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Pure-state tomography with the expectation value of Pauli operators
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We examine the problem of finding the minimum number of Pauli measurements needed to uniquely determine
an arbitrary n-qubit pure state among all quantum states. We show that only 11 Pauli measurements are needed to
determine an arbitrary two-qubit pure state compared to the full quantum state tomography with 16 measurements,
and only 31 Pauli measurements are needed to determine an arbitrary three-qubit pure state compared to the full
quantum state tomography with 64 measurements. We demonstrate that our protocol is robust under depolarizing
error with simulated random pure states. We experimentally test the protocol on two- and three-qubit systems
with nuclear magnetic resonance techniques. We show that the pure-state tomography protocol saves us a number
of measurements without considerable loss of fidelity. We compare our protocol with same-size sets of randomly
selected Pauli operators and find that our selected set of Pauli measurements significantly outperforms those
random sampling sets. As a direct application, our scheme can also be used to reduce the number of settings
needed for pure-state tomography in quantum optical systems.
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I. INTRODUCTION

We consider a d-dimensional Hilbert space Hd , and denote
D(Hd ) the set of density operators acting on Hd . Assume that
we measure a set of m linearly independent observables

A = (A0,A1,A2, . . . ,Am−1), (1)

where each Ai is Hermitian. Without loss of generality, we
assume A0 = I (i.e., the identity operator on Hd ), and tr Ai =
0 for i = 1,2, . . . ,m − 1.

Then for any ρ ∈ D(Hd ), the measurement returns a set of
outcomes

α = ( tr ρ, tr(ρA1), tr(ρA2), . . . , tr(ρAm−1)). (2)

Theoretically, we always have tr ρ = 1; however, we keep this
entry in α for the reason of experimental calibration [1–4].

For any ρ ∈ D(Hd ), full quantum state tomography re-
quires d2 measurement outcomes to determine ρ [5]. How-
ever, for a pure state |ψ〉 ∈ Hd , in general only order d

measurements are needed to determine |ψ〉. There is a slight
difference in interpreting the term “determine,” as clarified in
[6] and summarized in the following definition. The physical
interpretation in this case is clear: it is useful in quantum
tomography to have some prior knowledge that the state to be
reconstructed is pure or nearly pure.

Definition 1. A pure state |ψ〉 is uniquely determined among
pure states (UDP) by measuring A if there does not exist any
other pure state which has the same measurement results as
those of |ψ〉 when measuring A. A pure state |ψ〉 is uniquely
determined among all states (UDA) by measuring A if there

does not exist any other state, pure or mixed, which has the
same measurement results as those of |ψ〉 when measuring A.

It is known that there exists a family of 4d − 4 observables
such that any d-dimensional pure state is UDP [7], and 5d − 6
observables such that any d-dimensional pure state is UDA [6].
Many other techniques for pure-state tomography have been
developed, and experiments have been performed to demon-
strate the reduction of the number of measurements needed
[8–15]. However, even if there are constructive protocols for
the measurement set A, in practice these sets may not be easy
to measure in an experiment.

One idea of the compressed sensing protocols as discussed
in [16,17] considers measurements of Pauli operators for
n-qubit systems, with Hilbert space dimension d = 2n. Since
no joint measurements on multiple qubits are needed for
Pauli operators, these operators are relatively easy to measure
in practice. It is shown that order d log d random Pauli
measurements are sufficient to UDA almost all pure states
[18]. That is, all pure states can be determined, up to a set
of states with measure zero (i.e., “almost all” pure states
are determined). Experiments also demonstrate the usefulness
of this method in pure-state tomography in practice [19].
However, it remains open how many Pauli measurements are
needed to determine all pure states (UDP or UDA) of an n-qubit
system.

In this work, we examine the problem of the minimum
number of Pauli operators needed to UDA all n-qubit pure
states. For n = 1 the number is known to be 3, i.e., all three
Pauli operators X,Y,Z are needed. We solve the problem
for n = 2 and n = 3, where at least 11 Pauli operators are
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needed for n = 2 and at least 31 Pauli operators are needed
for n = 3. We then demonstrate that our protocol is robust
under depolarizing error with simulated random pure states.
We further implement our protocol in our nuclear magnetic
resonance (NMR) system and compare our result with other
methods. As a direct application of this result, we show that
our scheme can also be used to reduce the number of settings
needed for pure-state tomography in quantum optical systems.

II. PURE-STATE TOMOGRAPHY USING PAULI
OPERATORS

We consider the real span of the operators in A, and
denote it by S(A). Let S(A)⊥ be the (d2 − m)-dimensional
orthogonal complement subspace of S(A) inside Rd2

. It is
known that a sufficient condition for any pure state |φ〉 to
be UDA by measuring A is that any nonzero Hermitian
operator H ∈ (S(A))⊥ have at least two positive and two
negative eigenvalues [6]. In fact, this is also a necessary
condition. Otherwise, if the second-lowest eigenvalue of H

is non-negative, then the two states |ψ〉〈ψ | and H + |ψ〉〈ψ |
are indistinguishable by only measuring A where |ψ〉 is the
eigenvector of H corresponds to the smallest eigenvalue.
Note that without loss of generality, we can always assume
the smallest eigenvalue of H is greater than −1 which will
guarantee H + |ψ〉〈ψ | � 0. A similar argument holds if the
second-largest eigenvalue of H is negative. We will then look
for such sets A containing only Pauli operators, for two-qubit
and three-qubit pure-state tomography.

A. Two-qubit system

We denote the single-qubit Pauli operators by σ1 = X,σ2 =
Y,σ3 = Z, and the identity operator σ0 = I . For a single
qubit, it is straightforward to check that measuring only two
of the three operators cannot determine an arbitrary pure
state. Therefore, all three Pauli operators are needed in the
single-qubit case.

For the two-qubit system, there are a total of 16 Pauli
operators, including the identity. These are given by the set
{σi ⊗ σj } with i,j = 0,1,2,3. For simplicity we omit the tensor
product symbol by writing, e.g., XY instead of X ⊗ Y . Of these
16 Pauli operators, there exists a set of 11 Pauli operators A
such that A is UDA for any pure state, as given by the following
theorem [20].

Theorem 1. Any two-qubit pure state |φ〉 is UDA by
measuring the following set of Pauli operators:

A = {II,IX,IY,IZ,XI,YX,

YY,YZ,ZX,ZY,ZZ}, (3)

and no set with fewer than 11 Pauli operators can be UDA for
all two-qubit pure states. Moreover, any set of Pauli operators
which is Clifford equivalent to A can be used to UDA for any
two-qubit pure states.

This is to say, 11 is the minimum number of Pauli operators
needed to UDA any two-qubit pure state, and an example of
such a set with 11 Pauli operators is given in Eq. (3).

Proof. In order for A to UDA all two-qubit pure states it
is known [6] that any Hermitian operator H ∈ (S(A))⊥ must
have at least two positive and two negative eigenvalues.

In this case (S(A))⊥ = S({XX,XY,XZ,YI,ZI }). Note
that the five operators which are not measured all mutually
anticommute with each other. It is easy to see that this property
is required for if two operators in (S(A))⊥ commuted, then
they would be simultaneously diagonalizable and a linear
combination would exist which would have at least one zero
eigenvalue. Since two-qubit Pauli operators only have four
eigenvalues total, having a single zero eigenvalue fails the
UDA condition.

