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Generalizations of the classic Bell inequality to higher-dimensional quantum systems known as qudits are
reputed to exhibit a higher degree of robustness to noise but such claims are based on one particular noise model.
We analyze the violation of the Collins-Gisin-Linden-Massar-Popescu inequality subject to more realistic noise
sources and their scaling with dimension. This analysis is inspired by potential Bell inequality experiments with
superconducting resonator-based qudits. We find that the robustness of the inequality to noise generally decreases
with increasing qudit dimension.
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I. INTRODUCTION

A Bell inequality [1] experiment consists of n parties
who share an entangled state of n (or more) particles. Each
party chooses to perform one of m measurements, with each
measurement producing one of d outcomes. By repeating this
round multiple times, the probabilities for the various joint
outcomes can be estimated. A Bell inequality for this scenario
is a relationship that these probabilities must satisfy, if they
arise from a local realistic model. The general structure of these
inequalities has been studied intensively since Bell’s original
argument [2].

The most famous form of the Bell inequality is the Clauser-
Horne-Shimony-Holt (CHSH) inequality [3] for n = 2 parties
(e.g., Alice and Bob), each party performing one of m = 2
measurement choices, with each measurement registering one
of d = 2 outcomes. In terms of the joint probabilities, the
CHSH inequality reads

p(A1 = B1) − p(A1 = B2) + p(A2 = B1) + p(A2 = B2)

� 2, (1)

where the measurement settings are labeled with 1 and 2 for
Alice’s (or Bob’s) choice of measurement, with outcomes A1

and A2 for Alice (and B1 and B2 for Bob), and, in a slight
abuse of notation, the joint probability p(A0 = B0) indicates
the probability that Alice and Bob’s measurement outcomes
are identical. For certain entangled states and measurement
choices, quantum mechanics predicts, and experiments con-
firm, a violation of this inequality [1].

A common experimental procedure, illustrated in Fig. 1,
replaces the alternative measurement settings by a unitary
transformation chosen by the parties and performed just
before a fixed measurement. This unitary must be chosen
and performed by one party sufficiently quickly to ensure
that no information can propagate to the other party. If this
cannot be done, the experiment is subject to the so-called
locality loophole, for which the derivation of Eq. (1) fails.
Another requirement is that the measurements be sufficiently
accurate so that the probabilities entering the inequality can
be reliably estimated. If this is not the case, the experiment
is subject to the so-called detection loophole. Until very
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recently, experiments with photons typically close the locality
loophole [4,5] but are subject to the detection loophole (in the
guise of the fair-sampling assumption; but see recent progress
[6,7]). Experiments with matter qubits (atoms [8], ions [9,10],
solid-state spin qubits [11,12], and superconducting qubits
[13,14]) typically close the detection loophole but are subject
to the locality loophole. Only recently have experiments begun
to close these loopholes [15–17]; such experiments represent
landmark tests of quantum mechanics.

In order to further test quantum mechanics and achieve a
better understanding of entanglement and nonlocality, there
have been many studies of generalized Bell inequalites [1].
These include the Mermin inequality [18] for multiple qubits
(n > 2), the Collins-Gisin inequality [19] for multiple mea-
surements (m > 2), and the Collins-Gisin-Linden-Massar-
Popescu (CGLMP) inequality [20] for higher-dimensional
systems known as qudits (d > 2). A recent approach [21] to the
Collins-Gisin inequality for entangled qudits (with n = 2 and
m = d > 2) exhibits the potential to reduce the requirements
to close the detection loophole.

In this paper we focus on understanding the CGLMP
inequality (for n = m = 2 and d > 2), which takes the form

Id =
�d/2�−1∑

k=0

(
1 − 2k

d − 1

)
[P(k) − P(−k − 1)] � 2, (2)

where

P(k) = P (A1 = B1 + k) + P (B1 = A2 + k + 1)

+P (A2 = B2 + k) + P (B2 = A1 + k). (3)

Here the joint probabilities are defined for outcomes Aa =
0,1, . . . ,d − 1, and the addition is performed modulo d. These
can expressed as

P (Aa = Bb + k) =
d−1∑
j=0

P (Aa = j,Bb = j + k mod d). (4)

We have also studied a closely related inequality proposed by
Zohren and Gill [22]:

