

for d > 4, (ii) O(
√

Npoly(log N )) time is required for d = 4,
and (iii) there is no significant speedup in lower dimensions.
Recently, dimensionality reduction methods using symmetries
were formalized [6] and a variety of new structures has been
studied [6,7]. In Ref. [7] quadratic speedup was obtained only
after modifying the weights of certain edges of a simplex of
complete graphs.

The references mentioned so far examine homogeneous
structures in which all sites are equivalent. The behavior
changes significantly if one looks at graphs in which there
are qualitatively different sites. The tree under consideration
belongs to this category; for example, the degrees of leaf
sites differ from those in the interior. Quantum search on
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structures that are less symmetric and more heterogeneous
was explored in Refs. [8–10] and [11] in the discrete-time and
continuous-time setting, respectively. References [8,10,12]
investigate the correlation between the efficiency for the search
of a certain site and its centrality or connectivity. More recently,
quantum walks on Erdős-Rényi random graphs [13,14] and on
scale-free graphs and hierarchical structures [14] have been
studied.

It is thus natural to ask how location affects time complexity
and if any variation in algorithmic behavior can be tied to
site-specific properties, e.g., to its degree or centrality. Such
questions regarding location and site-specific properties are
particularly pertinent for quantum walks, as these do not
converge in the sense of classical diffusion. Instead, they
require a more finely tuned prescription on exactly when to
measure the state of the system. In this paper we will see
how these matters influence the time complexity for quantum
search on a balanced tree.

Whether or not there is speedup on balanced trees is of
interest, because there are conflicting intuitive arguments:
Quantum walks tend to be more effective on high-dimensional
structures and on structures that have a multitude of paths
connecting any given pair of sites. Regarding trees, with
exactly one path between any two sites, this suggests poor
performance. On the other hand, it seems possible that a
quantum algorithm can take advantage of the very small
diameter of the tree. There are other properties of trees (such as
the exponential spread of volume, the poor transport properties
on trees [6], and the good transport properties across glued
trees [15]) that may influence our expectation. What efficiency
does the combination of all these factors lead to?

The main result of this work is that the time complexity
of the quantum search algorithm on a balanced binary tree
depends on the location of the searched-for site. The root can
be found in �(

√
N ) time, while for finding a leaf there is no

speedup and O(N ) time is needed. In between these two cases,
the exponent of the time complexity ∼Nβ changes linearly
from β = 0.5 to β = 1. In order to arrive at this conclusion,
we reduce calculations on the balanced tree to a quasi-one-
dimensional problem. We then solve analytically the case when
the marked site is the root of the tree and the other cases we
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treat numerically for systems large enough (up to size N ≈ 264)
to allow for the identification of the scaling exponent of the
running time.

The above results describe the performance of a quantum
algorithm that works with minimal knowledge of the structure
of the graph and that searches in an unsystematic way starting
from a uniform distribution. If more information is available
(for example, the location of the root and whether an outgoing
edge leads to a parent site or to a child) and if different
operators can be used alternatingly, then the search can be
accelerated. Using an effective technique [16] to determine
whether a subgraph contains the marked site, this was recently
done in Ref. [17] in the discrete-time setting, achieving a
O(

√
Npoly(log N )) running time that covers all cases for the

position of the searched-for site.
The paper is divided into two parts and structured as

follows. In the first part, in Secs. II–VIII, we focus on the
case when the marked site is the root in order to be able to
carry out a symbolic analysis. The second part, the generic
case of a marked site placed anywhere in the tree, consists
of numerical investigations. We first introduce the setting for
our quantum search problem on the tree (Sec. II). Next we
discuss a technique for reducing the size of a system (Sec. III),
which is then applied to the tree (Sec. IV). Working with the
reduced system, we proceed to find the Laplace transform
of the state at the searched-for site exactly (Sec. V). We
then approximate this Laplace transform with expressions that
have simple inverse transforms (Secs. VI and VII). These
steps yield an explicit formula for the asymptotic running
time in the root case. Following the result for the quantum
algorithm, we briefly compare to a classical random walk
(Sec. VIII). Afterward we start to consider the general situation
by extending the reduction method (Sec. IX). We then continue
with numerical experiments (Secs. X and XI), taking advantage
of the fact that the small size of the reduced system allows for
simulation of very large systems. As a last topic, we compare
the time complexities we have found to different centrality
measures (Sec. XII). Finally, we summarize our conclusions
(Sec. XIII).