Furthermore, it is easy to show by exhaustive search that
there exists no set of more than five mutually anticommuting
Pauli operators. So no fewer than 11 Paulis could be measured.

To show that this set of 11 Pauli operators is sufficient to
be UDA, we construct a parametrization of all H ∈ (S(A))⊥,

H = α1XX + α2XY + α3XZ + α4YI + α5ZI, (4)

and show that either H has two positive and two negative
eigenvalues or H = 0. Note that H then has the following
form:⎡

⎢⎣
α5 0 α3 + α4i α1 + α2i

0 α5 α1 − α2i −α3 + α4i

α3 − α4i α1 + α2i −α5 0
α1 − α2i −α3 − α4i 0 −α5

⎤
⎥⎦.

The determinant of H can be calculated and the result is

α4
5 + α2

5 |α3 + α2i|2 + α2
5 |α1 + α2i|2 + |α3 − α4i|4

+|α3 − α4i|2|α1 + α2i|2 + |α3 − α2i|2α2
5 + |α1 − α2i|4

+|α1 − α2i|2|α3 − α4i|2 + |α1 − α2i|2α2
5 .

This quantity, being the sum of non-negative terms, is
greater than or equal to zero. Equality is reached if and only
if all terms in the sum are zero, which only occurs when
α1 = α2 = α3 = α4 = α5 = 0. Since H is a 4 × 4 traceless
Hermitian matrix, it can only have positive determinant if and
only if it has exactly two positive and two negative eigenvalues.

The same logic follows for any set that is unitarily
equivalent to this set. A particular class of unitary operators
which maps the set of Pauli operators to itself is called the
Clifford group. Thus the set A and any set which is Clifford
equivalent to it are our optimum sets of Pauli measurement
operators for two-qubit pure-state tomography.

B. Three-qubit system

The situation for the three-qubit case is much more
complicated [20]. We start by noticing that

V = IIZ + IZI + ZII + ZZZ

= 4(|000〉〈000| − |111〉〈111|) (5)

has one positive and one negative eigenvalue. Therefore, if the
set F1 = {IIZ,IZI,ZII,ZZZ} is a subset of S(A)⊥, the set
A cannot UDA all pure states. Similarly any set Fi which is
Clifford equivalent to F1 cannot be a subset of S(A)⊥. Sets
such as these we call failing sets.

Definition 2. A failing set F is a set of Pauli operators
such that there exists a nonzero real combination of elements
chosen from F such that it has only one positive eigenvalue or
one negative eigenvalue.

032140-2



PURE-STATE TOMOGRAPHY WITH THE EXPECTATION . . . PHYSICAL REVIEW A 93, 032140 (2016)

Namely, for an arbitrary pure state |φ〉 to be UDA by
measuring operators in a set A, span(Fi) �⊂ (span(A))⊥ holds
for every set Fi that is Clifford equivalent to F1. Thus, for
all 945 sets of Fi , at least one element in each Fi should be
included in span(A).

Theorem 2. The following set of 31 Pauli operators are
sufficient to UDA any given three-qubit pure state |φ〉:

A = {IIX,IIY,IIZ,IXI,IXX,IXY,IY I,IYX,

IYY,IZI,XIZ,XXX,XXY,XYX,XYY,

XZX,XZY,YXX,YXY,YXZ,YYX,YYY,

YYZ,YZI,ZII,ZXZ,ZYZ,ZZX,ZZY,

ZZZ,III }, (6)

and no set with less than 31 Pauli operators can be UDA for all
three-qubit pure states. Moreover, any set of Pauli operators
which is Clifford equivalent to A can be used to UDA for any
three-qubit pure states.

Similar to the two-qubit case this set is obtained by finding
the largest set of Pauli operators which do not contain any of
the identified failing sets and taking the complement producing
the smallest set of measurement operators which could UDA
all pure states.

To show that this set A will be UDA for any pure state,
we look at the traceless Hermitian operator H ∈ (span(A))⊥,
where

H = α1IXZ + α2IYZ + α3IZX + α4IZY + α5IZZ

+α6XII + α7XIX + α8XIY + α9XXI

+α10XXZ + α11XYI + α12XYZ + α13XZI

+α14XZZ + α15YII + α16YIX + α17YIY

+α18YIZ + α19YXI + α20YYI + α21YZX

+α22YZY + α23YZZ + α24ZIX + α25ZIY

+α26ZIZ + α27ZXI + α28ZXX + α29ZXY

+α30ZYI + α31ZYX + α32ZYY + α33ZZI.

It can be shown that H either has at least two positive
and two negative eigenvalues or H = 0 (see the Appendices
for details). Therefore, set A and any set which is Clifford
equivalent to it are our optimum Pauli measurement sets for
three-qubit pure-state tomography.

III. STABILITY OF THE PROTOCOL AGAINST
DEPOLARIZING NOISE

Before we test our protocol experimentally, we would like
to understand how robust it is given states that are not pure.
Due to noise in the implementation, we often end up with some
mixed state which is close to our ideal pure state. Therefore,
for the protocol to work in practice, one requires it to return a
density matrix with high fidelity with respect to our input state
when it has high purity.

We generate a random pure state |φ〉 from the Haar
measure as our desired ideal state, then run it through a
depolarizing channel to get a noisy mixed state ρ = η I

d
+

(1 − η)|φ〉〈φ|. We could then generate all Pauli measurement
results {Tr(ρσk) = Mk}, where σk is Pauli observable of given

FIG. 1. Average fidelity of reconstructed density matrices com-
pared to the ideal state using an optimum Pauli measurement set
for 3 qubits. The error bars are given by standard deviation of the
said fidelity over 100 instances. For small noise η, the state is very
close to pure, and the protocol returns a high-fidelity density-matrix
reconstruction. As noise η increases, the pure-state assumption
becomes less useful, which yields a low-fidelity estimation.

dimension. Picking results determined by our optimum Pauli
measurement set as given in Eq. (6), we run a maximum
likelihood estimation to get a density matrix reconstruction.

If we assume the reconstructed state is low rank and η is
very close to zero, the robustness of said reconstruction was
shown in [14]. In our simulation, we made no assumption of
the reconstructed state other than the requirement of it being
semipositive definite and trace one.

For each given noise η, we take 100 different input state
and run our protocol to get 100 reconstructed density matrices.
The reconstructed matrices are compared to the input state to
get fidelity of the reconstruction. We then take the average of
these 100 fidelity and report an average fidelity for the given
noise η. Our protocol is tested over a range of different η, and
the results are shown in Fig. 1. We can see that for small noise
η, the simulated state is very close to pure, and the protocol
returns a high-fidelity density-matrix reconstruction. As noise
η increases, the pure-state assumption becomes less useful,
and our protocol yields a low-fidelity estimation.

