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The concept of coherence is one of cornerstones in physics. The development of quantum information science
has lead to renewed interest in properly approaching the coherence at the quantum level. Various measures could
be proposed to quantify coherence of a quantum state with respect to the prescribed orthonormal basis. To be
a proper measure of coherence, each candidate should enjoy certain properties. It seems that the monotonicity
property plays a crucial role here. Indeed, there is known an intuitive measure of coherence that does not share this
condition. We study coherence measures induced by quantum divergences of the Tsallis type. Basic properties
of the considered coherence quantifiers are derived. Tradeoff relations between coherence and mixedness are
examined. The property of monotonicity under incoherent selective measurements has to be reformulated. The
proposed formulation can naturally be treated as a parametric extension of its standard form. Finally, two
coherence measures quadratic in moduli of matrix elements are compared from the monotonicity viewpoint.
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I. INTRODUCTION

Interest in the nature of coherent objects and processes
in physics has a very long history. Probably, the notion of
coherence is most known due to the role of phase coherence in
optical phenomena [1]. It is now clear that quantum coherence
is very essential in studying thermodynamic properties of
small systems at low temperatures [2–6]. Understanding
quantum phenomena such as multipartite entanglement is
also connected with a description of coherence. Entangled
states play a central role in quantum information science
[7]. Due to interaction with the environment, coherent su-
perpositions of states will be altered. Physical processes
describing decoherence are also the subject of active research.
Recently, many efforts have been made in studies of quantum
coherence as a physical resource. Quantum resource theories
are speciated by a restriction on the quantum operations that
can be implemented [8,9]. To reveal this question with respect
to coherence, a unified framework for its quantification is
desired. The authors of [10] considered properties that should
be satisfied by any proper measure of coherence. They also
proposed some ways to construct easily computable measures
of coherence. Further development of this approach was
established in [11].

In principle, any measure of distinguishability of quantum
states leads to a candidate for a coherence quantifier [10]. The
following negative result should be emphasized here. It turns
out that the measure induced by the squared Hilbert-Schmidt
norm does not enjoy a valid coherence monotonicity [10]. In
this regard, monotonicity properties play the crucial role in
development of proper coherence measures. The coherence
quantifiers of [10] were used for obtaining complementarity
relations for quantum coherence with respect to mutually
unbiased bases [12,13]. The authors of [12] also claimed a
conjecture related to the negative result mentioned above. Due
to a simple structure, the conjectured quantifier of coherence
deserves further investigation. Relations between coherence
and multipath interference phenomena were considered in
[14,15]. The role of coherence in the Deutsch-Jozsa and related
algorithms is considered in [16]. The authors of [17] examined
under which conditions the coherence of an open quantum

system is unaffected by noise. The paper of [18] is devoted to
quantum processes that can neither create nor use coherence.
Quantification of coherence in infinite-dimensional systems is
studied in [19,20].

In this work, we study coherence quantifiers based on
the Tsallis relative entropies. Quantum relative entropies of
the Tsallis type are expressed in terms of powers of density
matrices. Hence, we may expect a relatively simple character
of induced coherence measures. The paper is organized as
follows. In Sec. II, we recall the approach developed in [10]
and list some preliminaries. In Sec. III, we consider relative
entropies of the Tsallis type and prove the two results required.
In Sec. IV, we study properties of coherence measures based
on the Tsallis relative entropies. In particular, tradeoff relations
between coherence and mixedness are obtained. The case
of a single qubit is separately discussed in Sec. V. The
monotonicity property is satisfied with an interesting form
found in Sec. VI. The obtained family of coherence quantifiers
includes a homogeneous quadratic function of moduli of
matrix elements. Another quadratic function of such a kind
is induced by the squared �2-norm. In Sec. VII, the two
quadratic measures of coherence are compared within a
concrete example. In Sec. VIII, we conclude the paper with a
summary of results.

II. PRELIMINARIES

In this section, we briefly recall basic points of the approach
of [10] to quantifying quantum coherence. In principle,
measures of coherence may be introduced with using operator
norms. Some genuine properties of coherence measures are
related to their behavior with respect to quantum operations.
Thus, main results of quantum operation formalism should
be used. Let L(H) be the space of linear operators on finite-
dimensional Hilbert space H. By L+(H), we denote the set of
positive semidefinite operators onH. By ran(X̂), we denote the
range of operator X̂. In the following, we use the convention
that powers of a positive operator are taken only on its support.
For any Ẑ ∈ L+(H), we treat Ẑ0 as the orthogonal projector
onto ran(Ẑ). Let P̂ and Q̂ be operators of the orthogonal
projection. In the finite-dimensional case, we define P̂ ∨ Q̂
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as the projector onto the sum of subspaces ran(P̂ ) + ran(Q̂).
In the infinite-dimensional case, this definition should be
modified. In the following, we will deal with finite dimensions
only.

A distance between operators of interest can be character-
ized by norms. With respect to the given orthonormal basis,
each operator X̂ : H → H is represented by the square matrix
with elements xij . The �1-norm is then defined as [21]

‖X̂‖�1 :=
∑
ij

|xij |. (1)

Further, the �2-norm is defined as

‖X̂‖�2 :=
⎛⎝∑

ij

|xij |2
⎞⎠1/2

. (2)

This norm is also known as the Frobenius or Hilbert-Schmidt
norm [21]. There are other frequently used norms such as the
Schatten norms and the Ky Fan norms. These norms, defined
in terms of singular values, are unitarily invariant [21].