II. SETTING FOR THE QUANTUM SEARCH ALGORITHM

Consider a balanced binary tree of depth d, as is pictured
in Fig. 1. The total number of sites is N = 2d − 1. Let D

be the degree matrix and A the adjacency matrix and define
the graph Laplacian L = D − A. For example, for a tree with

1

32

754 6

FIG. 1. Balanced binary tree of depth d = 3.

d = 3 levels we have

L3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1

−1 3 −1 −1

−1 3 −1 −1

−1 1

−1 1

−1 1

−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In the first part of this paper (up to Sec. VIII), we restrict
our attention to the case where the marked site |w〉, the site that
is being sought, is the root: |w〉 = |1〉. We study the quantum
search algorithm given by the Hamiltonian

H = γL − |w〉〈w|, (1)

which was proposed in Ref. [5]. The initial state is the uniform
distribution

|ψ(0)〉 = |s〉 = 1√
N

N∑
k=1

|k〉.

Depending on the graph under consideration and on the
location of the searched-for site, there may exist values of
the search parameter γ for which evolution with respect to
H is very effective in shifting statistical weight towards |w〉;
for analyzing the algorithm it is crucial to find these optimal
values γ∗. For example, Ref. [5] computes γ∗ for search with
(1) on a periodic lattice and shows O(

√
N ) time complexity

in sufficiently large spatial dimensions. For γ away from γ∗,
however, the quantum algorithm fails to provide speedup over
the O(N ) running time of classical search. Note that γ∗ might
not be constant as the system size increases.

III. REDUCTION IN GENERAL

We first review a technique for reducing the size of the
system. A similar approach was recently presented in Ref. [6].
In the following, state vectors and operators in the reduced
space will always be denoted by an overline.

Given H and an initial state ψ(0), the solution to an
evolution problem is

ψ(t) = f (t,H )ψ(0),

where, for instance, f (t,z) = e−itz for evolution according
to the Schrödinger equation. Now suppose we have a linear
reduction method V that transforms the system of size N to
a system of size n. The initial state in the reduced system is
ψ(0) = V ψ(0). For the evolution

ψ(t) = f (t,H )ψ(0)

in the reduced system to reflect the dynamics of the original
system, it is necessary that

ψ(t) = V ψ(t).

If f is analytic, we are led to the condition

H
k
V ψ(0) = V Hkψ(0) for k ∈ N

and hence to

V Hu = HV u for u ∈ U = spank�0{Hkψ(0)}. (2)
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Let V + be the pseudoinverse of the n × N matrix V . For
example, if V transforms a graph of size 3 to a graph of size 2
by simply adding up the values of two of the sites, then V and
V + are

V =
[

1 0 0
0 1 1

]
, V + =

⎡⎣1 0
0 1

2

0 1
2

⎤⎦.

The matrix V has full rank n and therefore we have V V + =
In. Now suppose that the set on which V +V acts as the identity
matrix coincides with the subspace U in (2). Then we have

HV u = V Hu = V HV +V u

and we obtain the operator

H = V HV + (3)

on the reduced space. The operator H reproduces evolution
starting from the initial state ψ(0) without any loss of
information [provided the two conditions above are satisfied;
for the spectra of the two Hamiltonians we have σ (H ) ⊆ σ (H )
and the eigenvalues of H that are not in σ (H ) play no part in the
dynamics since their eigenvectors do not overlap with ψ(0)].