IV. EXPERIMENTS IN NMR SYSTEMS

A nuclear magnetic resonance (NMR) system is an ideal
testbed for our protocol. However, the creation of a pure
state in NMR requires unrealistic experimental conditions
such as extremely low temperatures or high magnetic fields,
which makes it impractical for a liquid sample. To overcome
this problem, one can prepare a pseudopure state (PPS)
alternatively

ρPPS = 1 − ε

2N
I + ε|φ〉〈φ|, (7)

where I is the identity matrix and ε ∼ 10−5 represents the
polarization. For a traceless Pauli observable σ , only the pure-
state portion ε|φ〉〈φ| contributes to the measurement result.
Therefore, the behavior of a system in the PPS is exactly the
same as it would be in the pure state.
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1H 13C 19F T1 (s) T2 (s)
1H 400M 2.8 1.2
13C 160.7 100M 2.9 1.1
19F 47.6 -194.4 376M 3.1 1.3

1H 13C T1 (s) T2 (s)
1H 500M 4.8 3.3
13C 214.6 125M 17.2 0.35

(a)

(b)

FIG. 2. Molecular structure of (a) two-qubit sample 13 C-labeled
chloroform and (b) three-qubit sample diethyl-fluoromalonate. The
corresponding tables on the right side summarize the relevant NMR
parameters at room temperature, including the Larmor frequencies
(diagonal, in hertz), the J -coupling constant (off-diagonal, in hertz),
and the relaxation time scales T1 and T2.

To test our protocol, we carried out the experiments in
two- and three-qubit NMR quantum systems, respectively.
The qubits in the two-qubit system are denoted by the
13C and 1H spins of 13C-labeled chloroform diluted in
acetone-d6 on a Bruker DRX-500 MHz spectrometer, and
in the three-qubit system by the 13C, 1H, and 19F spins in
diethyl-fluoromalonate dissolved in d-chloroform on a Bruker
DRX-400 MHz spectrometer. The molecular structures and
relevant parameters are shown in Fig. 2, and the corresponding
natural Hamiltonian for each system can be described as

Hint =
∑
i=1

πνiσ
i
z +

∑
i<j,=1

πJij

2
σ i

zσ
j
z , (8)

where νi is the resonance frequency of spin i and Jij are the
scalar coupling constants between spins i and j . All parameters
are listed in the right table of Fig. 2. Note that in experiment
we set νi = 0 in the multirotating frame for simplicity.

In experiment, the entire tomography process for a PPS
becomes: given measurements Tr(ρσk) = εTr(ρtσk) = Mk ,
find a density matrix ρrec to best fit the data Mk . In order
to evaluate the performance of our protocol, two comparisons
will be made. First, we compare the reconstructed state using
the optimum number of Pauli measurements with the one
obtained with full tomography. It gives us an idea how good the
reconstruction is, and whether the protocol works. Second, we
compare our result with the state reconstructed by randomly
choosing Pauli measurements. This tells us how different
the performance is between selecting the optimum set and
a random set of Pauli measurements.

A. Pure-state tomography for a two-qubit state

For the two-qubit protocol, the system is first initialized to
the PPS

ρ00 = 1 − ε

4
I + ε|00〉〈00| (9)

via spatial average technique [21,22], where I is the 4 × 4
identity and ε ∼ 10−5 the polarization. The NMR signal of
this PPS is used as references for further comparisons with
the tomographic results. We then turn on the transversal field
with the strength ωx (in terms of radius), so the Hamiltonian

FIG. 3. Reconstruction of density matrix for state number one.
The upper two figures are real and imaginary part of density matrix
of state reconstruction using all 16 Pauli measurements. The bottom
two figures are real and imaginary part of density matrix of state
reconstruction using 11 optimum Pauli measurements described
earlier. The fidelity between the two density matrices is 0.992.

becomes

H = ωx

2

(
σ 1

x + σ 2
x

) + ωz

2

(
σ 1

z + σ 2
z

) + π
J12

2
σ 1

z σ 2
z . (10)

By ignoring the identity in ρ00, the system should evolve to a
time-dependent pure state

|φ〉 = α(t)|00〉 + β(t)(|01〉 + |10〉)/
√

2 + γ (t)|11〉, (11)

where t is the evolution time and α(t),β(t) γ (t) could be
calculated using the Hamiltonian in Eq. (10) (for details see
Eq. (4) in [23]). We measured in total 16 different states
at a few different time steps using Pauli observables. The
measurement result at each time step is used as one instance
of the input to our tomography algorithm. We then adopted
the maximum likelihood method to reconstruct the states.
The reconstructed density matrices for the first and sixteenth
experiments are shown in Fig. 3. Note that as the time
progresses, the relaxation becomes more prominent, where
the purity of state Tr(ρ2) drops. Since our protocol is designed
for pure-state tomography, the performance of our protocol is
expected to drop along with the decrease of purity in a quantum
state. The fidelity of different reconstructions compare to the
state intended to prepare also drops (see Appendix B for
detail), but it is irrelevent for the purpose of comparing two
tomography methods.

In order to further demonstrate the advantages of our
protocol, we compare it to a quantum state tomography
with Pauli measurements. Using the same number of random
Pauli measurements, one could also perform the maximum
likelihood method to get a reconstruction of the density matrix.
Note that the optimum set of 11 Pauli measurements may be
randomly hit in this case, which means the best performance
of random Pauli measurement algorithm is the same compared
with our protocol. However, in a realistic setting, only one set
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FIG. 4. Performance of two-qubit protocol using selected Pauli
measurements against randomly Pauli measurements.The blue dia-
mond dots are the fidelity between density matrix reconstructed from
all 16 Pauli measurements with density matrix reconstructed from
random 11 Pauli measurements. The red line represents fidelity of
reconstruction using our protocol, and the green dashed line shows the
purity of density matrix reconstructed from all Pauli measurements.

of random Pauli measurements will be chosen. To show the
advantage of our protocol, we only have to outperform the
average case of this random algorithm.

We randomly generated 11 distinct two-qubit Pauli mea-
surements (including identity), and used the maximum like-
lihood method to get an estimate of our density matrix. If
the density matrix given by this set of measurements is not
unique, the maximum likelihood method runs multiple times
to get an average estimation. For each experiment, 100 sets
of random Pauli measurements were chosen. The result is
shown in Fig. 4. We can see that for high purity, our method
significantly outperforms the random Pauli algorithm. The
advantage decreases as purity decreases, which indicates our
method is more efficient for a state that is close to pure.

B. Pure-state tomography for a three-qubit state

For three-qubit system, we are interested in the GHZ state
|GHZ〉 = (|000〉 + |111〉)/√2. The experimental data is from
[24], and the GHZ state is prepared via global controls in
closed linear Ising spin chains with nearest-neighbor couplings
as shown in Fig. 5. We measured all 64 Pauli measurements
(the measured purity of the prepared state is about 0.89), and
only use 31 of them described in Eq. (6) for our protocol.
As shown in Fig. 6, only using less than half of the desired
measurements, we reconstructed density matrices for the GHZ
state via the maximum likelihood method with 0.96 fidelity.
We then compare it to a quantum state tomography algorithm
implementing 31 random Pauli measurements (including
identity). Since the number of unused Pauli measurements
are much more compared to the two-qubit case, we are less
likely to hit the optimum set in this random algorithm. By
implementing a similar maximum likelihood reconstruction,
we found the average fidelity of this random algorithm to be
0.87 with standard deviation of 0.16. The detailed result is
shown in Fig. 7, which shows clearly that our protocol has
a decent advantage over the average case in the randomized
algorithm.