A state of the quantum system of interest is represented by
positive operator ρ̂ normalized as Tr(ρ̂) = 1. To formulate the
desired properties of measures of coherence, we will use some
basic facts about quantum operations. Let us consider a linear
map,

� : L(HA) → L(HB), (3)

where the input space HA and the output space HB can be
different. This map is positive, when �(X̂) ∈ L+(HB) for
each X̂ ∈ L+(HA) [7]. Physical processes are described by
completely positive maps [7]. Let idR be the identity map on
L(HR), where the Hilbert space HR is related to an imagined
reference system. The complete positivity implies that the map
� ⊗ idR is positive for arbitrary dimensionality of HR . Each
completely positive map can be represented in the form [7]

�(X̂) =
∑

n

K̂nX̂K̂†
n, (4)

with the Kraus operators K̂n : HA → HB . The map preserves
the trace, when these operators satisfy∑

n

K̂†
nK̂n = 1A. (5)

Trace-preserving completely positive (TPCP) maps are usually
referred to as quantum channels.

The authors of [10] developed an approach to quantum
coherence with the use of a fixed preferred basis for a physical
situation of interest. They also collected desirable properties a
proper measure of coherence should satisfy. Some applications
of these ideas were further developed in [12,15,19]. Let
E = {|ei〉} be a prescribed orthonormal basis in HA. The set
of incoherent states contains all states that are diagonal with
respect to E , namely,

δ̂ =
∑

i

δi |ei〉〈ei |. (6)

By I(E) ⊂ L+(HA), we mean the set of all such states.
Quantifiers of coherence should map from the set of states
to the set of non-negative real numbers. The following two

quantifiers of coherence are intuitively natural [10]. Using the
�1-norm finally gives

C�1 (E |ρ̂) := min
δ̂∈I(E)

‖ρ̂ − δ̂‖�1 =
∑
i 
=j

|〈ei |ρ̂|ej 〉|. (7)

Another natural candidate is the one based on the squared
�2-norm [10]. That is, we write

C�2 (E |ρ̂) := min
δ̂∈I(E)

‖ρ̂ − δ̂‖2
�2

=
∑
i 
=j

|〈ei |ρ̂|ej 〉|2. (8)

Unfortunately, this seemingly natural measure does not obey
the monotonicity requirement [10]. The trace norm also in-
duces an interesting candidate for quantification of coherence
[22]. The authors of [23] proposed a common frame to quantify
quantumness in terms of coherence and entanglement. They
also derived the geometric measure of coherence based on the
notion of fidelity of quantum states [24,25].

III. QUANTUM DIVERGENCES OF THE TSALLIS TYPE

In this section, we recall the definition of relative entropies
of the Tsallis type. Many fundamental results of quantum
information theory are connected with the properties of the
standard relative entropy [7]. There exist several extensions of
the standard entropic functions [26]. Many quantum relative
entropies can be unified within the concept of f divergences
[27]. This approach is a quantum counterpart of the Csiszár f

divergence [28]. For 0 < α 
= 1, the Tsallis relative α entropy
is defined as [29,30]

Dα(p‖q) := 1

α − 1

⎛⎝∑
j

pα
j q1−α

j − 1

⎞⎠. (9)

If for some j we have pj 
= 0 and qj = 0, and then the relative
α entropy with α > 1 is set to be +∞. In the limit α → 1,
the above divergence gives the standard relative entropy
D1(p‖q) = ∑

j pj ln(pj/qj ). Here, one assumes −0 ln 0 ≡ 0
and −pj ln 0 ≡ +∞ for pj > 0 [7]. Basic properties of
quantity (9) were discussed in [29,30]. We mention only
several of them. It was shown in [30] Dα(p‖q) � 0. Necessary
conditions for vanishing Dα(p‖q) are a more complicated
question. For the class of Csiszár f divergences, this question
was considered in [31]. The answer is connected with the
notion of strict convexity of a certain function at 1. It follows
from the results of [31] that Dα(p‖q) = 0 only when the
distributions p and q coincide (see, e.g., example 2 of [31]).

We shall now recall the notion of quantum relative entropy.
For density operators ρ̂ and σ̂ , the quantum relative entropy is
expressed as [7]

D1(ρ̂‖σ̂ ) :=
{

Tr(ρ̂ ln ρ̂ − ρ̂ ln σ̂ ), if ran(ρ̂) ⊆ ran(σ̂ ),
+∞, otherwise.