IV. REDUCTION FOR THE TREE

We will reduce the tree by combining all sites with the same
distance to |w〉 = |1〉. Hence the size of the reduced system is
n = d and we will use matrices of the form

V3 =

⎡⎢⎢⎣
1

1√
2

1√
2

1√
4

1√
4

1√
4

1√
4

⎤⎥⎥⎦
(for d = 4 append one row and eight columns and set the
eight entries at the bottom right equal to 1/

√
8, etc.). For this

reduction method we have V + = V 
.
Define the states

|uj 〉 = 1√
2j−1

2j −1∑
k=2j−1

|k〉

and note that

span1�j�n{|uj 〉} = spank�0{Hk|ψ(0)〉} = U.

Moreover, one can check that V +V |u〉 = |u〉 for |u〉 ∈ U .
Therefore, by the theory from the previous section, the
reduction V is suitable for the quantum search problem under
consideration.

Letting the basis of the reduced space be

|j 〉 = V |uj 〉,
we obtain Hamiltonians of the form

H 3 = γ

⎡⎢⎣2 − 1
γ

−√
2 0

−√
2 3 −√

2

0 −√
2 1

⎤⎥⎦
[the matrix is tridiagonal for all n, the diagonal entries are
γ (2− 1

γ
,3,3, . . . ,3,1), and all off-diagonal entries are −√

2γ ].

The marked state of the reduced system is |w〉 = |1〉 and the
initial state is

|ψ(0)〉 = |s〉 = V |s〉 = 1√
N

n∑
j=1

√
2j−1 |j 〉.

V. LAPLACE TRANSFORM OF THE STATE
AT THE MARKED SITE

We are interested in the amplitude 〈ψ |w〉 = 〈ψ |1〉 = ψ1 of
the wave vector at the searched-for site. As a first step, we now
compute its Laplace transform exactly. Note that ψ1 = ψ1.

Taking the Laplace transform of the evolution equation
i∂tψ(t) = H ψ(t) gives

iαsψ̃(s) − iαψ(0) = αH ψ̃(s),

where α = γ −1. Writing out that system of equations, multi-
plying the kth equation by xk−1, and adding up all of them, we
find

G(s; x) =
{[

1 − 1 + α√
2

x

]
ψ̃1 + [xn+1 −

√
2xn]ψ̃n

+ iα√
2N

n∑
k=1

√
2k−1xk

}/(
x2 − 3 − iαs√

2
x + 1

)
(4)

for G(s; x) = ∑n
k=1 ψ̃k(s)xk−1. If we denote the zeros of the

denominator in (4) by x0 and x1, we have x0x1 = 1 and we let
x0 be the zero that lies in the unit disk. Next we divide (4) by x

and integrate with respect to x over the unit circle. This leads to[
x1 − 1 + α√

2

]
ψ̃1 + [

xn−1
0 (x0 −

√
2)

]
ψ̃n

+ iα√
2N

n∑
k=1

(
√

2x0)k−1 = 0. (5)

We derive a second equation for ψ̃1 and ψ̃n by multiplying
(4) by x−n and again integrating over the unit circle:[

xn−1
0

(
x0 − 1 + α√

2

)]
ψ̃1 + [x1 −

√
2]ψ̃n

+ iα√
2N

n∑
k=1

√
2k−1xn−k

0 = 0. (6)

Combining (5) and (6), we obtain an explicit formula for the
Laplace transform of ψ1:

ψ̃1 = i√
N

xn
1 − xn

0

xn−1
1 [(is + 1)x1 − √

2] − xn−1
0 [(is + 1)x0 − √

2]
.

(7)

VI. APPROXIMATION FOR SMALL VALUES
OF THE SEARCH PARAMETER

We will now find an approximation of ψ1 in the range
γ ∈ [0,1 − ε] and we will see that the algorithm fails for those
values of the search parameter. Hence the optimal value γ∗
must be 1 or larger. That is noteworthy, since in most known
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FIG. 2. Absolute value of ψ1 (blue solid line) and of the approximation (9) (orange dashed line) as a function of time for γ = 0.2 and
n = 8 (left) and for γ = 0.9 and n = 15 (right).

examples γ∗ tends to small positive constants or to zero as
N → ∞; the general trend is γ∗ ∼ 1

