
PHYSICAL REVIEW A 93, 032139 (2016)

Incoherent ensemble dynamics in disordered systems
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We derive a quantum master equation which describes the dynamics of the ensemble-averaged state of
homogeneous disorder models at short times, and mediates a transition from coherent superpositions into classical
mixtures. While each single realization follows unitary dynamics, this decoherencelike behavior arises as a
consequence of the ensemble average. The master equation manifestly reflects the translational invariance of
the disorder correlations and allows us to relate the disorder-induced dynamics to a collisional decoherence
process, where the disorder correlations determine the spatial decay of coherences. We apply our theory to the
(one-dimensional) Anderson model.
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I. INTRODUCTION

It was the insight of Anderson that disorder can substantially
modify the dynamical behavior of quantum particles: The
destructive quantum interference due to multiple scattering
off impurities in the wire potentially brings the electrons to
a halt, giving rise to Anderson localization [1]. Even when
the consequences of disorder are less drastic, its interplay
with quantum interference can still alter the mobility pattern,
causing, e.g., a transition from ballistic propagation to weak
localization [2]. While these interference effects already
occur on the level of single disorder realizations, they even
prevail under an average over many disorder realizations,
thereby stripping off individual peculiarities and defining a
statistically robust effect. Anderson localization, e.g., unveils
its characteristic trait, i.e., exponential wave-function tails, on
the level of the ensemble average.

The possibility to implement disorder models with highly
controllable cold atomic gases has made it possible to access
disorder phenomena and their underlying quantum origin even
on the level of the spatially resolved atomic density n(�r,t)
[3,4]. It was, for instance, observed that the ensemble-averaged
correlation function of density fluctuations exhibits, at long
times, characteristic long-range correlations, which can be
traced back to the macroscopic coherence in the gas [5,6].
Here, we investigate the evolution of quantum coherence
under the disorder average at short times. We find that the
spatial pattern of the coherence loss of the ensemble-averaged
state is directly related to the correlations in the disorder
potential. This loss already happens at ballistic times much
shorter than the mean free time τ , where the disorder does
not yet have a significant effect on the level of single
realizations.

We emphasize that this effective decoherence of the
ensemble-averaged state does not correspond to a loss of
information as it generally occurs in the presence of an
environment. In our case, single disorder realizations follow
the unitary dynamics of isolated quantum systems, i.e.,
the occurrence of quantum interference phenomena which
survive the ensemble average, such as Anderson or weak
localization, remains untouched. The coherent nature of the
dynamics of single realizations can, for instance, be recovered
by considering higher-order correlators, such as intensity

correlations. The loss of coherence of the ensemble-averaged
state, on the other hand, is a consequence of the fact that
different disorder realizations propagate an initially pure state
into different evolved states, and that their averaging generally
results in a mixed state.

To establish our results, we derive a general Lindblad
master equation for the evolution of the disorder-averaged
state on short time scales, allowing us to investigate the
transient dynamics for arbitrary initial states ρ0. In this
approach, the dynamical impact of the disorder is reflected
by the structure of the resulting master equation. In particular,
coherent and incoherent contributions to the dynamics of the
ensemble-averaged state are consistently separated. As we
show, the evolution generated by the master equation for
the one-dimensional (1D) Anderson model perfectly agrees
with the short-time dynamics of numerically exact simulations
thereof.

Let us stress that our approach lies at the interface between
quantum transport theory of disordered systems and the theory
of open systems. It complements other perturbative methods to
treat disorder dynamics, e.g., based on averaged propagators
and/or diagrammatic methods [7,8]. Alternative evolution
equations for the ensemble-averaged state have been proposed
in [9,10].