(10)

For a discussion of the role of (10) in quantum information
theory, see [7,32] and references therein. The divergence (10)
can be generalized in several ways. For α ∈ (1; +∞), the
Tsallis α divergence is defined as

Dα(ρ̂‖σ̂ ) :=
{

Tr(ρ̂α σ̂ 1−α)−1
α−1 , if ran(ρ̂) ⊆ ran(σ̂ ),

+∞, otherwise.
(11)
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When ran(ρ̂) ⊆ ran(σ̂ ), the trace is assumed to be taken over
ran(σ̂ ). For α ∈ (0; 1), the first entry can be used without such
conditions. The formula (11) can be represented similarly to
(10) with the use of the α logarithm. For 0 < α 
= 1 and real
ξ > 0, the α logarithm is defined as [29]

lnα(ξ ) := ξ 1−α − 1

1 − α
. (12)

For α → 1, the function (12) reduces to the usual logarithm.
Up to a factor, the relative entropy (11) is a particular case of
quasientropies proposed by Petz [33]. A more general family
of quantum f divergences is studied in [27]. The following
extension will also be useful. Let Â and B̂ be positive operators
such that ran(Â) ⊆ ran(B̂). The α divergence of Â with respect
to B̂ is defined by

Dα(Â‖B̂) := 1

α − 1
[Tr(ÂαB̂1−α) − Tr(Â)]. (13)

Recall several properties of the quantum α divergence. They
follow from the corresponding results on the quantum f

divergences [27]. For all λ ∈ [0; +∞), we have

Dα(λÂ‖λB̂) = λ Dα(Â‖B̂). (14)

Let four positive semidefinite operators Â1,B̂1,Â2, B̂2 obey
Â0

1 ∨ B̂0
1 ⊥ Â0

2 ∨ B̂0
2 ; then

Dα(Â1 + Â2‖B̂1 + B̂2) = Dα(Â1‖B̂1) + Dα(Â2‖B̂2). (15)

The latter can be proved for quantum f divergences under
certain conditions [27]. We will use (15) in studies of the
monotonicity of coherence quantifiers.

One of the fundamental properties of (10) is its monotonic-
ity under TPCP maps [7]. That is, for any TPCP map (3) we
have D1(�(ρ̂)‖�(σ̂ )) � D1(ρ̂‖σ̂ ). In the classical regime, the
relative Tsallis entropy (9) is monotone under stochastic maps
for all α � 0 [30]. This is not the case for the quantum regime.
The quantum α divergence (11) is monotone under TPCP maps
for α ∈ (0; 2], namely,

Dα(�(ρ̂)‖�(σ̂ )) � Dα(ρ̂‖σ̂ ). (16)

This claim follows from the results of [27] (see Theorem 4.3
therein) and the two facts about functions on positive matrices.
The function ξ �→ ξα is matrix concave on [0; +∞) for 0 �
α � 1 and matrix convex on [0; +∞) for 1 � α � 2 (see,
e.g., Theorems 4.2.3 and 1.5.8 in [34]). The monotonicity
further yields the joint convexity of the f divergences (see, e.g.,
Corollary 4.7 of [27]). In particular, the quantum α divergences
of the Tsallis type are jointly convex for α ∈ (0; 2]. Let {ρ̂n}
and {σ̂n} be two collections of density matrices, and let pn’s
be positive numbers that are summarized to 1. For α ∈ (0; 2],
we then have

Dα

(∑
n

pnρ̂n

∥∥∥∥ ∑
n

pnσ̂n

)
�

∑
n

pn Dα(ρ̂n‖σ̂n). (17)

The properties (16) and (17) will be very important in the
verification of corresponding properties of induced coherence
measures. We shall also discuss other properties of the
quantum α divergences. They are essential from the viewpoint
of constructing measures of coherence. So, we present them
as separate statements.

Theorem 1. For α > 0, the quantum α divergence is non-
negative,

Dα(ρ̂‖σ̂ ) � 0, (18)

with equality if and only if ρ̂ = σ̂ .
The proof of this statement is carried out similarly to the

case of the standard relative entropy (see, e.g., theorem 11.7
in [7]). We refrain from presenting the details here. It should
be noted that positivity of the Tsallis α divergence per se was
considered in Proposition 2.4 of [30]. Although the authors
of [30] focused on the range 0 < α < 1, their arguments
are applicable for all positive α. We are also interested in
conditions for equality. For this aim, we merely modify the
proof of Theorem 11.7 of [7] with the α logarithm (12).
Another property of the Tsallis α divergence is essential in
studying the monotonicity of the induced coherence measures.

Theorem 2. Let {K̂n} be a set of operators such that∑
n K̂

†
nK̂n = 1A. With the given normalized density matrices

ρ̂ and σ̂ on HA, one associates two probability distributions
with the corresponding probabilities

pn = Tr(K̂nρ̂K̂†
n), qn = Tr(K̂nσ̂ K̂†

n). (19)

For α > 0, the quantum α divergences obey∑
n

Dα(K̂nρ̂K̂†
n‖K̂nσ̂ K̂†

n) �
∑

n

pα
nq1−α

n Dα(ρ̂n‖σ̂n), (20)

where the states ρ̂n = p−1
n K̂nρ̂K̂

†
n and σ̂n = q−1

n K̂nσ̂ K̂
†
n are

normalized.
Proof. The right-hand side of (20) is focused on those

values of n that pn 
= 0 and qn 
= 0 simultaneously. When
pn 
= 0 and qn = 0 for some n, we have K̂nρ̂K̂

†
n 
= 0 and

K̂nσ̂ K̂
†
n = 0. Then the corresponding term in the left-hand side

of (20) becomes +∞ [see the second line of (11)], whence the
statement holds. So, we will prove (20) for the case in which
pn 
= 0 implies qn 
= 0. Due to the definition (11), we can write

Dα(K̂nρ̂K̂†
n‖K̂nσ̂ K̂†

n)=Dα(pnρ̂n‖qnσ̂n)=pα
nq1−α

n Dα(ρ̂n‖σ̂n)

+ pα
nq1−α

n − pn

α − 1
. (21)

Hence, the left-hand side of (20) minus the right-hand side is
equal to Dα(p‖q) � 0. �

In the case α = 1, the inequality (20) is reduced to∑
n

D1(K̂nρ̂K̂†
n‖K̂nσ̂ K̂†

n) �
∑

n

pn D1(ρ̂n‖σ̂n). (22)

This property of the standard relative entropy was formulated
and proved in [35] [see item (F4) therein]. So, we obtained an
extension of the formula (22) to quantum divergences of the
Tsallis type. Such an extension does not seem to have been
previously recognized in the literature. It should be noted,
however, that the right-hand side of (20) is more complicated
in character. We will use (20) in studying changes of coherence
quantifiers under incoherent selective measurements.

