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Universal optimal estimation of the polarization of light with arbitrary photon statistics
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A universal and optimal method for the polarimetry of light with arbitrary photon statistics is presented. The
method is based on the continuous maximum-likelihood positive operator-valued measure (ML-POVM) for pure
polarization states over the surface of the Bloch sphere. The success probability and the mean fidelity are used as
the figures of merit to show its performance. The POVM is found to attain the collective bound of polarization
estimation with respect to the mean fidelity. As demonstrations, explicit results for the N photon Fock state,
the phase-randomized coherent state (Poisson distribution), and the thermal light are obtained. It is found that
the estimation performances for the Fock state and the Poisson distribution are almost identical, while that
for the thermal light is much worse. This suggests that thermal light leaks less information to an eavesdropper
and hence could potentially provide more security in polarization-encoded quantum communication protocols
than a single-mode laser beam as customarily considered. Finally, comparisons against an optimal adaptive
measurement with classical communications are made to show the better and more stable performance of the
continuous ML-POVM.
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I. INTRODUCTION

The polarization of light is an important resource that has
widespread applications. It provides additional information
of the subjects to be inspected in remote sensing [1] and
microscopy [2]. It is also used for encoding information in
the most advanced quantum key distribution (QKD) pro-
tocols [3,4]. In fact, the first QKD protocol—BB84—was
proposed using the photon polarization as the information
carrier [5].

In classical optics, a common method of determining the
polarization state of a light beam is measuring its Stokes
parameters [6–8], which is performed by measuring the
intensity of the beam in a few fixed measurement bases of the
polarization. To achieve high accuracy, the light beam should
have a sufficient number of photons. For those applications
such as quantum communication and quantum imaging [9] that
operate in the low photon regime, one needs to seek for more
efficient approaches as the Stokes parameters measurement is
known to be nonoptimal [10].

The problem of the optimal estimation of a two-dimensional
quantum state (a qubit) like the photon polarization has been
studied extensively in the past two decades [10–22]. In those
studies, the mean fidelity F [23] is commonly chosen as a
figure of merit for optimality. It has been shown that, given
N copies of a photon with an unknown polarization r0 picked
from the surface of the Bloch sphere, the optimal mean fidelity
between the estimate and r0 is Fopt = (N + 1)/(N + 2). This
result can be achieved by collective measurements [12,13] or
asymptotically by local measurements with classical commu-
nications [18–22].

On the other hand, for practical optical sensing, imaging,
and communication applications, the number of photons of
the light beam is usually not known in advance. Most light
sources in fact exhibit a distribution in the photon number.
The decoy-state BB84 protocol even makes use of varying the
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mean photon number of the light pulses to enhance the security
of the coherent-state-based BB84 protocol [24,25].

In this paper, we present a universal continuous positive
operator-valued measure (POVM) for the polarimetry of a
multiphoton light beam with arbitrary photon statistics. We
find that the POVM is not only optimal by achieving the collec-
tive bound of polarization estimation with respect to the mean
fidelity but also optimal by being the maximum-likelihood
(ML) measurement. It is a multiphoton generalization of the
single-photon ML-POVM in [26].

We apply the ML-POVM to study the optimal measurement
when the light beam is a Fock state, a phase-randomized single-
mode laser pulse, and an incoherent light pulse (a thermal
beam). As a demonstration of the performance, we consider
the problem of polarization determination where the number
of the different polarizations is finite, which has applications in
certain multiphoton quantum communication protocols [27–
30]. We calculate the success probability of estimating the true
polarization and the mean fidelity, and make a comparison
between the presented POVM and an optimal adaptive local
measurement with classical communications.

II. MAXIMUM-LIKELIHOOD POVM FOR AN
INCOHERENT MIXTURE OF FOCK STATES

In the following, we consider the scenario where the
photons have a fixed but unknown polarization vector r0.
Unlike the previous studies [10–22] that represent the quantum
state as a tensor product of N copies of a polarized single
photon, we utilize the Fock basis to represent the multiphoton
state. These two approaches are equivalent to each other, but
the latter method provides a more concise notation when the
number of photons is indefinite.