P (A2 < B2) + P (B2 < A1) + P (A1 < B1)

+P (B1 � A2) � 1. (5)

These two inequalities have the remarkable property that the
violation increases with increasing d. Alternatively, if the
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FIG. 1. A general framework for a Bell inequality experiment
with n = 2 parties. A source of entanglement is shared to Alice and
Bob, who choose to rotate their part of the joint quantum state by
unitaries UA,a and UB,b, respectively. The measurement outcomes
MA and MB are then recorded, compiled, and compared against the
inequality.

initial state is subject to depolarizing noise, the amount of
noise that removes the entanglement, and hence the potential
to violate the inequality, increases with the dimension [23]. In
this sense, these higher-dimensional Bell inequalities exhibit
a surprising robustness to noise and may be useful when
exploring advanced tests of quantum systems.

A recent experiment tested the CGMLP inequality using
orbital angular momentum (OAM) states of light [24] but did
not find the enhanced violation with dimension. In fact, they
found that the violation ceased for dimensions higher than
d = 12. This fact strongly suggests that the robustness of the
inequality can be compromised by the actual noise subject to
the system. Previous work on this topic has focused only on
a simple form of depolarizing noise [20,23], and its impact
on the detector efficiency needed to observe a violation of
the inequality [25]. To account for the behavior seen in the
recent experiment, and to predict the possible violations in
other experiments, more realistic noise models are necessary.

In general, noise can affect all of the stages of the
experiment: entangled-state preparation, state rotation, and
state measurement. The noise from each stage must be
analyzed to determine the robustness of the inequality. In
this paper we examine a general framework for testing
the CGLMP inequality with qudits, analyze the potential
complexity of each stage of the experiment, and evaluate the
impact of different types of noise (depolarizing, dephasing,
and amplitude damping) on the inequality. Our work is
inspired by theoretical proposals to use the quantum states of
superconducting resonators as qudits [26–28]; such systems
have the potential for long-distance entanglement through
microwave photons [29,30]. However, our analysis is intended
to be general enough to guide experiments with other potential
matter qudit systems, and our results may have implications for
photonic qudits as well. Our analysis indicates that the CGLMP
inequality does not generally exhibit the special robustness to
noise claimed in previous work.

This paper is organized as follows. Section II describes a
general Bell inequality experiment with ideal qudits, analyzing
how state preparation, rotation, and measurement can be
implemented for a general qudit system. Section III analyzes
the potential inequality violation subject to depolarizing,
amplitude-damping, and dephasing noise on the qudits during

FIG. 2. A quantum circuit for a Bell inequality experiment,
consisting of entangled-state preparation, single-qudit rotations, and
qudit-state measurement. In the first stage, two qudits, initially in
the |00〉 state, are acted on by generalized Hadamard gates H , a
controlled-phase gate (with θ = 2π/d) to prepared a maximally
entangled two-qudit state. The single-qudit rotations Ua and Ub

determine the two measurement bases (depending on the choices
of Alice and Bob), while the actual measurement is in a fixed qudit
basis.

the full experimental sequence. In Sec. IV we conclude
and discuss outstanding questions. The Appendix details
how our amplitude-damping noise model compares with full
simulations using the time-dependent Schrödinger equation.

II. BELL INEQUALITY EXPERIMENT
WITH IDEAL QUDITS

In this section we will describe an analysis of a bipartite
(n = 2) Bell inequality experiment, focusing on the general
structure of entangled-state preparation, single-qudit rotations,
and qudit-state measurement. A quantum circuit for this
process is shown in Fig. 2. We will analyze each component
of this circuit, drawing inspiration from recent theoretical
work on the control of superconducting resonators. However,
we expect our results can be applied to alternative qudit
implementations.

A. Entangled-state preparation

The first important stage of a Bell inequality experiment is
the production of entangled states of two systems. As shown
in Fig. 2, this can be accomplished by using a generalized
Hadamard or discrete Fourier transform (DFT) operation on
each qudit and a controlled-phase gate between the qudits.