IV. COHERENCE QUANTIFIERS BASED ON THE
TSALLIS DIVERGENCES

The authors of [10] pointed out a general way to obtain
candidates for quantification of coherence. To find more
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coherence measures, we can try to consider generalized
relative entropies. This is formally posed as follows. Let us
pick the Tsallis α divergence as a distinguishability measure.
For α > 0, we define the quantity

Cα(E |ρ̂) := min
δ̂∈I(E)

Dα(ρ̂‖δ̂). (23)

In principle, this approach could be used with divergences of
a more general type. The optimization problem is generally
not easy. However, it is simply resolved in the case of Tsallis
divergences. The following statement takes place.

Theorem 3. For all 0 < α 
= 1, the corresponding coher-
ence measure is expressed as

Cα(E |ρ̂) = 1

α − 1

⎧⎨⎩
⎛⎝∑

j

〈ej |ρ̂α|ej 〉1/α

⎞⎠α

− 1

⎫⎬⎭. (24)

Proof. Since the α divergence Dα(ρ̂‖δ̂) should be mini-
mized, we will assume ran(ρ̂) ⊆ ran(δ̂). If δj ’s are eigenvalues
of δ̂, we set δj = 0 whenever 〈ej |ρ̂|ej 〉 = 0. As any δ̂ ∈ I(E)
is diagonal with respect to E , we write

Dα(ρ̂‖δ̂) = 1

α − 1

⎧⎨⎩∑
j

〈ej |ρ̂α|ej 〉 δ1−α
j − 1

⎫⎬⎭, (25)

where the sum is taken over nonzero matrix elements. Let us
define the probabilities rj such that rα

j ∝ 〈ej |ρ̂α|ej 〉. Together
with the normalization condition, one gets

rj = 1

N
〈ej |ρ̂α|ej 〉1/α, (26)

N =
∑

i

〈ei |ρ̂α|ei〉1/α. (27)

Substituting 〈ej |ρ̂α|ej 〉 = Nαrα
j into (25), we obtain

Dα(ρ̂‖δ̂) = NαDα(r‖δ) + Nα − 1

α − 1
. (28)

Here, the probabilities rj and the normalization denominator
N depends only on the state ρ̂. As was already mentioned, we
always have Dα(r‖δ) � 0. To minimize the right-hand side of
(28), we should therefore reach Dα(r‖δ) = 0 by setting δj =
rj . Combining the result with the formula for N completes the
proof. �

Thus, the result of minimizing is expressed in terms of
matrix elements of the power ρ̂α . For the given ρ̂ and α, the
minimum in (23) is reached with the state

δ̂ρ = 1

N

∑
j

〈ej |ρ̂α|ej 〉1/α |ej 〉〈ej |. (29)

We avoid stating explicitly that δ̂ρ depends on the value of
α. It the case α = 1, we obtain the formulation with the
standard relative entropy. Then the state (29) is obtained from
ρ̂ by deleting all off-diagonal elements. Then the coherence
measure is merely equal to the von Neumann entropy of this
diagonal state minus the von Neumann entropy of ρ̂ [10].
Let us consider another interesting case α = 2. As the density

matrix is Hermitian, we obtain

C2(E |ρ̂) =
⎛⎝∑

j

√∑
i

|ρij |2
⎞⎠2

− 1, (30)

where ρij = 〈ei |ρ̂|ej 〉. This coherence measure is a function
of squared moduli |ρij |2 but more complicated in comparison
with (8). We now consider basic properties of the presented
coherence quantifiers.

First of all, the quantity (23) is zero for all incoherent
states. It follows from (24) by substituting 〈ej |ρ̂α|ej 〉 = ρα

jj

and
∑

j ρjj = 1. Further, we have Cα(E |ρ̂) = 0 only for
incoherent states. According to Theorem 1, Dα(ρ̂‖σ̂ ) is zero
only for ρ̂ = σ̂ . So, for ρ̂ /∈ I(E) and any δ̂ ∈ I(E) we have
Dα(ρ̂‖δ̂) > 0. Thus, the coherence measure (23) satisfies one
of the conditions listed in [10]. An upper bound on the α

quantifiers of coherence can be expressed in terms of the purity.
Theorem 4. For 0 < α � 2, we have

Cα(E |ρ̂) � − lnα

(
1

d Tr(ρ̂2)

)
. (31)

For 2 < α < ∞, we have

Cα(E |ρ̂)� 1

α−1
{d Tr(ρ̂2)(1+√

d−1
√

d Tr(ρ̂2)−1)α−2−1}.
(32)

Proof. We first consider the case α 
= 1. Due to (23), for
0 < α 
= 1 we immediately obtain