δ
, where δ is the degree of

the searched-for site [5–7,11–13,18].
Recall the definition of x0 and x1 after (4). Since |x0| < 1,

we have xn
0 → 0 and (7) yields

ψ̃1 ≈ i√
N

x1

(is + 1)x1 − √
2

(8)

for large n. This expression has poles s = 0 and s = i α−1
α+1 and

computing the corresponding residues gives

ψ1 ≈ 1√
N

[
1

1 − α
1 + α2 + 2α − 1

α2 − 1
exp

(
i
α − 1

α + 1
t

)]
, (9)

where α = γ −1.
Numerical experiments show that (9) is adequate for γ ∈

[0,1 − ε] (cf. Fig. 2). Note that (9) gives the exact solution
for γ = 0. However, the low success probabilities in Fig. 2 (as
well as the fact that the frequency does not explicitly depend
on n) suggest that the oscillations in this range of γ are trivial
and not useful for finding the marked site.

The time complexity of a quantum search algorithm is
quantified by means of the expression

t0

p0
= t0

|〈w|e−it0H |s〉|2 , (10)

the time of the measurement t0 divided by the success
probability p0 = p(t0). The division by p0 takes into account
that the search might have to be repeated if p0 < 1. In cases
where the success probability is not bounded from below by a
constant as N → ∞, the search has to be repeated increasingly
often (we will see such behavior in Sec. XI; cf. the d = 4
case in Ref. [5] for another example). When (9) is valid, we
can compute p0 and with it the time complexity directly by
evaluating |ψ1| at its first maximum t0 = α+1

α−1π :

t0

p0
≈ π

(α + 1)3(α − 1)

α2(α + 3)2
N = O(N ).

VII. SEARCH WITH THE CORRECT PARAMETER

Let us now set γ = 1. In this case the asymptotic approx-
imation (8) has a double pole at s = 0 and we need to find

the sequence of poles that gives rise to it. To this end, we first
write (7) as

ψ̃1 = f (s)

g(s)
,

where the prefactor iN−1/2 is contained in the numerator f (s).
The Laplace transform ψ̃1 has a number of poles, but the
method from the previous section suggests that the ones close
to s = 0 are the relevant ones and we use a second-order
approximation of g(s) to find them. This gives, in the limit
n → ∞,

p± ≈ ±i√
2n+1

(11)

and we obtain

ψ1 ≈ r+ep+t + r−ep−t , (12)

where the coefficients r± are the evaluations of the residue
function f (s)

g′(s) at p±. We further simplify by evaluating i
g̃(s) [we

have f (0) ≈ i], where g̃ is the first-order approximation of g′
at 0, instead:

r± ≈ ± 1

2
√

2
.

These computations lead to

ψ1 ≈ 1

2
√

2
[ep+t − ep−t ] = i√

2
sin

(
t√

2n+1

)
. (13)

Figure 3 shows that the approximations are accurate for
large system sizes. The maximum amplitude at |w〉 is 2−1/2

and the wavelength of the oscillation is
√

2n+3 π . We can now
determine the time complexity for the search algorithm; it is

t0

p0
≈ π

√
2n+1 ≈

√
2π

√
N = �(

√
N ). (14)

As concluding remarks for this section, we first remind
the reader that the asymptotic formula (14) is not general; it
covers only the case when the marked site is the root of the tree.
Second, we point out that the quantities ±2−(n+1)/2 in (11) are,
in the limit n → ∞, the two smallest eigenvalues of H ; this
observation relates our calculations to the more immediate
method of predicting measurement times via energy gaps
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FIG. 3. Absolute value of ψ1 (blue solid line) and of the approximations (12) (orange dashed line) and (13) (green dot-dashed line) as a
function of time for n = 10 (left) and n = 15 (right), with γ = 1.

(cf., for example, Ref. [5]; note that the second smallest
eigenvalue of H is not always the same as the second smallest
eigenvalue of H ). See Fig. 5 for a comparison of (14) to other
approaches for obtaining estimates of the time complexity.