FIG. 5. (a) General scheme to create the GHZ state via global
controls. X(θ ) and Y(θ ) are, respectively, the global rotations with θ

angle along x and y directions, and ZZ(τ ) denotes a free evolution
with the τ time under the model Ising Hamiltonian. (b) NMR
sequence to realize the GHZ state creation from the PPS. Blue and red
rectangles represent π/2 and π rotations, respectively. The evolution
times are t1 = 6.76 ms, t2 = 6.49 ms, and t3 = 2.84 ms with our
sample.

V. APPLICATION TO TOMOGRAPHY IN OPTICAL
SYSTEMS

Figure 8 depicts a typical scheme for measuring a
polarization-encoded n-photon state [25–30]. Quarter- and
half-waveplates in each photon’s path are rotated to choose
a separable polarization basis. We call the set of angles
specifying each waveplate’s position the setting of the mea-
surement. The n-photon state is projected onto the basis set
by the waveplate angles with n polarizing beamsplitters. A
single-photon detector is present in each of the 2n output ports
of the beamsplitters, and n-fold coincident detections among
the n paths are counted. There are 2n combinations of n-fold
coincident detection events that correspond to a state with
one photon entering each of the n beamsplitters before being
detected in one of the two output ports. Summing the total
number of n-fold coincidences over these 2n combinations

FIG. 6. Reconstruction of density matrix for GHZ state. The
upper two figures are real and imaginary part of density matrix of
state reconstruction using all 64 Pauli measurements. The bottom
two figures are real and imaginary part of density matrix of state
reconstruction using 31 optimum Pauli measurements described in
Eq. (6). The fidelity between the two density matrices is 0.960.
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FIG. 7. Performance of three-qubit protocol using selected Pauli
measurements against randomly Pauli measurements. Blue dots
represent fidelity between density matrix reconstructed from all
64 Pauli measurements and density matrix reconstructed from
random 31 Pauli measurements. The red square represents fidelity
of reconstruction using our protocol.

gives the total number of copies of the state detected by the
measurement.

A minimum of 3n measurement settings are required for
general state tomography using separable projective measure-
ments [2]. We note that, if one performs nonseparable mea-
surements, then general state tomography can be performed
with 2n + 1 measurement settings [31]. However, these types
of measurements are difficult to perform in practice, so we
restrict the discussion here to separable ones.

One can think of each setting as a projective measurement
that produces results for multiple Pauli operators simultane-
ously. For example, consider measuring a two-photon state
with the waveplates set such that a photon in the positive
eigenstate of the Pauli X or Y operator will be deterministically

FIG. 8. Measurement scheme for a polarization-encoded
n-photon state. The n-qubit state is encoded in the polarizations of
the n photons. Each photon is measured using a quarter-waveplate
(QWP), half-waveplate (HWP), and a polarizing beamsplitter (PBS)
with a single-photon counting detector (SPD) at each of its output
ports. The quarter- and half-waveplates are rotated to choose the mea-
surement basis for each photon. Separable projective measurements
are performed by counting coincident detection events between all
n photons.

transmitted at the first or second beamsplitter, respectively.
For simplicity we will call this the XY setting. There are four
relevant twofold coincident detection events, which we denote
Ntt , Ntr , Nrt , and Nrr , and where the first and second subscripts
represent which output port (i.e., transmitted or reflected) the
first or second photon was detected, respectively. These counts
can be summed in specific ways to find expectation values of
different Pauli operators. For example, the expectation value
of 〈XY 〉 is given by 〈XY 〉 = (Ntt − Ntr − Nrt + Nrr )/N ,
where the total number of copies N is given by N =
Ntt + Ntr + Nrt + Nrr . Similarly, 〈XI 〉 can be found with
〈XI 〉 = (Ntt + Ntr − Nrt − Nrr )/N . In total, the XY setting
measures the following four Pauli operators:

XY,XI,IY,II.

Based on this observation, we can use the results of
Theorem 1 and Theorem 2 to reduce the number of settings
to UDA pure states. For the two-qubit case, recall that the 11
Pauli operators to UDA any pure states are

A = {II,IX,IY,IZ,XI,YX,YY,YZ,ZX,ZY,ZZ}.
Notice that any of the six Paulis with no I component

(the two-qubit correlations) only appear in the setting which
measures it. However, looking at the remaining five Paulis, II

is included in every setting, IX is included in the YX setting,
IY in YY , and IZ in YZ. The only operator which does not
appear in the settings of the two-qubit correlations is XI , so
for the two-qubit case, 6 + 1 = 7 settings are required to be
sufficient for UDA.

And similar analysis can be done for the three-qubit case,
with the aid of computer search. That is, we find the minimum
number of settings that can produce all the 31 Pauli operators
as given in Eq. (6). We summarize these results as the corollary
below.

Corollary 1: Only seven settings

{XI,YX,YY,YZ,ZX,ZY,ZZ}.
are needed to UDA any two-qubit pure states, compared with
nine settings needed for general two-qubit state tomography.
And only 19 settings

{XXZ,XYZ,XZX,XZY,XZZ,YXX,

YXY,YYX,YYY,YZX,YZY,YZZ,

ZXX,ZXY,ZXZ,ZYX,ZYY,ZYZ,ZZX} (12)

are needed to UDA any three-qubit pure states, compared with
27 settings needed for general three-qubit state tomography.

We remark that Corollary 1 is a direct application of
Theorem 1 and Theorem 2. It is possible for even better
results to be obtained by including knowledge of settings in
the first optimization. However, proving sufficiency becomes
more difficult in these cases.

VI. CONCLUSION

In this work, we find the most compact Pauli measurement
sets for pure-state tomography on two- and three-qubit
systems. The experiments on two-qubit and three-qubit NMR
systems demonstrated the advantages of using such protocol.
We reduced the required number of measurements by five
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and 33 for two- and three-qubit systems, respectively, without
significant drop in fidelity. As a direct application of this
result, we also showed that our scheme can be used to reduce
the number of settings needed for pure-state tomography in
quantum optics systems.

A few questions need to be answered before we scale the
test to larger systems. We are able to find the optimum sets
for two and three qubits. However, the method we used to
find those sets cannot be easily generalized to larger systems.
It remains open whether one can find a general algorithm to
decide the smallest sets of Pauli operators to UDA any pure
state for a system of n qubits. If such an algorithm exists, we
would hope that the number of measurements required grows
linearly with the Hilbert space dimension of the system.
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APPENDIX A: PROOF OF THEOREM 2

In order to prove Theorem 2, it suffices to prove the
following result.

Theorem 3. Any Hermitian operator perpendicular to

{IIX,IIY,IIZ,IXI,IXX,IXY,IY I,IYX,IYY,IZI,

XIZ,XXX,XXY,XYX,XYY,XZX,XZY,YXX,

YXY,YXZ,YYX,YYY,YYZ,YZI,ZII,ZXZ,ZYZ,

ZZX,ZZY,ZZZ}
must have at least two positive and two negative eigenvalues.

