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Multipartite quantum nonlocality is an important diagnostic tool and resource for both researches in
fundamental quantum mechanics and applications in quantum information protocols. Shared reference frames
among all parties are usually required for experimentally observing quantum nonlocality, which is not possible in
many circumstances. Previous results have shown violations of bipartite Bell inequalities with approaching unit
probability, without shared reference frames. Here we experimentally demonstrate genuine multipartite quantum
nonlocality without shared reference frames, using the Svetlichny inequality. A significant violation probability
of 0.58 is observed with a high-fidelity three-photon Greenberger-Horne-Zeilinger state. Furthermore, when
there is one shared axis among all the parties, which is the usual case in fiber-optic or earth-satellite links, the
experimental results demonstrate the genuine three-partite nonlocality with certainty. Our experiment will be
helpful for applications in multipartite quantum communication protocols.
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I. INTRODUCTION

Nonlocality, a kind of correlation between space separated
parties which cannot be properly explained by any local
theory, is one of the most striking features of quantum
mechanics. With the development of quantum information
science, nonlocality has been far beyond a helpful concept
for deeper understanding of quantum mechanics, it is also
recognized as important and necessary resources [1,2] to
harness many quantum information protocols [3], such as
quantum teleportation [4], quantum key distribution [4,5],
reduction of communication complexity [6,7], certification
and expansion of randomness [8,9], and especially device
independent quantum information tasks [10,11].

Extensive studies have been focused on bipartite nonlo-
cality, both theoretically [12–15] and experimentally [16–18].
When researches move from a bipartite to multipartite case,
much more complex and richer structures arise. It no doubt
makes the properties and characterization of multipartite
nonlocal correlations more interesting. However, on the other
hand, it also results in much more challenging problems, both
on the theoretical [12] and experimental aspects [19].

To verify multipartite quantum nonlocality, a relevant class
of Bell inequalities have been developed, such as the Mermin-
Ardehali-Belinskii-Klyshko (MABK) inequality [20–22], the
Werner-Wolf-Zukowski-Brukner (WWZB) inequality [23,24],
the Mermin (M) inequality [20], the Mermin-Klyshko (MK)
inequality [20,22], and the Svetlichny (S) inequality [25].
Among these inequalities, the S inequality has special impor-
tance because the violation of it demonstrates the nonlocality
to be genuinely multipartite, and there have been some
experiments [26,27] testing the Svetlichy inequality. When
testing these inequalities, an important requirement is that
spatially separated parties should share a common reference

*hyf@ustc.edu.cn
†cfli@ustc.edu.cn

frame [28,29]. But in practical experiments, aligning the
reference frames of each party is resource intensive and
technically demanding, especially for distant parties, which
might be an obstacle for implementing various multipartite
quantum communication protocols.

Several methods have been developed to circumvent this
problem. One possible method is to use specially encoded
multiqubit states which are invariant under collective rotations
of each local reference frame [30,31]. However, it requires
multiqubit entangled state preparation, which is still challeng-
ing in technique. Another way to align measurements is to
establish a shared reference frame by using correlated quantum
systems [32,33], which will consume an intensive resource
for coherently exchanging many entangled quantum systems.
Recently, Liang et al. show that random measurements can
also lead to nonlocal correlations between measurement out-
comes [34]. After that, there are several simulations and proofs
working on finding optimal measurement settings to improve
the violation probability of Bell inequalities [16,35–37], or
even with certainty violation probability [17,18,36,38]. Up
to now, there have been three experiments [16–18] seeking
to demonstrate violations of Bell inequalities without shared
reference frames. In Refs. [16,17] photon polarizations are
used as an encoding qubit, while in Ref. [18] hybrid encoded
logic qubits of spin and orbital angular momentum degrees
of freedom are employed to work in a rotation invariant way.
However, all these experiments are limited in the bipartite case.