VIII. SEARCH WITH A CLASSICAL RANDOM WALK

We briefly compare to the performance of a classical
random walker. Suppose the walker is randomly placed in
the tree: How long does it take to locate the root (i.e., the one
site that has degree 2)?

Let tk be the average time a random walker that starts from a
site on level k needs to find the root. Then we have

t1 = 0,

tk = 1
3 tk−1 + 2

3 tk+1 + 1,

tn = tn−1 + 1.

(15)

Define the weighted times t̃k and the average search time T :

t̃k = 2k−1

N
tk, T =

n∑
k=1

t̃k .

Then (15) leads to

N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 × 2−1 − 2
3 × 2−2

− 1
3 × 2−1 1 × 2−2 − 2

3 × 2−3

− 1
3 × 2−2 1 × 2−3

. . .

1 × 2−(n−2) − 2
3 × 2−(n−1)

−1 × 2−(n−2) 1 × 2−(n−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t̃2

t̃3

t̃4

...

t̃n−1

t̃n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

...

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We next renormalize the diagonal by multiplying all equations
by appropriate powers of 2 and then we add all of them. This
gives

N − 1

N
= [

1 − 1
3 − 2

3

]
T + 1

3 t̃2 − 4
3 t̃n−1 + 2

3 t̃n

and consequently

t2 = N − 2.

Hence, since the walker needs linear time even when
starting from a neighbor of the searched-for site, we have �(N )
(i.e., at least ∼N ) average time complexity for this classical
approach and we see that the quantum algorithm provides a
significant speedup. As a side note we point out that in Ref. [19]
it was shown that the average hitting times for random walks
on arbitrary trees are always integers.

IX. REDUCTION IN THE GENERAL CASE

We now generalize our reduction method and allow |w〉
to be anywhere in the tree. We denote the level on which
the marked site is by l (and n is the total number of levels,
as before). We will see below that we can reduce the full
system to one of size less than n2 ≈ (log2 N )2 in a way
similar to what has been done in Sec. IV. Equation (3) for the
Hamiltonian in the reduced system H = V HV + is still valid
and useful, but the necessary conditions are not constructive;
they do not show how to find the matrix V . We use the
following intuitive argument: We can group together sites that
are indistinguishable in the sense that (a) their positions in the
graph are qualitatively the same and (b) their positions relative
to |w〉 are the same. For example, for grouping sites together
it is certainly necessary that they (a) have the same degree and
(b) have the same distance from |w〉.

032305-5



PHILIPP, TARRATACA, AND BOETTCHER PHYSICAL REVIEW A 93, 032305 (2016)

(a)

(b) (c)

FIG. 4. Reduction and absorption for a tree of depth n = 5 with |w〉 on level l = 3: The (a) original tree is transformed first into (b) the
comb structure and then into (c) the line graph.

An illustration of this reduction is given by Fig. 4. We can
see how the full tree is transformed into a comb structure. We
consider |w〉, all its ancestors, and the combination of its two
children the backbone of that comb. Then we can transform
the system to a line graph by absorbing the side chains
into the backbone. However, this leads to an inhomogeneous
Hamiltonian with nonconstant coefficients. The formula for
absorption into ancestors of the searched-for site is[

1 + xm
0 (x0 −

√
2)

xm
0 − xm

1

x0 − x1

]
φ̃1

= 1√
2

[
x0 + xm

0 (x0 −
√

2)
xm−1

0 − xm−1
1

x0 − x1

]
φ̃0

− 1√
N

[
xm

0 (x0 − √
2)

s

(√
2

m−1 − xm
0 − xm

1

x0 − x1

+ 1√
2

xm−1
0 − xm−1

1

x0 − x1

)
+ iαx0√

2

1 − (
√

2x0)m

1 − √
2x0

]
in Laplace space, where φ0 is the backbone site into which
we want to absorb, φ1 is the first element of the side chain we
want to eliminate, and m is its size. For the absorption below
|w〉, we have the same expression with the φ̃0 term and the
constant term changing by factors of

√
2 and 2, respectively.