Proof. The proof proceeds as follows. First construct an
8 × 8 traceless Hermitian matrix H which is perpendicular
to all the above Pauli operators. This will be a real linear
combination of every Pauli operator that is not being measured.
This H is then a general description of any Hermitian matrix
in the complement of the span of all measured operators. We
will show through a case by case analysis that if we assume H

only has one positive eigenvalue, then it follows that H must
be the zero matrix. A similar argument holds for having only
one negative eigenvalue; therefore, H must have at least two
positive and two negative eigenvalues.

Let us begin by constructing H which is a real linear
combination of the 33 Pauli operators not being measured
(excluding the identity). H is then

H = x1IXZ + x2IYZ + x3IZX + x4IZY

+ x5IZZ + x6XII + x7XIX + x8XIY

+ x9XXI + x10XXZ + x11XYI + x12XYZ

+ x13XZI + x14XZZ + x15YII + x16YIX

+ x17YIY + x18YIZ + x19YXI + x20YYI

+ x21YZX + x22YZY + x23YZZ + x24ZIX

+ x25ZIY + x26ZIZ + x27ZXI + x28ZXX

+ x29ZXY + x30ZYI + x31ZYX + x32ZYY

+ x33ZZI.

Writing H in matrix form will give the form
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 c14 c15 c16 c17 0
c∗

12 c22 c23 c24 c25 c26 0 c28

c∗
13 c∗

23 c33 c34 c35 0 c37 c38

c∗
14 c∗

24 c∗
34 c44 0 c46 c47 c48

c∗
15 c∗

25 c∗
35 0 c55 c56 c57 c58

c∗
16 c∗

26 0 c∗
46 c∗

56 c66 c67 c68

c∗
17 0 c∗

37 c∗
47 c∗

57 c∗
67 c77 c78

0 c∗
28 c∗

38 c∗
48 c∗

58 c∗
68 c∗

78 c88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A1)

where

c11 = x5 + x26 + x33,

c22 = −x5 − x26 + x33,

c33 = −x5 + x26 − x33,

c44 = x5 − x26 − x33,

c55 = x5 − x26 − x33 = c44,

c66 = −x5 + x26 − x33 = c33,

c77 = −x5 − x26 + x33 = c22,

c88 = x5 + x26 + x33 = c11,

c12 = x3 + x24 − i(x4 + x25),

c34 = −x3 + x24 + i(x4 − x25),

c56 = x3 − x24 − i(x4 − x25) = −c34,

c78 = −x3 − x24 + i(x4 + x25) = −c12,

c13 = x1 + x27 − i(x2 + x30),

c24 = −x1 + x27 + i(x2 − x30),

c57 = x1 − x27 − i(x2 − x30) = −c24,

c68 = −x1 − x27 + i(x2 + x30) = −c13,

c14 = x28 − x32 − i(x29 + x31),

c23 = x28 + x32 + i(x29 − x31),

c58 = −x28 + x32 + i(x29 + x31) = −c14,

c67 = −x28 − x32 − i(x29 − x31) = −c23,

c15 = x6 + x13 + x14 − i(x15 + x18 + x23),

c26 = x6 + x13 − x14 − i(x15 − x18 − x23),

c37 = x6 − x13 − x14 − i(x15 + x18 − x23),

c48 = x6 − x13 + x14 − i(x15 − x18 + x23)

= c15 − c∗
26 + c∗

37,

c16 = x7 − x17 − x22 − i(x8 + x16 + x21),

c25 = x7 + x17 + x22 + i(x8 − x16 − x21),

c38 = x7 − x17 + x22 − i(x8 + x16 − x21),

c47 = x7 + x17 − x22 + i(x8 − x16 + x21)

= c∗
16 + c25 − c∗

38,
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c17 = x9 + x10 − x20 − i(x11 + x12 + x19),

c28 = x9 − x10 − x20 − i(x11 − x12 + x19),

c35 = x9 + x10 + x20 + i(x11 + x12 − x19),

c46 = x9 − x10 + x20 + i(x11 − x12 − x19)

= c∗
28 + c35 − c∗

17.

Note that the main antidiagonal is all zeros. This was by
design, since any set of Pauli operators Clifford equivalent to
the result from the hypergraph dualization program is also a
solution, we had the freedom to choose a set which would
make the proof simpler. Choosing the set of operators which
contained all Pauli operators constructed by tensoring only X

operators and Y operators meant H would have zero main
antidiagonal. The only reason for choosing this set is it makes
this proof a little simpler.

Here we assume H is a Hermitian matrix with only one
positive eigenvalue. We first show all diagonal entries of H

must be zero. Observe that c55 = c44, c66 = c33, c77 = c22,
and c88 = c11. In order for the traceless condition on H to

hold, it is then clear that c11 + c22 + c33 + c44 = 0. If H has
some nonzero diagonal entry, then at least one of c11,c22,c33,
and c44 will be positive. Without loss of generality, let c11 > 0,
then the submatrix of H formed by the rows (1,8) and columns
(1,8), which will be of the form c11 ∗ I , will have two positive
eigenvalues.

Lemma 1. Cauchy’s Interlacing Theorem states [32] the
following. Let

A =
[

B C

C† D

]

be an n × n Hermitian matrix, where B has size m × m (m <

n). If the eigenvalues of A and B are α1 � · · · � αn and β1 �
· · · � βm respectfully. Then

αk � βk � αk+n−m,k = 1, . . . ,m.

It follows from Cauchy’s interlacing property that if a
principle submatrix of H has two positive eigenvalues then
H also has at least two positive eigenvalues.

Hence H must be in the following form:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c12 c13 c14 c15 c16 c17 0
c∗

12 0 c23 c24 c25 c26 0 c28

c∗
13 c∗

23 0 c34 c35 0 c37 c38

c∗
14 c∗

24 c∗
34 0 0 c∗

28 + c35 − c∗
17 c∗

16 + c25 − c∗
38 c15 − c∗

26 + c∗
37

c∗
15 c∗

25 c∗
35 0 0 −c34 −c24 −c14

c∗
16 c∗

26 0 c28 + c∗
35 − c17 −c∗

34 0 −c23 −c13

c∗
17 0 c∗

37 c16 + c∗
25 − c38 −c∗

24 −c∗
23 0 −c12

0 c∗
28 c∗

38 c∗
15 − c26 + c37 −c∗

14 −c∗
13 −c∗

12 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In fact, under the assumption that H has only one positive eigenvalue, it follows from Cauchy’s interlacing theorem that any
principle submatrix of H cannot have more than one positive eigenvalue. Otherwise, we will have a contradiction.

Let us look at the submatrix formed by rows 1,2,4,5 and the same columns. It is a traceless Hermitian matrix with determinant
|c14c25 − c15c24|2. Again, if the submatrix has positive determinant, then it must have exactly two positive eigenvalues. Once
again by applying Cauchy’s interlacing property, H will have at least two positive eigenvalues. This immediately contradicts
our assumption. The above argument implies that, under our assumption H has only one positive eigenvalue, we have |c14c25 −
c15c24|2 � 0. It is not surprising that the inequality holds if and only if the equality holds. Then we have c14c25 − c15c24 = 0.