Cα(E |ρ̂) � dα−1Tr(ρ̂α) − 1

α − 1
. (33)

The right-hand side of (33) is the α divergence of ρ̂ with respect
to the completely mixed state. For α � 2, the function ξ �→
ξα−1/(α − 1) is concave. Calculating traces in the eigenbasis
of ρ̂ and applying Jensen’s inequality, we then have

Tr(ρ̂α)

α − 1
=

∑
j

λj

λα−1
j

α − 1
� [Tr(ρ̂2)]α−1

α − 1
. (34)

Here, the eigenvalues λj of ρ̂ obey the normalization condition.
Combining (34) with (33) and (12) finally gives (31) for α 
= 1.
To complete the proof of (31), we write

C1(E |ρ̂) � ln d + Tr(ρ̂ ln ρ̂) (35)

and repeat the above reasons with the concave function ξ �→
ln ξ .

Let us proceed to the case α > 2. As follows from Lemma
3 of [36], the maximal eigenvalue of ρ̂ satisfies

λmax � 1

d
(1 + √

d − 1
√

d Tr(ρ̂2) − 1). (36)

Combining this with Tr(ρ̂α) � λα−2
max Tr(ρ̂2) and (33) completes

the proof. �
The results (31) and (32) provide an upper bound on the

coherence quantifiers in terms of the purity Tr(ρ̂2). They
are similar to the complementarity relation derived in [12]
with the coherence measure (7) taken for d + 1 mutually
unbiased bases (MUBs). The distinction of the formulas (31)
and (32) is that only a single quantifier is involved. The
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purity is closely related to the Brukner-Zeilinger concept of
operationally invariant measure of information in quantum
measurements [37]. The method of [37] is based on the use of
a complete set of d + 1 MUBs. Except for prime power d, the
existence of such sets is an open problem [38]. Then three other
schemes to approach the Brukner-Zeilinger information can be
used [39]. Hence, we have a way to estimate the right-hand
sides of both (31) and (32) in experiment.

The result (31) can be reformulated as a tradeoff relation
between coherence and mixedness. For d-dimensional state ρ̂,
one of the natural quantifiers of the mixedness is given by [40]

M(ρ̂) := d

d − 1
[1 − Tr(ρ̂2)]. (37)

This figure is zero for pure states and reaches 1 for
the completely mixed state. The purity can be expressed via the
mixedness and then substituted to (31) and (32). However, the
resulting inequalities will be too complicated. A convenient
method is to approach the right-hand side of (31) from above
by a linear function of the variable d Tr(ρ̂2) = y ∈ [1; d]. Here,
we deal with the function

fα(y) := − lnα

(
1

y

)
= yα−1 − 1

α − 1
, (38)

which is concave for α � 2. By the Taylor formula with
remainder written in Lagrange’s form, with 1 < c < d, one
gets

fα(y) = fα(1) + f ′
α(1) (y − 1) + 1

2 f ′′
α (c) (y − 1)2 � y − 1.

(39)

Here, we used fα(1) = 0,f ′
α(1) = 1, and f ′′

α (c) � 0. The claim
(39) poses that the graph of concave fα(y) goes under its
tangent line drawn at the point y = 1. Combining (39) with
(31), for 0 < α � 2 we have

Cα(E |ρ̂) � d Tr(ρ̂2) − 1. (40)

Due to (40), we obtain a tradeoff relation between coherence
and mixedness in the form

1

d − 1
Cα(E |ρ̂) + M(ρ̂) � 1, (41)

where 0 < α � 2. When a degree of mixedness increases, an
upper bound on values of the coherence α quantifier decreases.
It is instructive to compare (41) with Theorem 1 of the paper
[41], where tradeoff between coherence and mixedness is
expressed in terms of the quantities (7) and (37).

V. ON COHERENCE OF A SINGLE QUBIT

In this section, we examine coherence of a single qubit with
the use of the α quantifiers. Here we can express results more
explicitly. With respect to the prescribed basis, the density
matrix is written as

ω̂ =
(

u w∗

w 1 − u

)
. (42)

For brevity, we will further omit the symbol of the reference
basis in notation. Of course, the real parameter u lies between
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FIG. 1. Maximal values of Cα(ω̂) versus u are shown by a dashed
line for α = 1, by a solid line for α = 2, by a dash-dotted line for
α = 3, and by a dotted line for α = 4.

0 and 1. The eigenvalues of (42) are expressed as

λ± = 1

2
±

√(
u − 1

2

)2

+ |w|2. (43)

They should be both positive and no greater than 1, whence
|w| �

√
u(1 − u). For integer values of α, sufficiently simple

expressions take place. For α = 1, we obtain

C1(ω̂) = h(u) − h(λ+), (44)

where h(u) := −u ln u − (1 − u) ln(1 − u) is the binary Shan-
non entropy. Furthermore, we have

C2(ω̂) = (
√

u2 + |w|2 +
√

(1 − u)2 + |w|2)2 − 1. (45)

Note also that C�1 (ω̂) = 2 |w| and C�2 (ω̂) = 2 |w|2. For an-
other integer α, the resulting expressions are obtained similarly
to (45).