The line graph in Fig. 4(c) might be useful for analytical
considerations, but we will not work with it in the remainder
of our analysis. Instead we focus on numerical simulations
of the comb structure in Fig. 4(b), which is of size at most

≈ n2

2 . For H we could generate the N × N matrix H and the
reduction matrix V and then apply (3). After that we can use
the much smaller matrix H for operations such as finding
eigenvalues and for repeated evaluations of the propagator.
This approach is systematic, but ineffective in terms of both
memory and computing time. It is better to generate H directly,
which is not difficult since the form of L is rather simple: The
self-terms are always the degree of the respective site (or rather
of one of its representatives) in the original tree and the entries
coming from the adjacency matrix of the comb are −√

2 if the
corresponding edge actually is a combination of edges and −1
otherwise. (Recall that we renormalize when grouping sites of
the tree into sites of the comb.)

It seems likely that the general case l �= 1 can be solved
analytically as well, either via the line graph in Fig. 4(c) or
using a recursive method, but since our numerical method is
very effective, doing that is not necessary for the purpose of
this paper.

X. NUMERICAL EXPERIMENTS IN THE ROOT CASE

For numerical experiments we first revisit the case when the
searched-for site is the root. Then we know from Sec. VII that
γ∗ → 1. Figure 5 shows the time complexity in that situation
for system sizes up to n = 15. It can be found in three ways:
(a) via the asymptotics (14), (b) by using the gap between
the two smallest eigenvalues of H to predict the measurement
time and then evaluating the propagator once to determine the
corresponding success probability, and (c) by extracting the
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FIG. 5. Time complexity when |w〉 = |1〉, with γ = 1.

necessary information from simulations of the evolution at the
marked site.

In the next section we will study situations other than l = 1.
Then we do not have a formula like (a) to compare to. Method
(b) will not be available either, since the most significant
oscillation at |w〉 does not always come from the two smallest
energy levels. Therefore, we will be working with (c) only. An
additional difficulty is that we will need different values for γ .
If we can establish a formula γ∗ = γ∗(n,l), then repeating the
search algorithm accordingly would increase the running time
by at most a factor of log2 N .

XI. NUMERICAL EXPERIMENTS
IN THE GENERAL CASE

First we need to find the optimal values of the search
parameter. Hence we start by generating plots that show
the maximum achievable concentration of probability at the
searched-for site as a function of γ . For instance, for l = 1 we
would see sharp peaks with their maxima quickly converging
to (γ∗,pmax) = (1.0,0.5) as n → ∞. Let us denote the γ

coordinates of those maxima by γ ′
∗. Figure 6 allows us to read

off γ ′
∗ for various configurations (n,l). We see that, depending

on the level l of |w〉, different values are needed to maximize
the success probability. If |w〉 is located far down in the tree,
the best concentrations at it are obtained for large γ .

The optimal value γ∗ of the search parameter is the value
that minimizes t0

p(t0) , where t0 is the measurement time. Figure 7
shows that the two notions of optimality agree away from
l
n

= 1. As |w〉 is placed farther down towards the bottom
of the tree, both γ∗ and t0 are becoming less well defined.
For example, for l = n the choice of γ hardly matters and
we always have the same qualitative behavior with constant
measurement times. This explains the discrepancy close to
l
n

= 1 in Fig. 7. The same plot suggests γ∗ ≈ 2
δ
, where δ is

the degree of the searched-for site and which applies in most
cases [we have, however, γ∗(l = 2) = 0.75].

More problematic than the fact that γ∗ varies is the decay
of success probabilities. While they are constant for fixed l,

(a) (b)

(c) (d)

FIG. 6. Maximum success probability as a function of γ for n = 8,16,24 (red, magenta, blue, respectively, from top to bottom) for different
positions l of the marked site: (a) l = 2, (b) l = 3, (c) l = n/2, and (d) l = n − 1.