The generalized Hadamard gate is the DFT matrix with
matrix elements Hj,k = ωjk/

√
d , where ω = e2πi/d . For d =

4, this has the matrix form

H (d = 4) = DFT4 = 1√
4

⎛
⎜⎝

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

⎞
⎟⎠. (6)

In general this matrix has d independent elements (and d2

total elements), so an analysis of control on qudits suggests
that implementing a general qudit Hadamard will require a
number of elementary operations that is a polynomial in d

[31]; more details can be found in the Appendix.
The controlled-phase gate is a two-qudit gate that imple-

ments the transformation

CR(θ )|j,k〉 = e−i(jk)θ |j,k〉. (7)
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FIG. 3. A measurement circuit to map the quantum state of a resonator (of dimension d = 2n) onto the state of n qubits. This circuit is
composed of 2n single-qubit Hadamard operations, n qubit-resonator controlled-phase gates (with phases indicated in the circular gates on the
resonator), and n(n + 1)/2 qubit-qubit controlled-phase gates (with phases indicated in the rectangular gates on the qubits).

This is a natural generalization of the two-qubit controlled
phase gate and can also be implemented in a time polynomial
in d [31].

The combination of these operations in the preparation
stage of Fig. 2 performs the transformation

|�〉 = (H ⊗ I )CR(2π/d)(H ⊗ H )|0,0〉

= (I ⊗ H )CR(2π/d)
1

d

d−1∑
j,k=0

|j,k〉

= (I ⊗ H )
1

d

d−1∑
j,k=0

e−i2π(jk)/d |j,k〉

= 1

d3/2

d−1∑
j,k,�=0

e−i2πk(j−�)/d |j,�〉

= 1√
d

∑
j

|j,j 〉. (8)

This maximally entangled two-qudit state will be used in the
Bell inequality measurements for Alice and Bob.

We note that there are alternative approaches to generating
the initially entangled state for superconducting resonators,
which typically scale linearly in the qudit dimension [32].
Qudit operations can also be optimized to scale linearly with
qudit dimension [33]. We optimistically conclude that the
state-preparation stage can be performed in a timescale that
is linear in d.

B. Single-qudit rotations

After Alice and Bob have chosen their measurement basis
(a or b), they will adjust their measurement by rotating their
half of the joint-qudit state by one of the unitary operators
UA,a or UB,b. These have the matrix elements

[UA,a]j,k = 1√
d

ei2π(jk)/deiαaj (9)

and

[UB,b]j,k = 1√
d

e−i2π(jk)/deiβbj , (10)

where α1 = 0, α2 = 1/2, β1 = 1/4, and β2 = −1/4. These
operations involve the DFT (or its inverse), along with diagonal
phases. These again can be performed in a time polynomial
in d, which we again optimistically take as linear in the qudit
dimension [33]; a specific implementation that is quadratic in
d is described in the Appendix.

C. State measurement

In order to close both the locality and detection loopholes,
one wants a fast and efficient measurement of the qudit
states. For some qudit implementations, such as hyperfine
states of atoms or multilevel superconducting devices, one
can implement a direct d outcome measurement. For qubit-
resonator systems in trapped ion, cavity, or circuit-QED
systems, one often implements an indirect measurement
coupling the resonator to one or more qubits. We consider
a state measurement approach that maps the resonator state of
d = 2n dimensions onto n qubits, inspired by the discussion
in Chapter 6 of Ref. [34]. After this mapping, one can measure
the state bit by bit. This allows a single-shot measurement of
the qudit state.

The measurement scheme can be represented by a quan-
tum circuit, illustrated in Fig. 3, composed of single-qubit
Hadamard gates, two-qubit controlled-phase gates, and a
special qubit-resonator controlled-phase gate. This last gate
acts on a qubit-resonator state as follows:

|x〉qubit ⊗ |y〉res → e−iθxy |x〉qubit ⊗ |y〉res. (11)

This gate can be implemented using the natural evolu-
tion of a qubit-resonator system in the dispersive regime
[27], resonant qubit-resonator logic operations [35], or other
methods [28,36]. In brief, the measurement circuit performs
the mapping by sequentially correlating the resonator state
|y〉 with a register of qubits ({x1,x2, . . . ,xn}). Using a bit
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string {y1, . . . ,yn} to label the resonator state |y〉, with the
(big-endian) binary representation

y = y12n−1 + y22n−2 + · · · + yn−12 + yn, (12)

the circuit performs the mapping

|00 · · · 0〉qubits ⊗ |y〉res → |y1y2 · · · yn〉qubits ⊗ |y〉res. (13)

Then measurement of the qubits will provide a bit-by-bit
measurement of the resonator state |y〉.