In the Fock basis, a polarized single photon is given by
|1〉r = a

†
r |0〉, where

a†
r = cos

θ

2
a
†
H + eiφ sin

θ

2
a
†
V , (1)
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in which θ and φ are the spherical coordinates of the
polarization vector r on the Bloch sphere, and aH and aV are
the annihilation operators for the north pole and the south pole,
which we designate as the horizontal and vertical polarizations,
respectively. The operator ar satisfies the commutation relation

[ar,a
†
r′ ] = r〈1|1〉r′ ≡ frr′ . (2)

Note that |frr′ |2 is the fidelity between two pure qubits with
polarizations r and r′. The n photon Fock state basis is then
produced by applying the creation operator a

†
r successively,

i.e.,

|n〉r = a
†n
r√
n!

|0〉. (3)

It can be shown that r〈n|m〉r′ = f n
rr′δnm, where δnm is the

Kronecker delta.
In the following analysis, we focus on a light beam with

certain photon statistics specified by the photon number
distribution Pn instead of a coherent superposition of the n

photon state (3). The quantum state in this case is written as

ρ(r) =
∞∑

n=0

Pn|n〉r〈n|. (4)

This is motivated by the fact that the phase information is
usually dismissed intentionally in quantum communication to
increase security [31,32], or the phase is simply unavailable as
in incoherent imaging and remote sensing that operate in the
photon-counting mode. In addition, this simplification allows
us to write the optimal POVM explicitly. It should be noted
that ρ(r) is a mixed state in the photon number, not in the
polarization as considered in [33].

To quantify the optimality of the measurement, the fi-
delity [23] is usually chosen as the figure of merit for the
purpose of quantum state tomography. On the other hand, in
quantum communication, one is more concerned about the
error of estimating the correct bit value. In this respect, the
maximum-likelihood measurement provides a more natural
choice. These two quantities nevertheless are connected as
discussed in the next section.

According to quantum estimation theory [34], the
maximum-likelihood POVM �(r) satisfies the following
conditions:

[ϒ − W (r)]�(r) = �(r)[ϒ − W (r)] = 0, (5)

and

ϒ − W (r) � 0, (6)

where

W (r) ≡
∫

S

dr0 p(r0)C(r,r0)ρ(r0) = ρ(r)

4π
(7)

is the Hermitian risk operator with a uniform prior distribution
p(r0) = 1/4π and a delta cost function C(r,r0) = δ(r − r0).
Here ϒ is a Hermitian Lagrange operator defined by

ϒ ≡
∫

S

dr W (r)�(r). (8)

Note that the integration is over the Bloch surface S with
dr = sin θdθdφ. We find that the operator

�(r) =
∞∑

n=0

n + 1

4π
|n〉r〈n| (9)

satisfies the conditions (5) and (6).
To see this, first of all, it should be noted that Eq. (9) forms

a legitimate continuous POVM (in r), viz., �(r) > 0 and∫
S

�(r)dr = I, (10)

where

I ≡
∞∑

n=0

In ≡
∞∑

n=0

[
n∑

m=0

|m〉H 〈m| ⊗ |n − m〉V 〈n − m|
]

=
∞∑

n=0

|n〉H 〈n| ⊗
∞∑

m=0

|m〉V 〈m| (11)

is the identity operator of the infinite dimensional Fock space
and In is the identity operator of the n photon subspace. In
addition, substituting Eqs. (7) and (9) into Eq. (8), we obtain

ϒ = 1

4π

∞∑
n=0

PnIn, (12)

which is Hermitian. Then Eq. (5) is easily verified by
substituting Eqs. (7), (9), and (12) into Eq. (5). To prove Eq. (6),
we first organize the operator ϒ − W (r) into a more suggestive
form:

ϒ − W (r) = 1

4π

∞∑
n=0

Pn(In − |n〉r〈n| ⊗ |0〉−r〈0|), (13)

where the polarization −r is perpendicular to r. Now In can
be expanded in any orthogonal polarization bases:

In =
n∑

m=0

|m〉r〈m| ⊗ |n − m〉−r〈n − m|. (14)

Therefore ϒ − W (r) is a non-negative definite operator.