A comprehensive understanding of the disorder-induced
dynamics at short times is also of practical relevance, as it
permits one to access the detrimental impact of perturbations
on the functioning of quantum devices. To see this, let us
consider a simple example, the double-slit experiment. There,
the observed fringe pattern, which represents the purpose
of the device, strongly relies on the delicate interplay between
the delocalized state prepared by the slits and the phases
accumulated on the way to the screen. What happens if the
particles are disturbed along their way, e.g., if they propagate
across a disordered scattering potential towards the screen?
As we show in Fig. 1, averaging over many realizations of
the disorder potential gives rise to a continuous-in-time decay
of coherences, i.e., the visibility of the interference pattern in
momentum is monotonously reduced as time elapses. In other
words, while single realizations exhibit distorted interference
fringes, the ensemble average recovers the structure of
the undisturbed pattern, but with an increasingly reduced
visibility.
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FIG. 1. Decoherence dynamics induced by the disorder average:
Evolution of an initial spatial superposition state in the (one-
dimensional) Anderson model, mimicking the double-slit experiment
in the presence of disorder. (a) Density matrix of the spatial
superposition of two Gaussian wave packets at t = 0�/J (initial
state). (b) Ensemble-averaged state ρens(t) at t = 0.8�/J (J denotes
the hopping constant), with disorder strength W = 5J and averaged
over K = 100 realizations. One observes a decay of the coherences
between the two peaks, as well as of each individual peak. The loss
of coherence is also reflected (c) in the reduced visibility of the
interference pattern in momentum (blue solid line at t = 0.8�/J ,
orange dashed line at t = 0�/J ) and (d) in the decay of the purity
pens(t) = tr[ρens(t)2] of the state.

II. HOMOGENEOUS DISORDER

We consider a single quantum particle subject to a homo-
geneous disorder potential, i.e., correlations among different
locations are translationally invariant. For simplicity, we focus
here on a one-dimensional, discrete (infinitely extended)
configuration space, comprised of sites |j 〉 with lattice spacing
a; however, as will become clear in the course of the article,
our theory works as well for continuous configuration spaces,
higher dimensions, finite-size topologies, and many particles.
In the case considered here, the Hamiltonian for a single
disorder realization is given by

Ĥ�ε = −J
∑
j∈Z

(|j 〉〈j + 1| + |j + 1〉〈j |) +
∑
j∈Z

εj |j 〉〈j |, (1)

where the (infinite-dimensional) vector �ε comprised of the
random on-site energies εj distinguishes different disorder
realizations. The tunneling or hopping term is characterized
by the tunneling or hopping constant J , which controls the
maximal propagation speed in the system.

The distribution p(�ε) of the on-site energies is assumed to be
homogeneous. Besides the normalization {∏i∈Z

∫
dεi}p(�ε) =

1, we thus require that the expectation values and two-point

correlation functions satisfy

{∏
i∈Z

∫
dεi

}
p(�ε) εj = εj = ε = 0, (2a)

{∏
i∈Z

∫
dεi

}
p(�ε) εj εj ′ = J 2 C(j − j ′). (2b)

Note that we assume without loss of generality that the
expectation value ε of the on-site energies vanishes. For
convenience (as will become clear below), the two-point
correlation function C(�j ) is measured in units of the
hopping constant J (as well as all other quantities with the
dimension of an energy). As we will see, it is sufficient
to characterize the expectation values and the two-point
correlations of the disorder distribution, as only these appear
in the master-equation description at short times. Of course,
homogeneity requires all higher-order correlation functions to
be translationally invariant as well. We restrict ourselves to
disorder which is diagonal in the site basis; however, other
forms of homogeneous disorder are also conceivable.

In the case of the Anderson model [1], the on-site energies
of different sites are completely uncorrelated, i.e., the disorder
distribution p(�ε) decomposes into a product of identical
single-site distributions, p(�ε) = ∏

i∈Z ps(εi). The box-shaped
single-site distributions ps(ε) = �(W/2 + ε)�(W/2 − ε)/W

are characterized by the disorder strength W (� denotes the
Heaviside function). The translational-invariant correlation
function is accordingly given by

C(j − j ′) = 1

12

(
W

J

)2

δj−j ′,0. (3)

III. SHORT-TIME EVOLUTION

We now derive a quantum master equation which accurately
describes the ensemble-averaged dynamics of disorder models
such as (1) at short times. In particular, it renders the, in
general, incoherent nature of the ensemble-averaged dynamics
manifest in terms of the emerging Lindblad terms. To this
end, we first consider the unitary time evolution for a single
realization of the disorder potential, ρ�ε(t) = Û�ε(t)ρ0Û

†
�ε (t),

with the initial state ρ0 at t0 = 0 and the time-evolution
operator Û�ε(t) = exp(−iĤ�ε t/�). Since we are interested in
the evolution on short time scales, we expand to second order
in dt :

ρ�ε(dt) = ρ0 + i

�
dt[ρ0,Ĥ�ε]

+ dt2

�2

(
Ĥ�ερ0Ĥ�ε − 1

2
Ĥ 2

�ε ρ0 − 1

2
ρ0Ĥ

2
�ε

)
+ O(dt3).