We now analyze the measurement circuit of Fig. 3 in
more detail. The qubits are initially prepared in an equal
superposition state (by Hadamard gates):

|�0〉 = 1

2n/2

∑
{x1,...,xn},y

cy |x1 · · · xn〉 ⊗ |y〉. (14)

The first qubit-resonator controlled-phase gate produces the
state

1

2n/2

∑
{x1,...,xn},y

cy(−1)xny |x1 · · · xn〉 ⊗ |y〉. (15)

Using the binary representation, we have

(−1)xny = (−1)xny12n−1
(−1)xny22n−2 · · · (−1)xnyn

= (−1)xnyn . (16)

A subsequent Hadamard on qubit n yields

1

2(n+1)/2

∑
{x1,...,xn,z},y

cy(−1)xnyn+xnz|x1 · · · xn−1z〉 ⊗ |y〉. (17)

Performing the sums over xn and z, using the fact that

1∑
xn=0

(−1)xnyn+xnz = 2δyn,z, (18)

we find

|�1〉 = 1

2(n−1)/2

∑
{x1,...,xn−1},y

cy |x1 · · · xn−1yn〉 ⊗ |y〉. (19)

The next qubit-resonator phase gate produces the controlled
phase

(eiπ/2)xn−1y = (−1)xn−1yn−1 (i)xn−1yn , (20)

where we have used an argument similar to Eq. (16). The final
phase can be eliminated by a qubit-qubit phase gate, while a
subsequent Hadamard on qubit n − 1 yields

1

2n/2

∑
{x1,...,xn−1,z},y

cy(−1)xn−1yn−1+xn−1z|x1 · · · xn−2zyn〉 ⊗ |y〉.

(21)
Performing the sums over xn−1 and z, using the corresponding
form of Eq. (18), the second stage yields

|�2〉 = 1

2(n−2)/2

∑
{x1,...,xn−2},y

cy |x1 · · · xn−2yn−1yn〉 ⊗ |y〉.

(22)

After k stages we will find

|�k〉 = 1

2(n−k)/2

×
∑

{x1,...,xn−k},y
cy |x1 · · · xn−kyn−k+1 · · · yn〉 ⊗ |y〉.

(23)

The next qubit-resonator gate produces the controlled phase

(eiπ/2k

)xn−ky = (−1)xn−kyn−k (eiπ/2)xn−kyn−k+1 · · · (eiπ/2k

)xn−kyn .

(24)

Eliminating all of the trailing controlled phases by qubit-qubit
phase gates, performing a Hadamard gate on qubit n − k, and
evaluating the summation over xn−k yields

|�k+1〉 = 1

2(n−k−1)/2

×
∑

{x1,...,xn−k−1},y
cy |x1 · · · xn−k−1yn−k · · · yn〉 ⊗ |y〉.

(25)

Repeating until k = n, we finally obtain

|�n〉 =
∑

y

cy |y1 · · · yn〉 ⊗ |y〉. (26)

A measurement of the n qubits will produce the outcome
(y1,y2, . . . ,yn) with probability |cy |2. This circuit uses n

qubit-resonator gates, 2n Hadamard gates, and n(n − 1)/2
qubit-qubit controlled-phase gates. Thus, we see that this
circuit requires a timescale of order (log2 d)2.

III. BELL INEQUALITY EXPERIMENT
WITH NOISY QUDITS

The preceding analysis shows that, in general, one can
expect that the state preparation, rotation, and measurement
stages of a Bell inequality experiment will each require a
number of operations, such as quantum gates, that depend on
the qudit dimension. If these operations are subject to noise,
then the resulting experiment will be subject to noise that
scales with the qudit dimension. How that scaling affects the
inequality is the subject of this section.

While we will analyze idealized models of noisy qudits, our
results can be understood in physical terms. Each fundamental
quantum gate will take some time, during which the quantum
state can be subject to fluctuating fields, lose energy to the
environment, or lose quantum information in some other
fashion. Each of these noise processes will affect the quantum
state of the system, in terms of its density matrix. If the total
time for the experiment scales with the qudit dimension, the
resulting density matrix will be subject to a correspondingly
increased amount of noise.