III. ANALYSIS OF THE CONTINUOUS
MAXIMUM-LIKELIHOOD POVM

The maximum-likelihood estimate of the initial polarization
r0 given the POVM polarimeter’s output r is

r0ML = arg max
r∈S

P (r|r0) = r, (15)

where P (r|r0) is the likelihood function with the ML-POVM:

P (r|r0) = Tr[�(r)ρ(r0)] =
∞∑

n=0

n + 1

4π
Pn

∣∣frr0

∣∣2n
. (16)

As mentioned earlier, |frr0 |2 = 1
2 (1 + r · r0) is the fidelity

between the polarizations r and r0.
Certain cases of the given prior photon distribution Pn

admit closed-form expressions for the likelihood function.
For example, the N photon Fock state with Pn,N = δnN
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FIG. 1. Plot of the likelihood PPoi(r|r0) of the Poisson distribution
as a function of the mean photon number n̄ and the fidelity |frr0 |2
(upper yellow surface). The bottom blue surface denotes the plane of
zero probability.

gives PN (r|r0) = (N + 1)|frr0 |2N/4π , the Poisson distribu-
tion Pn,Poi = e−n̄n̄n/n! with a mean photon number n̄ describ-
ing a phase-randomized single-mode laser beam gives

PPoi(r|r0) = e−n̄(1−|frr0 |2)

4π

(
1 + n̄

∣∣frr0

∣∣2)
, (17)

and the Bose-Einstein distribution Pn,th = n̄n/(1 + n̄)n+1

modeling a thermal beam gives

Pth(r|r0) = 1

4π (1 + n̄)
(
1 − n̄

1+n̄

∣∣frr0

∣∣2)2 . (18)

As expected, the maxima of these likelihood functions
occur at |frr0 |2 = 1 when r = r0. Moreover, the likelihoods
behave like the delta function δ(1 − |frr0 |2) in the large (mean)
photon number limit. On the other hand, when the (mean)
photon number tends to zero, the probability approaches the
constant 1/4π independent of the fidelity, which corresponds
to the scenario the same as a random guess. As an illustration,
a plot of the likelihood function for the Poisson distribution
against the mean photon number n̄ and fidelity |frr0 |2 is shown
in Fig. 1.

For quantum communication applications such as the
αη protocol [27], Y00 protocol [28], and the three-stage
protocol [29,30] that utilize the polarization states in different
bases to encrypt the bit values, it is useful to determine
the optimal success probability of estimating the polarization
when the knowledge of the basis is absent in order to bound
the potential information leak to the eavesdropper. Since the
polarization state on the Bloch sphere is continuous, we need
to define a finite region for any polarization vector so as to
obtain a nonzero estimation probability. Here we choose the
finite region Sε(r0) in the form of a circle on S around r0

with an angular diameter 2ε where ε ∈ [0,π ]. Therefore, the
success probability reads as

Q(ε) ≡
∫

Sε (r0)
dr P (r|r0) = 1 −

∞∑
n=0

Pn

(
1 + cos ε

2

)n+1

, (19)

where the factor (1 + cos ε)/2 is the fidelity of a qubit with
a neighboring qubit at an angle ε away. We then obtain the
closed forms for the Fock state, the Poisson distribution, and
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FIG. 2. Plots of the success probabilities Q(ε) when ε = 0.2π for
the Fock state (QN , red), the Poisson distribution (QPoi, blue), and the
thermal distribution (Qth, green), using the ML-POVM (solid curves).
The quantities Q

(g)
N , Q

(g)
Poi, and Q

(g)
th are the corresponding success

probabilities calculated using the greedy scheme (dotted curves). Note
that the curves for the Fock state and the Poisson distribution are
almost indistinguishable. For QN and Q

(g)
N , the discrete points are

interpolated to give better visualization.

the thermal distribution:

QN (ε) = 1 −
(

1 + cos ε

2

)N+1

≈ 1 − e− ε2

4 (N+1), (20)

QPoi(ε) = 1 − 1 + cos ε

2
e− n̄

2 (1−cos ε) ≈ 1 − e− ε2

4 (n̄+1), (21)

and

Qth(ε) = 1 − 1 + cos ε

2 + n̄(1 − cos ε)
≈ 1 − 4 − ε2

4 + ε2n̄
, (22)

where the approximations correspond to the small ε limit.
The success probabilities Q(ε) when ε = 0.2π are shown

in Fig. 2 (solid curves). It should be noted that the error
probability 1 − QN for the Fock state exhibits the exponential
decay of the quantum Chernoff bound for the discrimination of
two quantum states [35]. Interestingly, the success probability
of the Poisson distribution bears the same scaling as that of the
Fock state. For the thermal distribution, its error probability
decreases as n̄−1, which is much slower than the other
two cases. From the perspective of quantum communication
protocols in [27–30], these results suggest that polarized
light from a thermal source potentially is more secure than
a single-mode laser beam as customarily considered. It is
noticeable that the success probability has a nonzero value
(1 − cos ε)/2 ≈ 0.095 for the vacuum state scenario. This is
because the finite region defined for a success estimate gives
a nonzero success probability even for a random guess.