In this paper, with a high fidelity three-photon GHZ state,
we experimentally demonstrate genuine multipartite quantum
nonlocality without shared reference frames, by choosing the
tetrahedral measurement bases proposed by Senel et al. [36].
The violation probability of the Svetlichny inequalitiy is
0.58. Furthermore, when one axis of the reference frames
can be aligned, like the case in the fiber optics or earth-
to-satellite links, we even demonstrate genuine three-partite
nonlocality with certainty, using a Y shape measurement
base. Numerical analysis shows that the choice of the Y
shape measurement base also has a robust resistance to state
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preparation noise. We believe that such results will be helpful
for multipartite alignment-free QKD protocols [37], as well as
other multipartite quantum communication protocols.

II. THEORETICAL SCHEME AND
NUMERICAL ANALYSIS

For simplicity we consider a tripartite system, each subsys-
tem is measured by one observer. For each subsystem, the mea-
surement setting and the outcome are denoted by M1,M2,M3

and r1,r2,r3, respectively. Then the joint outcome probabilities
of the tripartite system can be written as P (r1r2r3|M1M2M3).
In a local hidden variable model, the definition of the
standard multipartite nonlocality means that the joint outcome
probabilities cannot be written as P (r1r2r3|M1M2M3) =
∫P (r1|M1,λ)P (r2|M2,λ)P (r3|M3,λ)ρ(λ)dλ, where λ is a
shared local hidden variable, ∫ ρ(λ)dλ = 1, with ρ(λ) � 0,
and P (rk|Mk,λ)(k ∈ 1,2,3) is the probability of the kth
observer measuring observable Mk with outcome rk for a
given local hidden variable λ. However, the definition of
the genuine multipartite nonlocality [25] gives a stronger
form of multipartite correlations than the standard multipartite
nonlocality, which means that the joint outcome probabilities
cannot be written as

P (r1r2r3|M1M2M3)

= ∫P (r1|M1,λ)P (r2r3|M2M3,λ)ρ(λ)dλ

+ ∫P (r2|M2,μ)P (r1r3|M1M3,μ)ρ(μ)dμ

+ ∫P (r3|M3,ν)P (r2r3|M2M3,ν)ρ(ν)dν. (1)

Based on these definitions, an operational way to verify
the system’s nonlocal properties is to check the multipartite
Bell type inequalities, especially the S inequality [25], for the
genuine multipartite nonlocality. When experimentally testing
these inequalities, usually we need to align the reference
frames for each subsystem, which poses stringent requirements
for experimental techniques. However, recently it is also found
that the violation of Bell inequalities is still possible even
without alignment of reference frames [34,36,38]. In [36],
choosing a tetrahedral measurement scheme for each observer,
a high violation probability of the S inequality is achieved.

In the following, we focus on the tripartite case. For this
case, the S inequality can be constructed from the S polyno-
mials as S3 = 1

4 (S2a
′
3 + S ′

2a3), where S2 = 1
4 (a1a2 + a1a

′
2 +

a′
1a2 − a′

1a
′
2), S ′

2 = 1
4 (a′

1a
′
2 + a′

1a2 + a1a
′
2 − a1a2), and ak(a′

k)
is the measurement performed on the kth observer. When
each product term in the S polynomial is replaced by
its corresponding expectation values, such as a1a2a

′
3 being

replaced by E(a1a2a
′
3), we get a corresponding S expression.

And the absolute value of this S expression is the S inequality
value, denoted as IS . Now the S inequality is written as IS � 1.
According to the measurement scheme in Ref. [36], starting
from sharing a multipartite state, each observer measures his
subsystem in four bases, which define measurement directions
evenly spaced over the Bloch sphere, corresponding to the four
vertices of a tetrahedron in the Bloch sphere. Thus, for three
observers, a total of 43 = 64 kinds of joint measurements are
performed, and (4 × 3)3 = 1728 different S inequality values
can be obtained. Then we pick out the maximal value among
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FIG. 1. Numerical simulation results of S inequality violation
probability versus fidelity V with noisy GHZ states ρV , and without
shared reference frame. For the case of sharing no common axis, the
red solid line denotes the result with the tetrahedral measurement
scheme and its highest violation probability 0.871 is achieved at
V = 1. For the case of sharing only one common axis, the blue
dashed line is the result with the two perpendicular measurement
directions scheme, in which unit violation probability is achieved
when V = 1. And the brown dash-dot line is the result of applying
our Y shape measurement scheme, in which unit violation probability
is maintained in a large area between V = 1 and V = 0.93.