A detailed analysis of this process would require modeling
the qudits’ Hamiltonian and its coupling to external fields
and the environment. Such an analysis is described in the
Appendix. However, to understand the scaling with dimension,
we can simplify our analysis to consider a single parameter
figure-of-merit for each step of the experiment, such as the
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FIG. 4. Generalized Bell parameter Id as a function of qudit dimension d for two types of depolarizing noise and various noise strengths.
(a) Single application of the depolarizing operator, with (nonerror) probabilities of 1, 0.99, 0.95, and 0.9, from top to bottom. (b) Repeated
application of the depolarizing operator with the number of applications is linear with the qudit dimension, with (nonerror) probabilities of 1,
0.99, 0.95, and 0.9, from top to bottom.

gate fidelity, and look at three types of noise: depolarizing
noise, amplitude damping, and dephasing noise [37]. Using
these models, we allow the strength of the noise to vary with
the qudit dimension in the following way.

We take the initial density matrix ρ0 = |�〉〈�|, with |�〉
given by Eq. (8), and iterate the appropriate trace-preserving
map

ρn+1 =
∑
m

EmρnE
†
m, (27)

where the error operators Em depend on the type of noise, to
be defined below, and are parametrized by a single number
p. This map is iterated N times, where N is proportional to
the number of fundamental steps during the preparation and
rotation stages of the Bell circuit of Fig. 2 and p is proportional
to the fidelity of each step. The final density matrix, after N

applications of the noise map and subject to the measurement
choices a and b, is given by

ρa,b = (UA,a ⊗ UB,b)ρN (UA,a ⊗ UB,b)†. (28)

The probabilities of the measurement outcomes are then

P (Aa = j,Bb = k) = 〈j,k|ρa,b|j,k〉. (29)

As discussed above, the number of steps required to prepare
the initial state and rotate the measurement is taken to be linear
in d, while the single-shot measurement circuit scales with
(log d)2. For the dimensions d � 16 considered below, there is
little difference between linear and logarithmic scaling. Thus,
to understand how scaling affects the Bell parameter Id , we set
N = d. For comparison, we will also consider N = 1, similar
to previous work.

A. Depolarizing noise

Depolarizing noise simulates the interaction of a system
with a high-temperature environment. With each iteration, the
system has probability 1 − p of becoming depolarized, i.e.,
replaced by the completely mixed state, so that

ρn+1 = pρn + (1 − p)
I

d2
, (30)

while the system has probability p of being unaffected or
subject to no error. Note that for this map, smaller values p

indicate stronger noise (this convention is chosen to match
[20]). As described above, we allow this map to be repeated
for a variable number of times before calculating the Bell
parameter.

The value of the generalized Bell parameter Id (p) is shown
in Fig. 4 as a function of d and for several values of the
(nonerror) probability p. From these results, we can make
several observations. First, for p = 1, we see that the Bell
parameter increases with dimension, as found previously. In
fact, we find

Id (p = 1) ≈ 2.97

(
1 − 1

10d

)
. (31)

Second, for p < 1 and N = 1, the Bell parameter again
increases with dimension, as seen in Fig. 4(a). However, the
overall violation does decrease with decreasing p. In fact,
it can be shown that, for this type of depolarizing noise,
Id (p) = pId (1) [20]. This behavior underlies the reputed
robustness to noise.

By contrast, if we apply the map N = d times before
calculating Id [Fig. 4(b)], we find that the violation decays
with dimension. This can be understood by noting that repeated
iteration of Eq. (30) has the solution

ρd = pdρ0 + (1 − pd )
I

d2
, (32)

so that, in the presence of depolarizing noise scaling with d,
the Bell parameter behaves as pdId (p = 1). Thus, the small
increase in the Bell parameter (for p = 1) of Eq. (31) is quickly
reduced by the exponentially decreasing factor pd .

This may have some bearing on the experimental results
discussed above [24]. If one of the stages of the experiment
has a fidelity that decays with the dimension of the entangled
state, as evidenced in previous experiments [38], one can easily
reproduce the observed decay of the inequality violation. For
example, setting p = 0.998 and N = d produces results in
rough agreement with Fig. 3 of Ref. [24].