032305-7



PHILIPP, TARRATACA, AND BOETTCHER PHYSICAL REVIEW A 93, 032305 (2016)

FIG. 7. Comparison of γ ′
∗ and γ∗ for n = 36.

we have a substantial decrease in the more significant case
l ∼ n. This behavior has been pointed out in Refs. [8–11] for
different examples of nonhomogeneous graphs. For analyzing
the time complexity, it remains to include the measurement
times in our considerations.

For l = n
2 , γ∗ converges to 2

3 [cf. Figs. 6(c) and 7].
Therefore, we simulate the evolution of the system for
increasing sizes with γ = 2

3 . Collecting the data t0
p(t0) for

n = 8,12,16, . . . ,64 yields Fig. 8, which shows that the search
is better than linear in time. By means of an extrapolation plot,
we can determine the exponent of the asymptotic behavior
∼Nβ with high accuracy; we have β = 0.7500 = 3

4 .
Simulations of the time evolution at |w〉 for l = n show

the kind of trivial oscillations that we have seen in Sec. VI.
These oscillations do not facilitate a search; they have con-
stant wavelength and maxima (which correspond to success

FIG. 8. Running time when l = n

2 for systems up to size N =
264 − 1 ≈ 1019 (γ = 2

3 ). The extrapolation plot in the bottom right
corner shows that the exponent of the time complexity ∼Nβ is β = 3

4 .
The dash-dotted lines represent scaling of order N (top) and

√
N

(bottom), for comparison.

TABLE I. Time complexities ∼Nβ for sites on various lev-
els l ∼ n (obtained numerically by simulating systems of sizes
n = 4,8, . . . ,52).

l γ∗ β

1 1 0.500
n

4
2
3 0.625

n

2
2
3 0.750

3n

4
2
3 0.878

n 2 1.000

probabilities) decreasing of order N−1 in magnitude. Hence
the quantum algorithm runs in O(N ) time and fails to provide
speedup when the marked site is a leaf. We credit this to the
less-than-good transport properties of trees. Note that more
than half of the sites are leaves.

Table I provides an overview over the time complexities
in several situations l ∼ n; it shows that the exponent of the
running time ∼Nβ changes uniformly from β = 0.5 to β = 1
as |w〉 is moved down the tree from the root to one of the
leaves. To be more precise, we are led to the formula

β(l) = 1

2
+ l

2n
. (16)

For l between n
4 and 3n

4 , one can confirm (16) with the same
numerical experiments. Close to l

n
= 0 and l

n
= 1, simulations

of even larger systems would be needed. In these cases, the
data point towards the predictions given by (16), but they
are not quite good enough to allow for clean extrapolations
(for small l

n
, the γ∗ converge only slowly to 2

3 ). However,
since the trend is correct and since (16) also holds true at
the boundary of l

n
∈ [0,1], there is no reason to doubt that

they do apply in the full range. When l = 3n
4 , there already

is very little change in measurement times and the average
complexity ∼N0.88 comes mostly from the decrease in success
probabilities. For l = const the algorithm runs in optimal time
�(

√
N ).

XII. COMPARISON TO CENTRALITY

Now that we have a very clear notion of how the time
complexity for quantum search on a balanced tree varies
depending on the location of the searched-for site, we would
like to correlate our findings to some centrality measure.
A multitude of different measures has been suggested (see
Ref. [20] for an overview) and defining new ones that best
answer to different purposes on different structures is an active
field of study. In this section we will examine several common
centrality measures, our aim being to find one that can predict
how searchable a given site is; we would like to identify a
centrality measure C that relates either to the time complexity
∼Nβ or to the scaling exponent β itself.

The most basic centrality measure is degree centrality
CD(v) = D(v), where D denotes degree. We see immediately
that it does not serve our purpose, since the root is not ranked
the highest. The same is true for the following walk-based
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TABLE II. Exponent of the running time β and asymptotics of
the closeness centrality CC and the betweenness centrality CB for
sites on various levels l ∼ n.

l β CC CB

1 0.500 (1.00n)−1 1
2

n

4 0.625 (1.25n)−1 4N−1/4

n

2 0.750 (1.50n)−1 4N−1/2

3n

4 0.878 (1.75n)−1 4N−3/4

n 1.000 (2.00n)−1 0

measures, which all give preference to sites in the midrange or
upper midrange of the tree: communicability [21], eigenvector
centrality, subgraph centrality [22], and Katz centrality [23]
(for connections between the latter three and degree centrality,
see Ref. [24]).