To compare with the results of previous studies, we also
calculate the mean fidelity using the continuous ML-POVM,
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FIG. 3. Plots of the mean fidelities for the Fock state (FN , red),
the Poisson distribution (FPoi, blue), and the thermal distribution (Fth,
green), using the ML-POVM (solid curves). The quantities F
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Poi ,
and F
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th are the corresponding mean fidelities calculated using the

greedy scheme (dotted curves). For FN and F
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are interpolated to give better visualization.

which is given by

F =
∫

S

dr dr0

∣∣fr0r0ML

∣∣2
P (r|r0)p(r0) =

∞∑
n=0

n + 1

n + 2
Pn. (23)

This is the same as the bound obtained by collective measure-
ments for arbitrary photon statistics. The mean fidelity for the
Fock state is then FN = (N + 1)/(N + 2). For the Poisson and
thermal distributions, we get

FPoi(n̄) = 1 − n̄ + n̄2 − e−n̄

n̄2
≈ 1 − 1

n̄
, (24)

and

Fth(n̄) = (1 + n̄)[n̄ − ln(1 + n̄)]

n̄2
≈ 1 − ln(1 + n̄)

n̄
, (25)

where the approximations correspond to the large mean photon
number n̄ limit.

Figure 3 shows the plots of the mean fidelities under
the three scenarios (solid curves). Similar to the success
probability, the mean fidelity of the Poisson distribution
approaches that of the Fock state very quickly, while it
increases at a much slower rate for the thermal distribution.

As mentioned previously, the success probability and the
mean fidelity are connected. This can be seen from the
definition of the successful region Sε(r0) which includes all
the polarization vectors r with a fidelity |frr0 |2 � 1

2 (1 + cos ε).
Therefore the mean fidelity gives the mean performance while
the success probability gives the pointwise performance. In
addition, Eq. (16) is essentially a function of the fidelity. In
fact, the likelihood can be shown to be proportional to the
probability density function of the fidelity.

IV. COMPARISON BETWEEN THE ML-POVM AND AN
OPTIMAL ADAPTIVE MEASUREMENT WITH

CLASSICAL COMMUNICATIONS

In this section, we compare the performances of the
presented ML-POVM against an optimal measurement, the
greedy scheme [20], with respect to the success probability
and the fidelity. The greedy scheme utilizes an adaptive local
measurement with classical communications to measure the
polarization state given n copies of a polarized single photon.
The classical communication is reflected by the fact that the
current operations can depend on the previous steps.

The greedy scheme works in this way: for the first three
photons, the measurement bases are taken to be the x, y,
and z directions. For the kth measurement with k � 4, the
measurement basis is chosen to be the direction mk , which
is found by maximizing the mean fidelity of the current step
based on the measurement results of the (k − 1)th step (see [20]
for details). The measurement outcome through the n steps is
denoted by χn = inin−1 . . . i2i1 where ik is kth outcome with
ik = 0 if the photon detector in the direction mk clicks and
ik = 1 if the detector in the orthogonal direction clicks. The
likelihood function after the n-step measurements reads as

P (g)(χn|r0) =
n∏

k=1

1 + mk · r0

2
=

n∏
k=1

∣∣fmkr0

∣∣2
. (26)

Then the optimal estimate of the polarization r0 given the
n-step greedy scheme measurement results χn is

r(g)
0 = arg max

r∈S
F (g)

n = V(χn)

|V(χn)| , (27)

where

V(χn) =
∫

dr0 P (g)(χn|r0)p(r0)r0 (28)

gives the maximal n-photon mean fidelity

F (g)
n = 1

2

(
1 +

∑
χn

|V(χn)|
)

, (29)

in which the summation runs over all the possible values for
χn. Note that the measure of mean fidelity for the greedy
scheme as in Eq. (29) is derived from Eq. (2.3) in [20], which
is identical to that for the ML-POVM method as in Eq. (23).
They are both the same as the mean Uhlmann fidelity for pure
states. This method has been proven to be better than fixed-
basis measurement schemes, such as the Stokes parameters
measurement, and it can approach the collective bound in a
quick manner. It is also the best local operation with classical
communications one can perform when the photon number is
unknown in advance.