Similarly, by considering other 4 × 4 submatrices constructed from the rows and columns a,b,4,5, where a,b are any two of
the remain six rows, we can show that

c14c35 − c15c34 = 0,

−c14c
∗
34 − c15(c28 + c∗

35 − c17) = 0,

−c14c
∗
24 − c15(c16 + c∗

25 − c38) = 0,

−c14c
∗
14 − c15(c∗

15 − c26 + c37) = 0,

c24c35 − c25c34 = 0,

−c24c
∗
34 − c25(c28 + c∗

35 − c17) = 0,

−c24c
∗
24 − c25(c16 + c∗

25 − c38) = 0,

−c24c
∗
14 − c25(c∗

15 − c26 + c37) = 0,

−c34c
∗
34 − c35(c28 + c∗

35 − c17) = 0,

−c34c
∗
24 − c35(c16 + c∗

25 − c38) = 0,

−c34c
∗
14 − c35(c∗

15 − c26 + c37) = 0,

−c∗
24(c28 + c∗

35 − c17) + c∗
34(c16 + c∗

25 − c38) = 0,

−c∗
14(c28 + c∗

35 − c17) + c∗
34(c∗

15 − c26 + c37) = 0,

−c∗
14(c16 + c∗

25 − c38) + c∗
24(c∗

15 − c26 + c37) = 0.
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The above equations will imply that the 8 × 2 submatrix formed by the fourth and fifth columns has rank at most 1. The same
argument can be used to prove that the 8 × 2 submatrices formed by columns (1,8), (2,7), or (3,6) also have rank at most 1.

As a straightforward consequence, H has rank no more than 4.
In other words, the kth column and the (9 − k)th column are linearly dependent. This means that there exist λ1,λ2,λ3,λ4 such

that the following equations hold:

λ1
−→
C1 + (1 − λ1)

−→
C8 = λ2

−→
C2 + (1 − λ2)

−→
C7 = 0, (A2)

λ3
−→
C3 + (1 − λ3)

−→
C6 = λ4

−→
C4 + (1 − λ4)

−→
C5 = 0. (A3)

Here we have used
−→
Ck to represent the kth column of the matrix (A2).

Let us start with a special case. Let λ1 = 0. Then c12 = c13 = c14 = c28 = c38 = 0 and c15 = c∗
26 − c∗

37. H can be simplified
as the following:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 c∗
26 − c∗

37 c16 c17 0
0 0 c23 c24 c25 c26 0 0
0 c∗

23 0 c34 c35 0 c37 0
0 c∗

24 c∗
34 0 0 c35 − c∗

17 c∗
16 + c25 0

c26 − c37 c∗
25 c∗

35 0 0 −c34 −c24 0
c∗

16 c∗
26 0 c∗

35 − c17 −c∗
34 0 −c23 0

c∗
17 0 c∗

37 c16 + c∗
25 −c∗

24 −c∗
23 0 0

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If we set c23 = c24 = c34 = 0, then the top-left 4 × 4
submatrix is zero. In this case, the characteristic polynomial of
H contains only even powers. Thus H having only one positive
eigenvalue implies H has only one negative eigenvalue too. As
a consequence, the top-right 4 × 4 submatrix of H has rank
exactly 1.

As a result, any 2 × 2 submatrix of the top-right submatrix
must have determinant zero. From suitable choices of subma-
trices we can obtain the following equations:

c26c37 = 0, (A4)

c26(c∗
26 − c∗

37) = c16c25, (A5)

c37(c∗
26 − c∗

37) = c17c35, (A6)

c16(c∗
16 + c25) + c17(c∗

17 − c35) = 0. (A7)

Using the above equations we can obtain

0 = c16(c∗
16 + c25) + c17(c∗

17 − c35)

= c16c25 − c17c35 + |c17|2 + |c16|2
= c26(c∗

26 − c∗
37) − c37(c∗

26 − c∗
37) + |c17|2 + |c16|2

= |c26 − c37|2 + |c17|2 + |c16|2. (A8)

This implies c16 = c17 = 0 and c26 = c37. Also since c26c37 =
0 we know that c26 = c37 = 0. Furthermore c25(c∗

16 + c25) = 0
and c35(c35 − c∗

17) = 0 will guarantee c25 = c35 = 0. There-
fore H is once again the zero matrix.

We must then assume at least one of c23,c24,c34 must be
nonzero. If c23 �= 0, then by considering submatrices formed
by rows or columns (1,2,3,k) (5 � k � 8), we have c16 =
c17 = 0 and c26 = c37. For the case that c24 = 0 or c34 = 0,
we will also have c16 = c17 = 0 and c26 = c37 by considering
appropriately chosen submatrices.

We are then left with H in the form

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 c23 c24 c25 c26 0 0
0 c∗

23 0 c34 c35 0 c26 0
0 c∗

24 c∗
34 0 0 c35 c25 0

0 c∗
25 c∗

35 0 0 −c34 −c24 0
0 c∗

26 0 c∗
35 −c∗

34 0 −c23 0
0 0 c∗

26 c∗
25 −c∗

24 −c∗
23 0 0

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now, recall the fact that the submatrices formed by the kth
and the (9 − k)th columns will always have rank 1. From this
it can be shown we will have H is a zero matrix.

Take the submatrix formed by the second and seventh
columns for example. Since they are linearly dependent, the
determinant of any 2 × 2 submatrix must be zero. From this
we can get that |c23|2 + |c26|2 = 0. Therefore, c23 = c26 = 0.
By similar arguments on various submatrices, H can be shown
to be the zero matrix.

Thus, under our assumption that H has exactly one positive
eigenvalue, λ1 �= 0. Similarly, we can also prove that λ1 �=
1,λ2,λ3,λ4 �= 0,1. We can then assume from now on that H

has no zero columns or rows.
Hence there exists certain λ1,λ2,λ3, and λ4 �= 0,1 which

satisfies Eq. (A2).
Let us use Re and Im to denote the real part and imaginary

part of a complex number. Then the above equations can be
rewritten as linear equations of real numbers.

Let us use M(λ1,λ2,λ3,λ4) to denote the 48 × 30 coefficient
matrix. If we can prove that the coefficient matrix always has
rank 30 for any λ1,λ2,λ3, and λ4, then it will imply that all cij ’s
are zeros which will immediately contradict our assumption.

Unfortunately, we are not that lucky. M(λ1,λ2,λ3,λ4)
will be degenerate under certain assignment of variables
(λ1,λ2,λ3,λ4). For example, rank(M( 1+i

2 , 1+i
2 , 1+i

2 , 1+i
2 )) =

27 < 30. However, we can still show that M(λ1,λ2,λ3,λ4) will
have rank 30 except for some degenerate cases which will be
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dealt with separately. The top-left 2 × 2 submatrix has rank 2
if and only if λ1 �= 0.

At least one of the following situations must happen.

(1)

[−C1 A1

B2 C2

]
has full rank. This implies c12 = c17 = 0.

(2)

[
A1 C1

−D2 A2

]
has full rank. This implies c12 = c28 = 0.

(3)

[
B3 C3

−C1 A1

]
has full rank. This implies c13 = c16 = 0.