(4)

The second-order term is structurewise reminiscent of a
Lindblad term, and, indeed, upon averaging over different re-
alizations, the leading incoherent contributions to the disorder
dynamics arise at second order in time. To see this, we take
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the average ρ = {∏i∈Z
∫

dεi}p(�ε)ρ�ε of (4), which yields

ρ(dt) = ρ0 + i

�
dt[ρ0,Ĥ ] + dt

{∏
i∈Z

∫
dεi

}
p(�ε)dt

�2

×
(

Ĥ�ερ0Ĥ�ε − 1

2
Ĥ 2

�ε ρ0 − 1

2
ρ0Ĥ

2
�ε

)
+ O(dt3).

(5)

In the first-order von Neumann term, we exploited that the
initial state is independent of the disorder realization. It
therefore commutes with the ensemble average, resulting

in the average Hamiltonian Ĥ = {∏i∈Z
∫

dεi}p(�ε)Ĥ�ε. Such
reduction is, in general, impossible for the second-order term,
which ultimately gives rise to incoherent dynamics.

To convert (5) into a differential equation of Lindblad form,
we must not restrict our treatment to the leading contributions
in dt , since we would thus lose the incoherent part of the
dynamics and end with the coherent evolution induced by

the average Hamiltonian Ĥ alone. To consistently identify
next-to-leading-order contributions, we replace Ĥ�ε → (Ĥ�ε −
Ĥ ) + Ĥ . Equation (5) can then be rewritten as

ρ(dt) = ρ0 + i

�
dt[ρ0,Ĥ ]

+ dt2

�2

(
Ĥρ0Ĥ − 1

2
Ĥ

2
ρ0 − 1

2
ρ0Ĥ

2
)

+ dt

{∏
i∈Z

∫
dεi

}
p(�ε)dt

�2

[
(Ĥ�ε − Ĥ )ρ0(Ĥ�ε − Ĥ )

− 1

2
(Ĥ�ε − Ĥ )2ρ0 − 1

2
ρ0(Ĥ�ε − Ĥ )2

]
+ O(dt3),

(6)

where the first two lines represent the von Neumann commu-
tator, and the last two lines the Lindblad terms, respectively,
each to second order in time. The decoherence rates associated
with the Lindblad terms increase linearly in time.

It follows that Eq. (6) solves, to second order in time, a
Lindblad master equation for the ensemble-averaged state,

ρ̇ = − i

�
[Ĥ ,ρ] +

{∏
i∈Z

∫
dεi

}
γ�ε(t)

×
(

L̂�ερL̂
†
�ε − 1

2
L̂
†
�εL̂�ερ − 1

2
ρL̂

†
�εL̂�ε

)
, (7)

which captures the disorder dynamics at short times. The (time-
independent) Lindblad operators L̂�ε and the corresponding
(time-dependent) decoherence rates γ�ε(t) read

L̂�ε = Ĥ�ε − Ĥ

E0
, γ�ε(t) = 2p(�ε)E2

0

�2
t , (8)

where the characteristic energy scale E0 is introduced in order
to obtain the appropriate dimensions; as stated before, in the
case of the model (1), it is conveniently chosen to be the
hopping constant J . We thus find that the ensemble average
accounts for each disorder realization by an independent
Lindblad term, where the Hermitian Lindblad operators are

given by the offset of the disorder Hamiltonian from the
average Hamiltonian. The associated decoherence rates are
proportional to the probability p(�ε) for the realization to occur
and scale linearly in time, i.e., the rates vanish at t = 0.
The latter expresses that there is no incoherent contribution
to the dynamics at first order in time. The validity range of
the short-time approximation (7) depends on the composition
of the underlying disorder ensemble and must be determined
case by case. While the master equation (7) does not require,
e.g., weak disorder, the time scale on which it yields reliable
predictions, in general, depends on the disorder strength.
Below we will give a numerical estimate for the Anderson
model.

We emphasize that the disorder master equation (7) still
holds for arbitrary systems and general disorder distributions,
since we have not yet made use of the Hamiltonian (1) and/or
of the homogeneous distribution (2). In the Appendix, we
thus evaluate the short-time disorder dynamics (7) for two
unrelated, yet instructive examples: a particle of mass m in one-
dimensional, continuous space, subject to a random (i) linear or
(ii) harmonic potential. In these cases, one finds that the short-
time dynamics of the ensemble-averaged state is governed by
the well-known Caldeira-Leggett master equation [11,12].