them to see whether it violates the S inequality. After a large
number of repetitions of the above trials, we will get the
violation probability PS of the S inequality, which is the ratio
of the number of trials in which the S inequality is violated over
the total number of trials. Note that, to introduce the alignment-
free effect, each observer should equivalently make a random
local rotation Rk (for the kth observer) on his subsystem
before performing his measurements. Here Rk is given as
Rk = cos θk

2 I − i sin θk

2 (n1
kσ1 + n2

kσ2 + n3
kσ3), where θk and n

j

k

are real,
∑

j n
j

k = 1, and σk (k = 1,2,3) are the Pauli operators.
Starting from a three-qubit Greenberger-Horne-Zeilinger

(GHZ) state, using the tetrahedral measurement bases, nu-
merical simulation in [36] shows a 88% high violation
probability of the S3 inequality. However, for the purpose of
experimental testing, we need to further analyze the situation
of nonideal initial state preparation. Suppose that the noisy
GHZ state is ρV = V |GHZ3〉〈GHZ3| + (1 − V ) I

8 , where I is
the identity, |GHZ3〉 = 1√

2
(|000〉 + |111〉), and 0 � V � 1 (V

denotes the fidelity or visibility). With the tetrahedral bases, we
numerically simulate the violations of the S inequality without
a shared reference frame. In Fig. 1 the red solid line shows
the simulation results. The maximum violation probability
0.871 is achieved by the ideal GHZ state, and the violation
probability reduced quickly as the fidelity V decreases. With
a fidelity less than 0.8, there will be hardly any violation of
the S inequality. Such results pose a high requirement on the
GHZ state preparation fidelity.

As mentioned in the Introduction, a usually encountered
practical situation is that the observers can share one reference
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FIG. 2. Experimental setup. The abbreviations of the components are DM, dichroic mirror; HWP, half-wave plate; FC, fiber coupler; BS,
beam splitter; QWP, quarter-wave plate; IF, interference filter; PBS, polarizing beam splitter; APD, avalanche photodiode; SMF, single-mode
fiber; and DL, delay line. In the main figure, two photon pairs emitted from one EPR source and one product state source are coupled into
single mode fibers. The DL is translation stage for tuning the arrival time of photons to interfere them at the PBS. The polarization states of the
photons are analyzed by one QWP, one HWP, one PBS, and two APDs. The output signals of the APDs are sent to the coincidence unit.

frame axis, such as the cases in fiber-optic or earth-satellite
communications. So we also numerically analyze the model
in which the random local rotations performed before the
measurement by each observer are restricted as Rz

k(θ ) =
cos θ

2 I − i sin θ
2 σ3 (supposing that the Z axis is shared),

where Rz
k(θ ) is randomized according to θ . In Ref. [36] it

is shown that in this case the S inequality can be violated with
certainty using two perpendicular measurement operators on
the restricted plane. However, for the nonideal initial GHZ
state, our numerical results show that the violation probability
can achieve 1 only when V = 1 and it drops quickly as V

decreases, which means that it is very difficult to achieve the
violation with certainty in real experiments. In Fig. 1 the blue
dashed line shows our numerical results for this measurement
scheme.

To achieve the S inequality violation with certainty in a
real experiment, we propose and numerically analyze a new
Y shape measurement scheme, which is more robust against
the state preparation noise. The Y shape bases have three
measurement directions in the restricted plane, and each is
separated 120 deg with each other. With the Y shape bases,
when V decreases, a unit violation probability still can be
achieved in a certain region of V . The brown dash-dot line
in Fig. 1 illustrates that the guaranteed violation can still be
achieved even when the fidelity is as low as 0.93.

III. EXPERIMENT SETUP AND RESULTS

In our experiment, two cases are tested to demonstrate
the genuine multipartite nonlocality without shared reference

frames. One is testing the tripartite S inequality for the
|GHZ3〉 state without any alignment among each observer,
using the tetrahedral measurement scheme. The other is testing
the tripartite S inequality for |GHZ3〉 with one shared axis
(the Z axis), using the Y shape measurement scheme.