(4)

[
A1 C1

−D3 A3

]
has full rank. This implies c13 = c38 = 0.

(5)

[−C1 A1

B4 C4

]
has full rank. This implies c14 = c15 = 0.

(6)

[−C2 A2

B3 C3

]
has full rank. This implies c23 = c26 = 0.

(7)

[
A2 C2

−D3 A3

]
has full rank. This implies c23 = c37 = 0.

(8)

[−C2 A2

B4 C4

]
has full rank. This implies c24 = c25 = 0.

(9)

[−C3 A3

B4 C4

]
has full rank. This implies c34 = c35 = 0.

(10) det

([−C1 A1

B2 C2

])
= det

([
A1 C1

−D2 A2

])

= det

([
B3 C3

−C1 A1

])
= det

([
A1 C1

−D3 A3

])

= det

([−C1 A1

B4 C4

])
= det

([−C2 A2

B3 C3

])

= det

([
A2 C2

−D3 A3

])
= det

([−C2 A2

B4 C4

])

= det

([−C3 A3

B4 C4

])
= 0.

With assistance of a symbolic computation package like
Mathematica, we find that the only solution to the above
equations is Reλ1 = Reλ2 = Reλ3 = Reλ4 = 1

2 .
Here we will prove that there is no Hermitian matrix in the

form (A2) with only one positive eigenvalue for every situation
as follows.

(1) c12 = c17 = 0. Any H with only one positive eigenvalue must be in the following form:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 c13 c14 c15 c16 0 0
0 0 c23 c24 c25 c26 0 c28

c∗
13 c∗

23 0 c34 c35 0 c37 c38

c∗
14 c∗

24 c∗
34 0 0 c∗

28 + c35 c∗
16 + c25 − c∗

38 c15 − c∗
26 + c∗

37
c∗

15 c∗
25 c∗

35 0 0 −c34 −c24 −c14

c∗
16 c∗

26 0 c28 + c∗
35 −c∗

34 0 −c23 −c13

0 0 c∗
37 c16 + c∗

25 − c38 −c∗
24 −c∗

23 0 0
0 c∗

28 c∗
38 c∗

15 − c26 + c37 −c∗
14 −c∗

13 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By considering submatrices formed by row or columns (1,2,p,q) where 3 � p < q � 8, we have that the first two rows are
linearly dependent. Under our assumption that there is no row of H containing only zero entries, we have c28 = 0.

Recall that the fourth and fifth rows are linearly dependent; thus c34(−c∗
34) = c35(c28 + c∗

35) which now can be simplified as
|c34|2 + |c35|2 = 0. Hence c34 = c35 = 0. Then

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 c13 c14 c15 c16 0 0
0 0 c23 c24 c25 c26 0 0

c∗
13 c∗

23 0 0 0 0 c37 c38

c∗
14 c∗

24 0 0 0 0 c∗
16 + c25 − c∗

38 c15 − c∗
26 + c∗

37
c∗

15 c∗
25 0 0 0 0 −c24 −c14

c∗
16 c∗

26 0 0 0 0 −c23 −c13

0 0 c∗
37 c16 + c∗

25 − c38 −c∗
24 −c∗

23 0 0
0 0 c∗

38 c∗
15 − c26 + c37 −c∗

14 −c∗
13 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Again, by applying our submatrix argument, we have the submatrix formed by (3,4,5,6) columns must have rank 1.
If there is a zero element in the submatrix formed by rows (1,2,7,8) and columns (3,4,5,6), then there must be a row or a

column containing only zero elements in H . So, here we assume the submatrix formed by rows (1,2,7,8) and columns (3,4,5,6)
does not contain any zero element. Then c15

c25
= c13

c23
= c38

c37
, which implies c38c25 = c37c15.

Following from the rank 1 condition, we have

c15(c∗
15 − c26 + c37) = −|c14|2, c25(c16 + c∗

25 − c38) = −|c24|2.
By substituting c38c25 = c37c15 and c15c26 = c25c16 into the above two equations, we have

|c15|2 + |c14|2 = c15c26 − c15c37

= c25c16 − c25c38

= −|c24|2 − |c25|2,
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which implies c15 = c14 = c24 = c25 = 0. However, it contradicts our assumption that there is no zero element in the submatrix
formed by (1,2,7,8) rows and (3,4,5,6) columns.

Similarly, we can also prove that there is no Hermitian matrix in the form (A2) with only one positive eigenvalue if any of the
following conditions apply.

(2) c12 = c28 = 0.
(3) c13 = c16 = 0.
(4) c13 = c38 = 0.
(5) c14 = c15 = 0.
(6) c23 = c26 = 0.
(7) c23 = c37 = 0.
(8) c24 = c25 = 0.
(9) c34 = c35 = 0.
Now, the only case we have left is the following.
(10)Reλ1 = Reλ2 = Reλ3 = Reλ4 = 1

2 . In this case, rank([−C1 A1
B2 C2

]) = 3. Hence (Rec12,Imc12,Rec17,Imc17) lies in the null

space of [−C1 A1
B2 C2

] = [
− 1

2 −b1
1
2 b1

b1 − 1
2 b1 − 1

2
1
2 −b2

1
2 b2

b2
1
2 −b2

1
2

]. Thus

[c12 : c17] = [2(b2 − b1) + (1 + 4b1b2)i : 2(b1 + b2) + (4b1b2 − 1)i].

Similarly, we will have

[c12 : c17 : c28] = [2(b2 − b1) + (1 + 4b1b2)i : 2(b1 + b2) + (4b1b2 − 1)i : −2(b1 + b2) − (4b1b2 − 1)i],

[c13 : c16 : c38] = [2(b1 − b3) − (1 + 4b1b3)i : −2(b1 + b3) − (4b1b3 − 1)i : 2(b1 + b3) + (4b1b3 − 1)i],

[c23 : c26 : c37] = [2(b3 − b2) + (4b2b3 + 1)i : 2(b2 + b3) + (4b2b3 − 1)i : −2(b2 + b3) − (4b2b3 − 1)i],

[c14 : c15] = [2(b4 − b1) − (4b1b4 + 1)i : 2(b1 + b4) + (4b1b4 − 1)i],

[c24 : c25] = [2(b4 − b2) + (4b2b4 + 1)i : 2(b2 + b4) + (4b2b4 − 1)i],

[c34 : c35] = [2(b4 − b3) + (4b3b4 + 1)i : 2(b3 + b4) + (4b3b4 − 1)i].

Here [q1 : q2 : · · · : qm] = [r1 + s1i : r2 + s2i : · · · : rm + smi] means there exists some μ ∈ R such that qi = μ(ri + si i) for any
1 � i � m.