We next test two path-based measures of centrality, which
take into account only the shortest paths between sites rather
than all possible walks. Betweenness centrality was introduced
in Ref. [25] and is defined as follows:

C̃B(v) =
∑
i �=v

∑
j �=v

δij (v),

where δij (v) is the number of shortest paths from i to j that
pass through v divided by the total number of shortest paths
from i to j . The formula for closeness centrality [26] is

C̃C(v) =
⎛⎝∑

j

d(j,v)

⎞⎠−1

,

where d(j,v) is the distance between j and v. We produce
normalized centralities CB and CC by dividing by the largest
values of C̃B and C̃C a site in a graph of size N can possibly
have. These factors come, in both cases, from the center site
of the star graph.

Table II shows that both CB and CC rank sites on different
levels of the tree in the correct order. Betweenness centrality
can be linked to the time complexity ∼Nβ , but the identity
CB ∼ N

(Nβ )2 does not hold in the leaf case. For closeness
centrality we have a perfect correlation between the scaling
exponent β and the constant κ in the asymptotic closeness
(κn)−1. Note that κn is, in the limit n → ∞, the distance
from the marked site to the leaves on the opposite side of
the tree.

The strong correlation between the scaling exponent and
closeness centrality raises the question of whether we have
similar trends for other nonhomogeneous graphs or even
for complex networks. As far as the authors are aware,
there are only two studies of the relation between quantum
searchability and centrality: In Ref. [8], it is also a closeness-
type centrality measure that is being used. In Ref. [10], the
success probability that can be obtained at the searched-for
site is compared to eccentricity, which is defined as the
maximum distance from the marked site to other sites of the
graph and which for the tree under consideration is asymp-

totically equal to C−1
C (cf. remark at the end of the previous

paragraph).

XIII. CONCLUSION

In this paper we presented an analysis of a continuous-time
quantum search algorithm on balanced binary trees. We saw
that the running time depends on the location of the marked
site. If it is a leaf that is being sought, there is no improvement
of the linear-in-size running time of classical algorithms.
However, the root can be found with quadratic speedup, in
�(

√
N ) time. In between these two cases, the exponent of

the time complexity ∼Nβ changes linearly from β = 0.5 to
β = 1. Our work relied heavily on a dimensionality reduction
method, which, besides allowing us to perform numerical
experiments with very large systems, was also crucial for
symbolic computations in a special case.

We would like to point out that our results do not imply
that there is no effective continuous-time quantum algorithm
for search on a balanced tree; with (1) we have only studied
the most commonly used Hamiltonian for that purpose. For
example, by changing the weights of some of the edges of
a certain graph, Ref. [7] improved the running time from
�(N3/4) to nearly �(N1/2).

We have also examined the relation of how effectively
a site can be searched with its centrality. For the graphs
under consideration, we have found a strong correlation
between the scaling exponent β of the time complexity
and closeness centrality. However, since balanced binary
trees are highly nongeneric structures, more evidence is
needed before one can formulate a general hypothesis. Given
the apparent limited amount of studies on this topic, i.e.,
Refs. [8,10], it would be interesting to see more examples of
quantum walks on nonhomogeneous graphs and to compare
the differences in running times to closeness or other centrality
measures.

As a concluding remark we would like to compare our
work to Ref. [15]. In that paper the authors study a pair of
balanced trees that are glued together along the leaves and they
show propagation from one root to the other in O( log(N ))
time. In our framework, this corresponds to extending the
reduced matrix in Sec. IV by an identical flipped copy,
so that the quantum walk on a large structure is instead
performed on a line of length ∼ log(N ). Reference [15]
does not contradict the poor efficiency we have found in the
case when the searched-for site is a leaf; instead it shows
that there is a significant difference between transporting to
one particular leaf and transporting to the collection of all
leaves.
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