The experimental setup is shown in Fig. 2. The pulse
train from a mode-locked Ti-sapphire laser (with a central
wavelength 780 nm, a repetition rate of 76 MHz, and a duration
of 140 fs) first passes through a second harmonic generator
(SHG). Then the frequency-doubled ultraviolet pulse train
emitted from the SHG is split into two beams with identical
powers. One beam is sent to pump a single type-II beam like
a phase-matching BBO crystal to prepare photon pairs in the
product state |HV 〉, where H and V denote the horizontal and
vertical polarization states of the photons, respectively. The
other beam is sent to pump a sandwich-like EPR source [39]
consisting of two 1-mm-thick beta-barium borate (BBO)
crystals to prepare the state of 1√

2
(|HH 〉 + |V V 〉). Then the

two photon pairs are collected by four single mode fibers. After
that, the photon in the output mode o1 is directly detected by
an avalanche photodiode (APD) as a trigger. And the photon in
the output mode e1 is first transformed to the state of |H + V 〉
by a half-wave plate and then directed to interfere with the
photon in the output mode e2 on a polarizing beam splitter
(PBS), which is set to transmit (reflect) H (V ) polarization.
When there is one and only one photon in each of the four
spatial modes o1, o2, e′

1, e′
2, the three photons in o2, e′

1, e′
2

modes are successfully prepared in the state |GHZ3〉.
Before testing the S inequality, we first perform the quantum

state tomography on the prepared |GHZ3〉 state. For this
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FIG. 3. The result of the tomography density matrix for |GHZ3〉.
Data collection time for each measurement setting is 800 s. (a) The
real part of the tomography density matrix. (b) The image part of the
tomography density matrix.

purpose, each photon is spectrally filtered with a interference
filter (centered at 780 nm, with 2 nm bandwidth for e′

1,
e′

2 modes and 3 nm bandwidth for o1, o2 modes. Then an
automated polarization analysis system (APAS) consisting of
one half-wave plate, one quarter-wave plate, one polarizing
beam splitter, and two single photon detectors are employed to
measure the photons in the o2, e′

1, and e′
2 modes in appropriate

polarization basis. At last, a multichannel coincidence unit
is used to register all possible coincidence counts. Thus, we
can reconstruct the density matrix ρexpt of the prepared state
from these data (see Fig. 3 for tomography results). With ρexpt

we find that the fidelity of the prepared three photon state
with |GHZ3〉 is F = 〈GHZ3|ρexpt|GHZ3〉 = 0.971 ± 0.003.
And the typical four-photon coincidence rate is 1 Hz. We
also directly test the S inequality with shared reference frames,
using ρexpt. The measured S value is 1.37 ± 0.05, which shows
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FIG. 4. The measured S inequality values for 100 experimental
trials in the case of sharing no common axis, using the tetrahedral
measurement scheme.

a violation of seven standard errors and is close to the maximal
S value of 1.414 with ideal state |GHZ3〉.

In the next step we test the case of measuring in tetrahedral
bases without shared reference frames for our |GHZ3〉 state.
To obtain the violation probability of the S inequality, we
perform the experiment for 100 trials. In each trial the four
measurement bases for each observer are defined by the four
vertices of a randomly rotated, inscribed tetrahedron of the
Bloch sphere. So there are a total of 43 = 64 joint measurement
settings in each trial. For each measurement setting, the data
collection time is 100 s. By recording all possible four-photon
coincidence counts among the four APAS, we can calculate the
total of (4 × 3)3 = 1728 S inequality values and check whether
the maximal value in them violates the S inequality. The ex-
perimental results of the 100 trials are shown in Fig. 4. We can
see that among the 100 trials, there are 58 trials which violate
the S inequality for more than one standard error. This gives
us a rough estimation of the violation probability to be 0.58.

To study the case of violating the S inequality with one
shared axis, we employ the Y shape measurement scheme,
assuming that the Z axis is shared among different observers.
We perform a total of 120 trials of the experiment. Each trial
has the same experimental process as described above, except
that the chosen measurement bases changed to the Y shape
bases and the random rotations are limited in the σx-σy plane.
So, for each trial, we perform 33 = 27 joint measurements
and get (3 × 2)3 = 216 S inequality values. The experimental
results are shown in Fig. 5. In contrast to the results in Fig. 4,
we can see clearly that all 120 trials illustrate a violation of the
S inequality. And the smallest S inequality value among the
120 trials is 1.089 ± 0.05.