In the case of the disorder model (1), the average

Hamiltonian is given by the discrete hopping term Ĥ =
−J

∑
j∈Z(|j 〉〈j + 1| + |j + 1〉〈j |) [we used (2a)], and the

Lindblad operators are given by the disorder potentials, L̂�ε =∑
j∈Z(εj /J )|j 〉〈j | (with E0 = J ). This is already conceptu-

ally appealing since it demonstrates that the Lindblad operators
are diagonal in the site basis; moreover, Eq. (7) predicts
(confirmed by observation) an initially quasifree, dispersive
evolution of the ensemble-averaged state in addition to the
loss of coherence. However, this representation is not yet
viable from a practical point of view, in the sense that it
is not amenable to transparent approximations or efficient
numerical simulation. In the following, we derive an alternative
representation for homogeneous disorder models (2) which
resolves these issues and, in addition, reveals a connection to
collisional decoherence.

IV. COLLISIONAL DECOHERENCE MASTER EQUATION

To obtain an alternative representation for the short-time
dynamics (7) of the homogeneous disorder models (2), we
exploit that Lindblad master equations are invariant with
respect to unitary transformations of the Lindblad operators. In
our case, this corresponds to a transformation from the position
to the momentum basis. To this end, we perform the disorder
integrals in (7) and are left with the double sum over the sites
appearing in the Lindblad operators,

ρ̇ = − i

�
[Ĥ ,ρ] +

∑
j,j ′∈Z

2J 2t

�2
C(j − j ′)

(
|j 〉〈j |ρ|j ′〉〈j ′|

− 1

2
|j 〉〈j |j ′〉〈j ′|ρ − 1

2
ρ|j 〉〈j |j ′〉〈j ′|

)
, (9)

where we already made use of the translational invariance (2).
If we then rewrite the correlation function C(j ) in terms of its
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Fourier transform G(q), C(j ) = ∫ h/2a

−h/2a
dqeiqja/�G(q) (a de-

notes the lattice spacing), we obtain, with x̂ = ∑
j∈Z ja|j 〉〈j |,

ρ̇ = − i

�
[Ĥ ,ρ] + 2J 2t

�2

∫ h/2a

−h/2a

dqG(q)
(
eiqx̂/�ρe−iqx̂/� − ρ

)
.

(10)

This is our main result. We find that the ensemble-averaged
dynamics of homogeneous disorder models (2) are at short
times described by the discrete version of the collisional de-
coherence master equation. The (non-Hermitian, but unitary)
Lindblad operators L̂q = exp(iqx̂/�) describe momentum
kicks, whose occurrence is weighted by the momentum
transfer distribution G(q). The latter follows by Fourier
transform from the two-point disorder correlation function
C(j ), G(q) = (a/h)

∑
j∈Z exp(−iqja/�)C(j ) [13].

The collisional decoherence master equation (10) is usu-
ally known from an open-system context [14,15], where it
describes the decoherence that a heavy test particle undergoes
due to scattering in a background gas of light particles, i.e., no
appreciable energy exchange occurs. It represents the simplest
manifestation of a translational-covariant Lindblad master
equation [16–19].

The master equation (10) allows us to deduce the deco-
herence dynamics of the homogeneous disorder models (2).
One can best understand the spatial decoherence behavior
of (10) by neglecting the coherent dynamics according to
the von Neumann commutator and solving the remaining
equation in the position representation. One then obtains
〈j |ρ(t)|j ′〉 = exp [− J 2t2

�2 F (j − j ′)]〈j |ρ0|j ′〉, where the local-
ization function F (j − j ′) (not to be confused with the
exponential localization of the particle density in the Anderson
model) follows from a Fourier (back-)transformation of G(q)
and evaluates as

F (j − j ′) =
∫ h/2a

−h/2a

dqG(q) − C(j − j ′). (11)

We thus find that the disorder two-point correlations C(j − j ′)
directly translate into the spatial decay of coherences, in the
sense that the stronger the correlation between two sites, the
longer their coherence survives. This again reflects the fact
that the disorder, i.e., the deviations among different ensemble
members, gives rise to the decoherencelike behavior.

In the case of the 1D Anderson model with the correlation
function (3), one obtains a constant momentum-transfer
distribution, G(q) = aW 2

12hJ 2 , and the localization function reads

F (j − j ′) = W 2

12J 2 (1 − δj−j ′,0), i.e., while the populations re-
main unaffected, all spatial coherences undergo the same
decay, independent of the separation of the two respective
sites, since the sites are uncorrelated.