B. Amplitude damping noise

Amplitude damping describes the effects of energy dissi-
pation on the quantum system. We use a simplified amplitude
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FIG. 5. Generalized Bell parameter Id as a function of qudit dimension d for two types of amplitude damping and various noise strengths.
(a) Single application of the amplitude damping operators, with (nonerror) probabilities of 1, 0.99, 0.95, and 0.9, from top to bottom.
(b) Repeated application of the amplitude damping operators, with the number of applications is linear with the qudit dimension, with
(nonerror) probabilities of 1, 0.99, 0.95, and 0.9, from top to bottom.

damping model, chosen to represent the damping of a quantum
resonator over a time �t with decay time T . In this model,
the singly excited state |1〉 survives with probability p =
e−�t/T , while state |j 〉 survives with probability pj [39]; the
applicability of this model is justified in the Appendix.

The specific model of amplitude damping is given by the
map

ρn+1 =
1∑

�,m=0

(E� ⊗ Em)ρn(E� ⊗ Em)†, (33)

where the single-qudit amplitude-damping operators are given
by

E0 =
d−1∑
j=0

√
pj |j 〉〈j | (34)

and

E1 =
d−1∑
j=1

√
1 − pj |j − 1〉〈j |. (35)

We note that while this model intrinsically scales with
dimension, we continue to allow the number of iterations of
the map to scale with dimension as well. It is also relevant
to observe that this map is an approximation to the actual
decay process, in that single application of this map with
p = 0 corresponds not to complete loss of energy, but to the
subtraction of a single photon.

Using this model of amplitude damping, the resulting Bell
parameter Id as a function of dimension d is shown in Fig. 5 for
several values of the probability p. For N = 1, the violation
decays slowly with d, but remains a violation for up to d = 16
for p = 0.9. Already, however, we see a significant difference
from the behavior of Id under depolarizing noise.

For N = d iterations, the violation decays much faster with
d. However, the decay is surprisingly less than the depolarizing
map for the same value of p. We will soon return to this issue,
but for certain values of d and choices of the probability, the
two are similar. For example, to model the OAM experiment
[24], one could use amplitude damping with p = 0.992 and
N = d.

The results above have used a discrete model of energy
loss, in which a single quantum is removed from the system
with some probability. Of course, the actual physics involves
a continuous loss of energy. The Appendix compares our
discrete amplitude damping model to a more continuous
model. We find that the difference between the two models
is negligible for p near 1, in which the probability of losing
two quanta can be neglected.

C. Dephasing noise

Dephasing describes loss of quantum information without
loss of energy: rather than changing the amplitudes of the
states as a function of time, the energy eigenstates of a system
accrue random phases with some probability. This is modeled
by

ρn+1 = pρn + (1 − p)
d−1∑

j,k=0

(〈j,k|ρn|j,k〉)|j,k〉〈j,k|. (36)

After each iteration, the off-diagonal elements of ρn are
reduced by a factor p.

We note that the off-diagonal elements of the final density
matrix in this case are identical to those found for the depo-
larizing map of Eq. (30). Remarkably, when measuring the
density matrix using the DFT operators, the joint probabilities
of Eq. (29) do not depend on the diagonal elements. We
thus arrive at the interesting result the effect of dephasing
noise is identical to that of the depolarizing noise considered
previously.

To verify that the probabilities do not depend on the
diagonal elements, we consider an arbitrary “diagonal” density
matrix of the form

ρdiag =
d∑

j,k=1

cj,k|j,k〉〈j,k|, (37)

where

d∑
j,k=1

cj,k = 1. (38)
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For this density matrix we use Eq. (29) to calculate the joint
probabilities

P (�,m) = 〈�,m|UA,a ⊗ UB,bρdiag(UA,a ⊗ UB,b)†|�,m〉

=
d∑

j,k=1

cj,k|〈�|UA,a|j 〉|2|〈m|UB,b|k〉|2

=
d∑

j,k=1

cj,k

1

d2
= 1

d2
. (39)

Since these probabilities are independent of cj,k , the diagonal
elements of any density matrix will contribute the constant
value of 1/d2 to the probability P (�,m). Of course, the
off-diagonal elements will also contribute to the probability.
However, any two density matrices with the same off-diagonal
elements will lead to the same probabilities, confirming the
result claimed above.