One way to study coherence of a single qubit is posed as
follows. For the given u, we consider an interval of changes
of the corresponding quantifier. The minimum is clearly 0,
whereas the maximum is found as for the function of |w| �√

u(1 − u). For example, we have

max{C2(ω̂) : |w| �
√

u(1 − u)} = 2
√

u(1 − u), (46)

max{C�1 (ω̂) : |w| �
√

u(1 − u)} = 2
√

u(1 − u). (47)

For the given u, the coherence quantifiers C2(ω̂) and C�1 (ω̂)
cover the same interval of values. Their maximal values are
reached for the same states. These states are pure, since
|w|2 = u(1 − u) implies λ+ = 1 and λ− = 0. The coherence
quantifiers are zero for incoherent states when w = 0.

Let us consider the maximum of Cα(ω̂) for the given u

similarly to (46) and (47). In Fig. 1, this maximum is shown as
a function of u for several integer values of α. In particular, by
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FIG. 2. The minimal and maximal values of the sum C2(ω̂) +
M(ω̂) as functions of u.

the solid line we represent both (46) and (47). The curves are
shown only for the half of the interval u ∈ [0; 1], since they are
symmetric with respect to the line u = 1/2. The four curves all
show a similar behavior. In each case, the range between the
abscissa and the curve shows those values that are covered by
the corresponding quantifier. Hence, the coherence α quantifier
seems to be more sensitive for larger values of α. On the
other hand, coherence measures should obey monotonicity
properties. Without them, any candidate to quantify coherence
cannot be accepted.

For d = 2, the formula (41) gives Cα(ω̂) + M(ω̂) � 1 with
0 < α � 2. For a single qubit, we can obtain more precise
tradeoff bounds. In particular, we have

4u(1 − u) � C2(ω̂) + M(ω̂) � 2
√

u(1 − u). (48)

It is instructive to compare (48) with the exact equality

C�1 (ω̂)2 + M(ω̂) = 4u(1 − u). (49)

In Fig. 2, we plot the left-hand side of (48) by a dashed line and
the right-hand side of (48) by a solid line. Here, the former
is reached for incoherent states and the latter is reached for
pure states. For each u, the range between these lines shows
values that are covered by the sum C2(ω̂) + M(ω̂). So, this sum
ranges in a narrow interval. It is similar to the sum (49), but
the latter is quadratic in the coherence measure. Thus, a lack
of coherence will rather be accompanied by some increasing
of the mixedness. Figure 2 also illustrates that the relation
C2(ω̂) + M(ω̂) � 1 is sufficiently tight when the diagonal
elements of (42) do not differ essentially.

In the case of a single qubit, the considered coherence
quantifiers enjoy a behavior similarly to the measure (7).
There are also natural tradeoff relations between coherence
and mixedness. They are brightly exposed with the quantifier
(30). It seems that the quadratic measure (30) provides a
useful alternate approach to quantify coherence. To support

this claim, the question of monotonicity should be resolved.
We address this in the next section.

VI. FORMULATION OF THE MONOTONICITY
PROPERTY

Desired properties of coherence measures concern their
behavior with respect to state transformations [10]. It is natural
to demand that coherence quantifiers cannot increase under
mixing [10]. Let {ρ̂n} be a collection of density matrices, and
let positive numbers pn obey

∑
n pn = 1. For all α ∈ (0; 2],

we have

Cα

(
E

∣∣∣∣ ∑
n

pnρ̂n

)
�

∑
n

pn Cα(E |ρ̂n). (50)

This result immediately follows from the the joint convexity
(17) and the definition (23). We refrain from presenting the
details here. For α ∈ (0; 2], therefore, the quantity (23) fulfills
one of the properties listed in [10]. Changes of coherence
measures under some forms of quantum operations are of
great importance [10]. Here, the following two classes of
incoherent operations should be considered. The first form
of monotonicity property is posed as follows. The notion
of coherence is basis dependent. Let E ′ be the prescribed
orthonormal basis with respect to which incoherent states
are defined in HB . We define incoherent quantum operation
as a TPCP map �I : L(HA) → L(HB) such that its Kraus
operators all obey the property

ρ̂ ∈ I(E) =⇒ K̂nρ̂K̂
†
n

Tr(K̂nρ̂K̂
†
n)

∈ I(E ′). (51)

For α ∈ (0; 2], the coherence quantifier (23) is monotone under
incoherent quantum operations, namely,

Cα(E ′|�I (ρ̂)) � Cα(E |ρ̂). (52)

This follows from the property (16) and the definition (23),
which includes the minimization.

Monotonicity under incoherent selective measurements
seems to be more sophisticated [10]. Formulating (52),
we assume the loss of information about the measurement
outcome. When measurement outcomes are retained, one
further allows a subselection according to these outcomes.
Such operations are also described by a set of Kraus operators
{K̂n}, but now these operators may have different output
spaces though the input space is the same. So, we consider
a set of operators K̂n : HA → HBn that satisfy (5). To each
output space HBn, we assign the orthonormal basis E ′

n used
for determining incoherent density matrices. The authors of
[10] formulated the monotonicity under incoherent selective
measurements as∑

n

pn C(E ′
n|ρ̂n) � C(E |ρ̂). (53)

Here, pn = Tr(K̂nρ̂K̂
†
n) is the probability of nth outcome

resulting in nth particular output

ρ̂n = p−1
n K̂nρ̂K̂†

n. (54)