As a second example, we consider a Gaussian ran-
dom potential with the correlation function C(j − j ′) =
ξ

J 2 exp [− (j−j ′)2a2

L2 ], where ξ denotes the correlation strength
and L the correlation length. Such correlations may, for exam-
ple, emerge from a collection of Gaussian scattering potentials
v(j − jn) with randomly distributed scattering centers jn.
This then yields the momentum-transfer distribution G(q) =√

πLξ

hJ 2 exp (−L2q2

4�2 ) and the localization function F (j − j ′) =

ξ

J 2 {1 − exp [ − ( (j−j ′)a
L

)
2
]}, i.e., there is a smooth, Gaussian

transition into the regime of constant decoherence (|j −
j ′|a 	 L). The coherence loss at short times caused by
such Gaussian disorder correlations was also investigated in
[20] in terms of path-integral techniques (for Gaussian initial
states in the continuum and a harmonic average potential

Ĥ ). In our language, the authors derive the localization
function F (x − x ′) = (ξ/J 2){1 − [1 + 2( x−x ′

L
)2]−1/2}, which

coincides in the short-range region (|x − x ′| < L/2) with
our result and shows qualitatively the same behavior in the
long-range region. As the short-time master equation (7) is
derived without reference to a Hilbert space basis and therefore
holds over the range of all sites, we interpret the quantitative
deviation in the long-range region in terms of a breakdown of
the path-integral approach.

V. NUMERICAL COMPARISON

In order to estimate the range of validity tmax of the
short-time disorder master equation (10), we compare it in
case of the 1D Anderson model to the numerical ensemble
average over a finite sample of disorder realizations. In Fig. 2,
we show, in terms of an initial Gaussian state and for strong
disorder with W = 10J , that the master equation correctly
predicts (relative error ±5%) the spatially homogeneous decay
of the coherences up to about tmax = 0.2�/J , where the state
has lost about 45% of its initial purity, p = tr[ρ2]. Similarly,
one obtains, for disorder strengths W = 1J and W = 0.1J ,
validity ranges of about tmax = 0.9�/J at a purity loss of
10% and tmax = 6�/J at a purity loss of 1%, respectively.
A more detailed analysis confirms that tmax roughly scales
inversely with W , tmax ∝ 1/W , or, in terms of the mean
free path �, tmax ∝ √

� [similarly, the momentum-independent
decoherence rate γ (t) scales inversely with the mean free time
τ , γ (t) ∝ t/τ ]. This suggests the interpretation of our theory in
terms of an expansion in Wt . Notwithstanding, we can probe
the regime of strong decoherence as induced by large W . Let
us also emphasize that we could have chosen any initial state
for this analysis.

VI. EXPERIMENTAL VERIFICATION

Besides the conceptual insight provided by our theory
into the incoherent ensemble-averaged dynamics of disordered
quantum systems, direct experimental verifications thereof are
conceivable, for example, based on experiments with ultracold
atoms subject to optical speckle potentials. These systems have
already been successfully employed to probe the Anderson
localization in the asymptotic time regime [3,4]. Moreover,
it is possible to imprint various homogeneous disorder distri-
butions on the speckle potential [21]. The restriction to short
times would be implemented by simply switching the speckle
potential off after the desired exposure time. Time-of-flight
measurements then reveal the momentum distribution of the
state. Producing an initial spatial superposition state, one may
in this way observe the disorder-induced transition from a
superposition into a mixture in terms of the loss of visibility
of the interference pattern in momentum.
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FIG. 2. Dynamics of a Gaussian initial state in the 1D Anderson
model: Comparison of the time evolution ρme(t) predicted by the
disorder master equation (10) with the numerically exact dynamics
ρens(t), obtained by averaging over a finite number of realizations.
(a) Density matrix of the evolved ensemble-averaged state ρens(t)
at t = 0.2�/J with strong disorder, W = 10J , and K = 200 real-
izations. The state displays a spatially homogeneous decay of the
coherences, as predicted by the master equation. (b) This is also
confirmed by the ratio of the two density matrices, which remains
everywhere close to one, with local fluctuations on the order of a few
percent, due to the finite sampling. (c) The short-time approximation
becomes poor beyond t = 0.2�/J , which can easily be seen by
inspecting the ratio of the two purities, pens(t) and pme(t), which
starts to increasingly deviate from one. The purity provides a global
measure of the decoherence and is robust, in the sense that it averages
out local fluctuations due to the finite sampling. (d) At t = 0.2�/J ,
the initially pure state has lost about 45% of its purity. The latter
continues to decrease monotonically and eventually converges to
pens = 0.074 beyond t = 0.5�/J , reflecting the remaining coherence
in the asymptotic state.