We can also use this observation regarding the probabilities
to help understand the difference between amplitude damping
and depolarizing or dephasing noise. For a single qubit,
amplitude damping reduces the diagonal elements by p, but
the off-diagonal elements by

√
p > p. Thus, the effect of

amplitude damping on the probabilities will be less than that
for depolarizing or dephasing noise, for the same value of
p. That this holds true for dimensions d > 2 is still somewhat
surprising. One possible explanation is that coherence between
neighboring qudit states is largely maintained, much like the
decay of a coherent oscillator state [34], but we have not
explored this conjecture further.

D. Thresholds for inequality violation

A convenient way to summarize the results obtained above
is to consider the minimum probability pmin for which the
CGLMP inequality can be violated. This probability satisfies

Id (pmin) = 2 (40)

and depends on the different models of noise. Recall that a
smaller probability p indicates a greater probability of error or
amount of noise. For p < pmin, the inequality is not violated,
so we call pmin the threshold probability. Previous work found
that pmin decreases with dimensions, with the conclusion that
higher-dimensional Bell inequalities can be violated even if
the system is subject to greater amounts of noise.

We have calculated the minimum probabilities for the
various noise models described above and their dependence
on dimension, as shown in Fig. 6. We find that only for
depolarizing or dephasing noise with N = 1 does the threshold
increase with dimension. For all other cases (depolarizing
or dephasing noise with N = d, and amplitude damping
with N = 1 and N = d) the minimum probability increases
with dimension. For these noise models, a violation of the
CGLMP inequality with higher-dimensional systems requires
higher-fidelity operations.

E. Alternative procedures

We have studied a number of alternative procedures of the
Bell inequality test. First, we have looked at the inequality
proposed by Zohren and Gill [22] described in the introduction
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FIG. 6. The minimum probability pmin for which the CGLMP
inequality is violated, as a function of qudit dimension d and for the
noise models (from top to bottom) depolarizing or dephasing noise
with N = d , amplitude damping with N = d , amplitude damping
with N = 1, and depolarizing or dephasing noise with N = 1.
Systems with (nonerror) probabilities of p < pmin will not violate
the inequality.

and find that the threshold probabilities are identical to those
shown in Fig. 6. Second, we have looked at the alternative
entangled states

|�〉app = 1

N

d−1∑
j=0

1√
(j + 1)(d − j )

|j,j 〉, (41)

where N is a normalization factor; these states can achieve a
higher degree of violation than the maximally entangled states
[40] and approximate those states with maximal violation.
While the thresholds are slightly different for these states,
they exhibit the same general behavior seen in Fig. 6.

Finally, we have considered another variation of the
entangled state

|�〉rev = 1√
d

d−1∑
j=0

|j,d − j 〉, (42)

in which Bob’s qudit states have been reversed (Bob’s unitaries
UB,b must also be “reversed”). These states are easier to
produce in superconducting circuits [32], and one might
think they would be less sensitive to amplitude damping.
However, the thresholds are again only slightly different for
this alternative procedure. In short, the behavior seen in Fig. 6
appears to be generic for these inequalities and noise models.

IV. CONCLUSION

We have studied the effects of noise on Bell inequality
experiments using the higher-dimensional inequalites pro-
posed by Collins et al. [20] and Zohren and Gill [22] and
variations thereof. By modeling the required operations needed
in the preparation, rotation, and single-shot measurement
stages of these experiments, we have analyzed how the
number of operations scale with the qudit dimension. For most
types of noisy operations, namely, amplitude damping, de-
polarizing, and dephasing noise, we find that the higher-
dimensional inequalities require increasingly higher-fidelity
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operations. This conclusion runs counter to previous work,
which considered depolarizing noise with a fixed noise
probability, independent of qudit dimension. However, this
conclusion is in agreement with a very recent analysis of
higher-dimensional Bell inequalities with random coherent
errors [41].