It is remarked that the number of the possible measurement
directions mk for the kth measurement is 2k − 1. They in
principle can be computed in advance so that the measurements
can be performed rapidly. However, when n is large, i.e., n >

20, it is quite impractical to perform the computation, and as a
consequence one is unable to obtain a closed-form expression
for the mean fidelity based on Eq. (26).

To proceed, we apply the greedy scheme to the analysis
here by assuming that the n photon Fock state can be separated
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into n individual single photons. Experimentally, this could in
principle be done by using many beam splitters to separate
the input Fock state so that the outputs of the beam splitters
are either a vacuum state or a single-photon state with high
probability. In addition, according to the quantum states
represented in Eq. (4), one obtains a beam containing n photons
with probability Pn. Therefore, the mean fidelity is calculated
by F (g) = ∑∞

n=0 PnF
(g)
n .

We have performed numerical simulations using 104 sam-
ples. The success probability and the mean fidelity are plotted
in Fig. 2 (dotted curves) and Fig. 3 (dotted curves), respec-
tively. The bumps on the curves are due to the randomness in
the simulations. For the Fock state and the Poisson distribution,
the two quantities using the greedy scheme are smaller than
those using the ML-POVM in the low photon regime. These
two methods approach the same performance when the mean
number of photons is sufficiently large. The greedy scheme
always performs worse than the ML-POVM because it uses
the information of the photons one by one sequentially and
optimizes the mean fidelity merely based on the previous
immediate measurement. This is in contrast to the ML-POVM
which is a collective measurement that uses the information of
all the photons in a single step. For the thermal distribution, it is
seen that the ML-POVM is significantly better than the greedy
scheme even when the mean photon number is large. This can
be explained by the fact that, for the thermal distribution, there
are always more contributions from the small photon number
states than from the large photon number states, and the former
tend to lower the mean fidelity.

As mentioned earlier, the mean fidelity only gives the aver-
age performance of the polarization estimation. In actual esti-
mations, the fidelities obtained for different unknown r0’s can
vary with a large range depending on the estimation method as
well as the photon number distribution. Therefore, to demon-
strate the stability of the presented methods, we also calculate
the variances of the fidelities under different initial polariza-
tions. The variance of the continuous ML-POVM reads as

2F =
∞∑

n=0

n + 1

n + 3
Pn −

( ∞∑
n=0

n + 1

n + 2
Pn

)2

. (30)

The explicit forms for the Fock state, the Poisson distribution,
and the thermal distribution are, respectively,

2FN = N + 1

(N + 3)(N + 2)2
, (31)

2FPoi(n̄) = (n̄2 − 2n̄ − 1) + 2e−n̄(1 + n̄ + n̄2) − e−2n̄

n̄4
,

(32)

and

2Fth(n̄) = (1 + n̄){n̄2 − (1 + n̄)[ln (1 + n̄)]2}
n̄4

. (33)

On the other hand, the variance using the greedy scheme
is calculated from the numerical simulations. Figure 4 depicts
the plots of the standard deviations (error bars) using the ML-
POVM (red solid curves) and the greedy scheme (blue dotted
curves). We have performed the simulations using different
number of samples and the standard deviations are found to
exhibit only small variations due to the randomness in the
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FIG. 4. Plots of the mean fidelities with standard deviations
for (a) the Fock state (FN/F

(g)
N ), (b) the Poisson distribution

(FPoi/F
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Poi ), and (c) the thermal distribution (Fth/F
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th ), using the

ML-POVM (red solid curves) and the greedy scheme (blue dotted
curves). Note that only certain points are plotted for the standard
deviations. The green dashed lines are the upper bounds of the
fidelity.
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sampling. It is remarked that even though the mean fidelity
plus one standard deviation can be greater than one the actual
fidelity found is always between zero and one. The variance
only gives a rough estimate of the range of the possible fidelity
values.