The authors of [22] called (53) the strong monotonicity under
incoherent channels. In the context of transport phenomena,
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incoherent quantum channels are considered in [42]. It turns
out that the coherence α quantifiers obey the monotonicity
property in the following form:

Theorem 5. Let the incoherent state δ̂ρ ∈ I(E) be such
that Cα(E |ρ̂) = Dα(ρ̂‖δ̂ρ). For all α ∈ (0; 2], the coherence
measures (23) are changed under any incoherent selective
measurement in line with∑

n

pα
nq1−α

n Cα(E ′
n|ρ̂n) � Cα(E |ρ̂), (55)

where pn = Tr(K̂nρ̂K̂
†
n), qn = Tr(K̂nδ̂ρK̂

†
n), and ρ̂n is defined

by (54).
Proof. We first note that we can consider the set of Kraus

operators with the same output space. More precisely, we
define the space

H̃B :=
⊕

n

HBn, (56)

where HBn is the output space of the nth Kraus operator K̂n.
To each K̂n : HA → HBn, we assign the operator

L̂n =

⎛⎜⎜⎜⎜⎜⎝
0

· · ·
K̂n

· · ·
0

⎞⎟⎟⎟⎟⎟⎠. (57)

That is, this operator is represented as a block column, whose
nth block is K̂n and the others are all zero. The operator L̂n

maps vectors of HA to vectors of H̃B . For each n, the input
states ρ̂ and δ̂ρ are respectively mapped into subnormalized
outputs

L̂nρ̂L̂†
n = diag(0 . . . K̂nρ̂K̂†

n . . . 0), (58)

L̂nδ̂ρL̂
†
n = diag(0 . . . K̂nδ̂ρK̂

†
n . . . 0). (59)

Thus, the output (58) is the diagonal block matrix with the (n,n)
block K̂nρ̂K̂

†
n and other zero blocks. Similarly, the output (59)

is the diagonal block matrix with the (n,n) block K̂nδ̂ρK̂
†
n.

According to the definition (11), we then have

Dα(L̂nρ̂L̂†
n‖L̂nδ̂ρL̂

†
n) = Dα(K̂nρ̂K̂†

n‖K̂nδ̂ρK̂
†
n). (60)

We define a TPCP map �̃I : L(HA) → L(H̃B) by the formula

�̃I (X̂) :=
∑

n

L̂nX̂L̂†
n. (61)

It is trace preserving due to L̂
†
nL̂n = K̂

†
nK̂n and the fact that

Kraus operators of any incoherent selective measurement obey
(5). With the input state ρ̂, the output of the quantum operation
(61) can be represented as

�̃I (ρ̂) =
∑

n

pn�̂n, (62)

where �̂n = p−1
n L̂nρ̂L̂

†
n. Denoting δ̂ρn = q−1

n K̂nδ̂ρK̂
†
n, we

write the following relations:

Dα(ρ̂‖δ̂ρ) � Dα(�̃I (ρ̂)‖�̃I (δ̂ρ)) (63)

=
∑

n

Dα(L̂nρ̂L̂†
n‖L̂nδ̂ρL̂

†
n) (64)

=
∑

n

Dα(K̂nρ̂K̂†
n‖K̂nδ̂ρK̂

†
n) (65)

�
∑

n

pα
nq1−α

n Dα(ρ̂n‖δ̂ρn). (66)

Here, step (63) follows from (16), and step (64) follows
from (15). Indeed, the construction of operators (57) implies
orthogonality of subspaces ran(L̂nρ̂L̂

†
n) for different indices

n. Further, step (65) follows from (60), and step (66) is based
on Theorem 2. The inequality Dα(ρ̂n‖δ̂ρn) � Cα(E ′

n|ρ̂n), clear
from definition (23), completes the proof. �

In the case α = 1, the statement of Theorem 5 reduces
to (53) written with the coherence measure C1(E |ρ̂). This
property was first proved in [10]. In a certain sense, the relation
(55) is a natural extension of the formula (53). The coherence α

measures can also be treated as monotone, but the inequality is
posed formally in a more sophisticated manner. In particular,
the formulation now involves the particular probabilities qn

calculated for the incoherent state (29). Thus, the probabilities
qn are also dependent on the considered state ρ̂, but not so
directly as pn’s. In view of the above results, constructing
coherence measures that obey monotonicity just in the form
(53) seems to be difficult. The only known examples are the
measures C�1 (E |ρ̂) and C1(E |ρ̂). Of course, we do not consider
here any linear combination of the mentioned two measures.
As the properties imposed are linear in a coherence measure,
a linear combination of two (or more) particular measures will
obey these properties whenever each particular measure does.

VII. TWO QUADRATIC MEASURES COMPARED

In this section, we will compare two quantifiers of coher-
ence obtained as homogeneous quadratic functions of matrix
elements. These measures are respectively defined by the
formulas (8) and (30). The authors of [10] exemplified that
the coherence measure (8) is not monotone under incoherent
selective measurements. It is instructive to examine the
property (55) just with this example. Let us check monotonicity
of the coherence measure (30). In the example considered, the
input and output reference bases are the same. For brevity, we
will omit the symbols E and E ′ in further calculations. The two
Kraus operators are written as

K̂1 =
⎛⎝0 1 0

0 0 0
0 0 a

⎞⎠, K̂2 =
⎛⎝1 0 0

0 0 b

0 0 0

⎞⎠, (67)

where the complex numbers a and b obey |a|2 + |b|2 = 1.
Further, one considers the density matrix