We conclude with a few observations. Our results show
that these higher-dimensional inequalities are not more robust
against noise when taking into account the full experimental
procedure. Thus, these inequalities do not appear to offer
a quick route towards closing the detection loophole with
photons. However, there are other multisetting (m > 2) in-
equalities with qudits [21] that allow for reduced detection
efficiencies for both atom-photon and photon-photon entan-
glement and in the presence of depolarizing noise. Our results
motivate continued analysis of these and other inequalities
(including those with n > 2) in the presence of realistic noise
appropriate for matter and photonic qudits. The continued
acquisition of evidence for nonlocality from a wide variety
of physical systems remains an intriguing and important goal
of modern quantum physics.
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APPENDIX

In this Appendix we model the dynamics of decoherence
on a superconducting qudit implementation of the DFT matrix
used in the higher-dimensional Bell inequalities. We generate
the unitary matrix by using the Givens rotation method
described in Ref. [31]. We further show this noise model can
be approximated by the amplitude damping model described
in the text.

Superconducting circuits can be operated as qudits [42]
and are conveniently modeled as nonlinear oscillators [43].
The nonlinearity allows state-selective two-level transitions of
the form |n〉 → |n + 1〉, for any specified oscillator state |n〉,
affecting those two states only. Noise on the system can arise
from dephasing and dissipation. We choose to model the latter
and use a traditional Lindblad equation for the density matrix
of the form

dρ

dt
= −i[Hn,ρ] + 1

T

(
aρa† − 1

2
a†aρ − 1

2
ρa†a

)
. (A1)

Here the driving Hamiltonian Hn, in the rotating wave
approximation, is modeled by

Hn = 1
2�(eiφ|n〉〈n + 1| + e−iφ |n + 1〉〈n|), (A2)

where � is the Rabi frequency with relative phase φ. In
addition, the dissipation model uses the harmonic oscillator
annihilation operator a|n〉 = √

n|n − 1〉 with decay time T .
In our simulation we use the typical parameter values of
�/2π � 25 MHz and T = 0.1 ms.

The DFT can be implemented by a sequence of two-state
rotations, each corresponding to the unitary operation e−iHn�t

for a value of n and for time interval �t . These operations
are known as Givens matrices, and the total number of such
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FIG. 7. The state fidelityF for the DFT as a function of dimension
d for amplitude damping noise, calculated by the (continuous in time)
Lindblad master equation for dissipation (points) and the (discrete in
time) operator mapping (solid curve) with p = e−�t/(4T ) with �t =
40 ns and T = 0.1 ms.

operations is

Nops = 1
2d(d − 1) + 3(d − 1). (A3)

The set of operations corresponds to the sequence

n = d − 1,d − 2, . . . ,1

= d − 1,d − 2, . . . ,2

· · ·
= d − 1, (A4)

which generates the off-diagonal elements of the matrix, and
a final set of rotations (n = 0, . . . ,d − 2, repeated three times
each) to generate the diagonal elements. As described in
Ref. [31], the parameters γ = ��t/2 and φ of each Givens
rotation can be solved to implement any desired unitary matrix
(up to an overall phase).

Using this method, we numerically solve for these pa-
rameters for DFT matrices of dimensions d = 2 → 16. We
then numerically solve the Lindblad equation of Eq. (A1) by
allowing each Hamiltonian to evolve for a time �t = 40 ns
with the corresponding Rabi parameters � = 2γ /�t and a
fixed value of T = 0.1 ms. Given an initial state ρinit we
can propagate to a final time Nops�t to find the final density
matrix ρfinal. We set ρinit = |0〉〈0| and evaluate the effect of
decoherence by calculating the state fidelity

F = 〈0|U †ρfinalU |0〉, (A5)

where U = DFTd is the DFT matrix. We repeat this calcula-
tion for various dimensions

The resulting fidelity is shown in Fig. 7, which is compared
to the amplitude damping mapping model of Sec. III B, with
N = Nops and p = e−�t/(4T ). The factor of four appearing in
this expression for p can be understood as an averaging effect
since we are starting from state |0〉 and performing a sequence
of state rotations to produce ρfinal. We see that, for d < 12, the
two models are in very good agreement. We have performed
simulations with different values of �t and obtained similar
agreement between the continuous (in time) and discrete (in
time) models of dissipation, motivating the use of the latter in
the text.
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