From Fig. 4, it is noticeable that the standard deviation
of the ML-POVM scheme is much smaller than that of the
greedy scheme for both the Fock state and Poisson distribution,
and they decrease quickly with the increasing mean photon
number. This suggests that the ML-POVM method is a more
stable scheme than the greedy scheme with respect to the
fidelity, and the higher the mean photon number is, the more
stable the method gets. On the other hand, the standard
deviation for the thermal distribution is much larger than
that for the other two scenarios and it decreases at a much
slower rate. These can be shown from Eqs. (31)–(33), where
we find FN ∼ FPoi ∼ n̄−1 and Fth ∼ n̄−1/2 when the
(mean) photon number n̄ is large. Once again this implies that
the thermal light can provide higher security for multiphoton
polarization-encoded quantum communication protocols.

V. SUMMARY

In this paper, a method of measuring any polarization of
the multiphoton state with arbitrary photon number statistics
is investigated. It is achieved by performing a continuous
positive operator-valued measure, which is optimal by being
a maximum-likelihood measurement. The likelihood function
of the estimate r is found explicitly given the prior photon
distribution. These results provide the computational tools
for applications such as the theoretical security analysis of
multiphoton quantum communication. In particular, we study
the cases of the Fock state, the Poisson distribution, and
the thermal distribution in detail in terms of the success
probability and the mean fidelity. Surprisingly, the Poisson
distribution with mean photon number N , which can model
a phase-randomized coherent state, performs almost as well
as an N photon Fock state. In addition, we find that the
thermal distribution always gives a much worse estimate than
the other cases. This suggests that thermal light sources such

as light-emitting diodes or a laser beam containing many
incoherent modes may achieve a more secure information
transmission than the commonly used coherent laser beam
in multiphoton quantum communication protocols.

We also compare the ML-POVM against an optimal
adaptive local measurement with classical communications
(the greedy scheme). For the cases of Fock state and Poisson
distribution, both the success probability and the mean fidelity
show larger values for the continuous ML-POVM in the low
photon regime. For the thermal distribution, the ML-POVM
is significantly better than the greedy scheme even when
the mean photon number is large. It is also noticeable that
the ML-POVM method is a more stable scheme from the
perspective of the fluctuation of the estimation fidelity. Again,
the polarization information retrieved from the thermal light
is much less stable than the other two cases.

Finally, one may wonder how the continuous ML-POVM
could be implemented experimentally. One possibility would
be to follow the discretized polarimeter for the single-photon
ML-POVM in [26], which operates by splitting the single
photon into M different paths, and on each of the M output
modes a standard projective polarization analysis is performed.
To extend the scheme to the multiphoton situation as discussed
here, the single-photon detector at each output mode is simply
replaced by a photon number resolving detector. However, in
order to realize the ML-POVM in Eq. (9), only the events
of all photons going to one of the paths will be used; the
many more other events will have to be discarded, making this
scheme not practical. Nevertheless, since the presented ML-
POVM works for arbitrary photon statistics, it may be possible
that the discarded events could be retained if some proper
postprocessing of the data is made by taking into account
the beam splitting process. This will be a topic of further
investigation.

ACKNOWLEDGMENTS

The authors thank Guangyu Fang for useful discussions.
This research is supported in part by NSF Grant No. 1117179.

[1] W. G. Egan, Proc. SPIE 1747, 2 (1992).
[2] W. C. McCrone, L. B. McCrone, and J. G. Delly, Polarized Light

Microscopy (Ann Arbor Science Publishers Inc. and McCrone
Research Institute, 1978).

[3] T. Ferreira da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral,
G. P. Temporão, and J. P. von der Weid, Phys. Rev. A 88, 052303
(2013).

[4] Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo, Phys. Rev.
Lett. 112, 190503 (2014).

[5] C. H. Bennett and G. Brassard, in Proceedings of
IEEE International Conference on Computers, Systems and
Signal Processing (IEEE Press, Bangalore, India, 1984),
pp. 175–179.

[6] R. A. Chipman, in Handbook of Optics, 2nd ed., edited by M.
Bass (McGraw-Hill, New York, 1995), Chap. 22.

[7] H. G. Berry, G. Gabrielse, and A. E. Livingston, Appl. Opt. 16,
3200 (1977).

[8] M. R. Foreman, A. Favaro, and A. Aiello, Phys. Rev. Lett. 115,
263901 (2015).

[9] Y. Israel, S. Rosen, and Y. Silberberg, Phys. Rev. Lett. 112,
103604 (2014).

[10] E. Bagan, M. Baig, and R. Muñoz-Tapia, Phys. Rev. Lett. 89,
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