VII. CONCLUSIONS

We developed a theory which describes the ensemble-
averaged dynamics of disordered quantum systems at short
times in terms of Lindblad master equations, with the statistical
properties of the disorder potential encoded in the Lindblad
terms. While this effective evolution equation accurately
captures the onset of the disorder-induced coherence loss of
the ensemble-averaged state in the 1D Anderson model, our
theory is not yet capable to explain other disorder effects
such as diffusive propagation or localization. However, a
(translational-covariant) master equation which also captures
the ensemble-averaged dynamics of such disorder-induced
phenomena must, in principle, exist. These must then emerge
as a feature of the, in general, incoherent evolution of the
ensemble-averaged state. Indeed, Fig. 2(d) illustrates the
monotonic decay of the averaged state’s purity towards that of
the (localized) asymptotic state. The asymptotic value of the
purity decreases with increasing disorder strength W , which

reflects that the remaining coherence in the asymptotic state is
related to the localization length ξ ∝ 1/W 2 [22].

Our results represent a first step towards a treatment of
disordered quantum systems in terms of quantum master
equations. The impact of spectral and of unitarily invariant
disorder on the dynamics of the ensemble-averaged state of
finite-dimensional quantum systems at arbitrary times t is the
subject of [23].
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APPENDIX

In the following, we evaluate the short-time disorder
dynamics (7) for two simple, yet relevant examples: a particle
of mass m in one-dimensional, continuous space, subject to a
random (i) linear or (ii) harmonic potential.

(i) In the linear-potential case, we consider a Hamiltonian
of the form Ĥε = p̂2/2m + εx̂, i.e., the randomness lies in
the strength of the constant force exerted on the particle. This
describes, for example, experiments where a charged particle
is exposed to a homogeneous, but not fully controlled electric
field, i.e., the field strength varies from run to run. If we assume
for simplicity that ε = 0, the average Hamiltonian corresponds

to the free Hamiltonian, Ĥ = p̂2/2m, and for the Lindblad
operators, we obtain L̂ε = εx̂/E0, with E0 an arbitrary energy
scale [which is again introduced for dimensional reasons and
irrelevant for the final result (A1)]. Since all Lindblad operators
are proportional to x̂, we can perform the disorder integral in
(7) and obtain the simplified master equation

ρ̇ = − i

�

[
p̂2

2m
,ρ

]
− ε2

�2
t [x̂,[x̂,ρ]]. (A1)

This is the well-known Caldeira-Leggett master equation
[11,12], which usually emerges in an open-system con-
text from a linear coupling model. The incoherent part
of (A1) predicts an exponential decay of spatial coher-
ences according to [as for the derivation of the colli-
sional decoherence localization function (11), we neglect
for the moment the von Neumann commutator] ρt (x,x ′) =
exp [− ε2

2�2 t
2(x − x ′)2]ρ0(x,x ′). While such a localization rate

which grows above all bounds for |x − x ′| → ∞ is usually
considered as unphysical in the open-system context, it arises
here as a natural and unavoidable consequence of the disorder
average.

(ii) In the harmonic-potential example, we could, in
principle, allow for both a random frequency and a random
center point. We focus here on the latter and keep the
frequency fixed, Ĥε = p̂2/2m + (mω2/2)(x̂ − ε)2. This may
describe experiments where a particle is harmonically trapped,
but where the trap center is subject to fluctuations. In this
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case (again assuming that ε = 0), the short-time dynamics
(7) results, once again, in Caldeira-Leggett decoherence,

ρ̇ = −(i/�)[Ĥ ,ρ] − mω2(ε2/�
2)t[x̂,[x̂,ρ]], but this time with

a harmonic average potential Ĥ = p̂2/2m + (mω2/2)x̂2. In
this example, we can even anticipate the evolution of the
ensemble average beyond the short-time approximation: Since
all random potentials share the same frequency ω, any initial
state will, at multiples of the period T = 2π/ω, recur, and

in particular it will regain the purity lost in the early stage.
On the level of the disorder master equation, this indicates
periodic, partly negative decoherence rates γε(t). While such
time dependence comprising (at least partial) purity revivals is
likely the generic pattern of the ensemble-averaged dynamics,
Fig. 2(d) indicates that the Anderson model exhibits a strictly
monotonic decay of coherences, also beyond the short-time
approximation.
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