�̂ = 1

4

⎛⎝1 0 1
0 2 0
1 0 1

⎞⎠. (68)
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The normalized particular outputs are expressed as

�̂1 = 1

2 + |a|2

⎛⎝2 0 0
0 0 0
0 0 |a|2

⎞⎠, (69)

�̂2 = 1

1 + |b|2

⎛⎝1 b∗ 0
b |b|2 0
0 0 0

⎞⎠. (70)

The corresponding probabilities are written as

p1 = 2 + |a|2
4

, p2 = 1 + |b|2
4

. (71)

For α = 2, the α divergence is minimized with the incoherent
state, whose nonzero entries are proportional to the square
roots of the diagonal elements of �̂2:

δ̂� = 1

2 + √
2

⎛⎝1 0 0

0
√

2 0
0 0 1

⎞⎠. (72)

Calculations of the coherence measure (30) result in

C2(�̂) = D2(�̂‖δ̂�) = 2
√

2 − 1

4
. (73)

Using δ̂� as the input, we get the probabilities of particular
outcomes,

q1 = Tr(K̂1δ̂�K̂
†
1) =

√
2 + |a|2

2 + √
2

, (74)

q2 = Tr(K̂2δ̂�K̂
†
2) = 1 + |b|2

2 + √
2

. (75)

For the density matrices (70), we obtain C2(�̂1) = 0 and

C2(�̂2) = 2 |b|
1 + |b|2 . (76)

For all |b| ∈ [0; 1], we consider the quantity

p2
1q

−1
1 C2(�̂1) + p2

2q
−1
2 C2(�̂2)

= 2 + √
2

8
|b| � 2 + √

2

8
≈ 0.426 8, (77)

which is strictly less than C2(�̂) = (2
√

2 − 1)/4 ≈ 0.457 1.
The latter point illustrates the result (55). The example also
shows that the formulation (55) is actually necessary. Indeed,
the quantifier (30) does not share the monotonicity formulation
(53). To see this fact, we write

p1 C2(�̂1) + p2 C2(�̂2) = |b|
2

. (78)

The right-hand side of (78) increases up to 0.5 for |b| = 1
and can exceed C2(�̂) ≈ 0.457 1. The above findings give
an evidence that the α quantifiers do not generally obey
monotonicity in the form of (53). On the other hand, these
measures certainly satisfy monotonicity in the form of (55).
Thus, the monotonicity of coherence under selective measure-
ments is sophisticated in character. This property does not
follow immediately from the monotonicity of quantum relative
entropies.

The considered example allows us to resolve the following
natural question. The coherence measure (8) does not share
monotonicity in the form of (53). In principle, we may ask
for monotonicity of (8) similarly to (55). In other words, we
consider the quantity∑

n

pα
n r1−α

n C�2 (ρ̂n), (79)

where rn = Tr(K̂nδ̂∗K̂
†
n) and δ̂∗ is obtained from ρ̂ by van-

ishing all off-diagonal entries. The above example shows that
(79) can exceed C�2 (ρ̂). Indeed, the input state (68) is such
that rn = pn for n = 1,2. Hence, the quantity (79) is equal
to

∑
n pn C�2 (�̂n) and violates monotonicity in the form of

(53), as already known. Thus, the coherence measure (8) is
not monotone even in the sense of (55). This fact shows that
the formulation (55) is not trivial. It is also reduced to (53) in
the limit α → 1. Thus, we can treat (55) as a natural extension
of the standard form (53).

VIII. CONCLUSIONS

We have examined quantum-coherence measures based on
α divergences of the Tsallis type. Tradeoff relations between
coherence and mixedness were obtained. Some properties
were further exemplified with a single qubit. Most of the
desired properties immediately follow from general properties
of quantum relative entropies. The monotonicity of coherence
under selective measurements is a more interesting and
complicated question. This monotonicity has been shown for
the two measures based on the �1-norm and on the standard
relative entropy [10]. For the coherence measure based on the
trace distance, only particular monotonicity results are known
[22]. We have proved that coherence α measures enjoy desired
monotonicity in the form of (55), where the parameter α is
involved. For α → 1, this formulation is directly reduced to
the standard formulation proposed in [10]. In this regard, the
result (55) is a parametric extension of the standard form (53).
It may be supposed that the two known examples satisfying
just (53) are the only such.

The obtained family includes the quantity expressed in
terms of the squared moduli of matrix elements. In several
respects, this quantity differs from the coherence measure
induced by the squared �2-norm. In both (7) and (8), the
closest incoherent state is obtained by vanishing all off-
diagonal entries of ρ̂. Except for α = 1, the incoherent state
that minimizes the α divergence in (23) is reached by a
more complicated procedure. Nevertheless, for quantum α

divergences of the Tsallis type, the required minimization can
be solved with an explicit answer. It seems to be difficult
for quantum f divergences in general. Currently, so-called
“sandwiched” relative entropies are the subject of active
research [43]. Such quantities could be used for obtaining
coherence measures, but the required minimization seems to be
difficult. By comparing two quadratic measures of coherence,
we also have shown that the measure induced by the squared
�2-norm violates monotonicity even in a generalized form. It
was conjectured in [12] that the square root of (8) may obey
all the desired properties. Due to our results, this conjecture
seems to be sufficiently difficult to resolve.
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