Observe that c28 = −c17,c38 = −c16,c37 = −c26; we thus simplify the matrix form of H as the following:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c12 c13 c14 c15 c16 c17 0
c∗

12 0 c23 c24 c25 c26 0 −c17

c∗
13 c∗

23 0 c34 c35 0 −c26 −c16

c∗
14 c∗

24 c∗
34 0 0 c35 − 2c∗

17 c25 + 2c∗
16 c15 − 2c∗

26
c∗

15 c∗
25 c∗

35 0 0 −c34 −c24 −c14

c∗
16 c∗

26 0 c∗
35 − 2c17 −c∗

34 0 −c23 −c13

c∗
17 0 −c∗

26 c∗
25 + 2c16 −c∗

24 −c∗
23 0 −c12

0 −c∗
17 −c∗

16 c∗
15 − 2c26 −c∗

14 −c∗
13 −c∗

12 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It follows that from the fact that the submatrix formed by fourth and fifth columns has rank exactly 1, we have c14(−c∗
14) =

c15(c∗
15 − 2c26). Thus at least one of the following cases must happen.

(10.1) c14 = c15 = 0. We can still assume there is no column containing only zero elements as this is the case that we have
already discussed. Thus c26 = 0 which would also lead to c23 = 0.

(10.2) c26 = c∗
15.

Similarly, at least one of the following conditions: (10.I) c24 = c25 = c16 = c13 = 0 or (10.II) c16 = −c∗
25 and one of the

following conditions: (10.A) c34 = c35 = c17 = c12 = 0 or (10.B) c17 = c∗
35 must apply.

We have already discussed the cases that c12 = c17 = 0, c13 = c16 = 0, or c23 = c26 = 0 previously. Hence the only remaining
case is c26 = c∗

15,c16 = −c∗
25,c17 = c∗

35. Thus

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c12 c13 c14 c15 −c∗
25 c∗

35 0
c∗

12 0 c23 c24 c25 c∗
15 0 −c∗

35
c∗

13 c∗
23 0 c34 c35 0 −c∗

15 c∗
25

c∗
14 c∗

24 c∗
34 0 0 −c35 −c25 −c15

c∗
15 c∗

25 c∗
35 0 0 −c34 −c24 −c14

−c25 c15 0 −c∗
35 −c∗

34 0 −c23 −c13

c35 0 −c15 −c∗
25 −c∗

24 −c∗
23 0 −c12

0 −c35 c25 −c∗
15 −c∗

14 −c∗
13 −c∗

12 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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According to c26 = c∗
15, we have 2(b2 + b3)(1 − 4b1b4) = (4b2b3 − 1)(2b1 + 2b4), which implies 4(b1b2b3 + b1b2b4 +

b1b3b4 + b2b3b4) = b1 + b2 + b3 + b4.
(1) 4b1b2 + 4b1b3 + 4b2b3 = 1. Thus b1 + b2 + b3 = 4b1b2b3. However, one can easily verify that there do not exist three

real numbers b1,b2,b3 satisfying these two equations.
(2) 4b1b2 + 4b1b3 + 4b2b3 �= 1. Hence b4 = b1+b2+b3−4b1b2b3

4b1b2+4b1b3+4b2b3−1 . By substituting the assignment of b4 into Eq. (A10), we have

c14 = p ·
(

2
(
1 − 4b2

1

)
(b2 + b3) + 4b1(1 − 4b2b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
+ −8b1(b2 + b3) + (

1 − 4b2
1

)
(1 − 4b2b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
,

c15 = p ·
(

2
(
1 + 4b2

1

)
(b2 + b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
+

(
1 + 4b2

1

)
(1 − 4b2b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
,

c23 = p ·
(

2
(
1 + 4b2

1

)
(b3 − b2)

4b1b2 + 4b1b3 + 4b2b3 − 1
+

(
1 + 4b2

1

)
(1 + 4b2b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
,

c24 = q ·
(

2
(
1 − 4b2

2

)
(b1 + b3) + 4b2(1 − 4b1b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
+ 8b2(b1 + b3) − (

1 − 4b2
2

)
(1 − 4b1b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
,

c25 = q ·
(

2
(
1 + 4b2

2

)
(b1 + b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
+

(
1 + 4b2

2

)
(1 − 4b1b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
,

c13 = q ·
(

2
(
1 + 4b2

2

)
(b1 − b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
−

(
1 + 4b2

2

)
(1 + 4b1b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
,

c34 = r ·
(

2
(
1 − 4b2

3

)
(b1 + b2) + 4b3(1 − 4b1b2)

4b1b2 + 4b1b3 + 4b2b3 − 1
+ 8b3(b1 + b2) − (

1 − 4b2
3

)
(1 − 4b1b2)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
,

c35 = r ·
(

2
(
1 + 4b2

3

)
(b1 + b2)

4b1b2 + 4b1b3 + 4b2b3 − 1
+

(
1 + 4b2

3

)
(1 − 4b1b2)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
,

c12 = r ·
(

2
(
1 + 4b2

3

)
(b2 − b1)

4b1b2 + 4b1b3 + 4b2b3 − 1
+

(
1 + 4b2

3

)
(1 + 4b1b2)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
.

Again, with the assistance of symbolic computation pack-
age like Mathematica, we can verify that the characteristic
polynomial of H contains only even powers. This implies H

has nonzero eigenvalue λ if and only if it also has eigenvalue
−λ. Therefore, under our assumption that H has only one
positive eigenvalue, H also has only one negative eigenvalue.

However, let us consider the 3 × 3 submatrix of H formed
by (5,7,8)th rows and (1,2,3)th columns. Its determinant
is (−i + 2b1)(i + 2b1)2(1 + 2ib2)(i + 2b2)2(i − 2b3)2(i +
2b3)2r((1 + 4b2

1)p2 + (1 + 4b2
2)q2 + (1 + 4b2

3)r2). It is
always nonzero unless p = q = r or r = 0. If r = 0 this
implies that c12 = c34 = c35 = 0. This case has already been
covered. Thus H has rank at least 3 which contradicts our
previous conclusion that H has only one positive eigenvalue
and only one negative eigenvalue.

To summarize, under our assumption that H has only
one positive eigenvalue, a contradiction always exists in
every situation we studied. Hence H must have at least two
positive eigenvalues and at least two negative eigenvalues. This
completes our proof.

APPENDIX B: FIDELITY COMPARISON IN THE
TWO-QUBIT NMR EXPERIMENT

The Hamiltonian in the two-qubit NMR experiment is
shown in Eq. (10), and the system will evolve to a time-
dependent state shown in Eq. (11). To test the stability of

our protocol against purities, we choose a long evolution time
which results in a tremendous drop in purities. In Fig. 9,
we compare two fidelities: the fidelity between the aim pure
state and the reconstructed state by 16 Pauli measurements

FIG. 9. Fidelity of the different reconstructions against the state
intended to be prepared. The green dashed line show the fidelity
between the aim pure state and the reconstructed state by 16 Pauli
measurements, and the blue dash-dotted line shows the fidelity
between the aim pure state and the reconstructed state by 11 Pauli
measurements in our protocol. Both of them decrease when the purity
is low, as our truly prepared state becomes more and more mixed along
with the long evolution times. For low purities, our protocol is also
worse than full-state tomography.
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which is full-state tomography, and the fidelity between
the aim pure state and the reconstructed state by 11 Pauli
measurements in our protocol. We can see that for short
evolution times, these two fidelities are almost the same, but

for low purities, the fidelity of our protocol is less than the
fidelity of full-state tomography. It clearly shows that our
protocol is only valid for high purities when the state is close to
pure.
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