When discussing the results in the above two cases,
although in the first alignment-free case we have demonstrated
genuine tripartite nonlocality with significant probability, the
difference between the experimental results and the numerical
simulation result of a 0.871 violation probability is still large.
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FIG. 5. The measured S inequality values for 120 experimental
trials in the case of sharing only one common axis, using the Y shape
measurement scheme.

This is mainly due to our nonideal state fidelity 0.97 of
|GHZ3〉 and the limited standard error 0.05 of the S inequality
values. Through numerical simulation, the experimentally
reconstructed density matrix ρexpt with a 0.97 fidelity will
lead to a large decrease of the violation probability from 0.871
to 0.692. Furthermore, when accounting for the standard error
0.05 of the S inequality values, we cannot take the trials which
only violate the S inequality with less than one standard error
into account, which leads to a further decrease of the violation
probability. Lastly, to estimate a probability seriously, 100
is not an adequate number of trials in fact, and this number
is limited by the limited data collection time of the whole
experiment. However, fortunately, a more practical situation
is actually the second case, in which one common axis exists.
For such a partial-alignment-free case, the experiment results
give out a unit probability even with the unavoidable state
preparation noise.

It is worth noting that, although our results seem to have
some similarity with the device-independent entanglement
witness (DIEW) [40,41], they are very different in terms of

their starting points and purposes. The DIEW is used to avoid
false-positive entanglement detections when the devices are
unreliable, i.e., misalignment of their devices should not make
separable states to violate the DIEW, which would probably
happen with the traditional entanglement witnesses [40].
However, in our work, the purpose is to see violations of
the inequality with success probability as high as possible
when the input states are genuine multipartite nonlocal but
no reference frames are shared. So we aim to avoid some
false-negative nonlocality detection. In fact, for nonlocality
detection with Bell inequalities, there is no opportunity for
false-positive nonlocality detection, in spite of the misaligned
reference frames. This is determined by the construction
of Bell inequalities: the measurement operators in a Bell
inequality can take various directions, but such variations
would never make a local state to violate the inequality, it only
gives us a way to maximize the violation for a nonlocal state.

IV. CONCLUSION

In summary, we experimentally demonstrate genuine mul-
tipartite nonlocality in an alignment-free case and a partial-
alignment-free case. When there is no shared reference axis, a
significant violation probability of the S inequality is observed
with a tetrahedral measurement scheme. Furthermore, if one
reference axis is shared, the violation of the S inequality is
achieved with certainty using a Y shape measurement scheme,
even when the initial GHZ state is noisy. Our results illustrate
that the multipartite nonlocality is more ubiquitous than people
have ever thought and would be useful for studying multipartite
nonlocality in the scenarios of practically realizing multipartite
quantum communication tasks among distant parties.
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[27] D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B.

Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein,
Nat. Photon. 8, 801 (2014).

[28] R. A. Bertlmann and A. Zeilinger, Quantum (Un) Speakables:
From Bell to Quantum Information (Springer Science & Busi-
ness Media, New York, 2002), p. 119.

[29] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Rev. Mod. Phys.
79, 555 (2007).

[30] A. Cabello, Phys. Rev. A 68, 042104 (2003).
[31] A. Cabello, Phys. Rev. Lett. 91, 230403 (2003).
[32] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Phys. Rev. Lett.

91, 027901 (2003).
[33] T. Rudolph and L. Grover, Phys. Rev. Lett. 91, 217905

(2003).
[34] Y.-C. Liang, N. Harrigan, S. D. Bartlett, and T. Rudolph, Phys.

Rev. Lett. 104, 050401 (2010).
[35] J. J. Wallman, Y.-C. Liang, and S. D. Bartlett, Phys. Rev. A 83,

022110 (2011).
[36] C. Furkan Senel, T. Lawson, M. Kaplan, D. Markham, and

E. Diamanti, Phys. Rev. A 91, 052118 (2015).
[37] A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, Phys. Rev.

A 82, 012304 (2010).
[38] J. J. Wallman and S. D. Bartlett, Phys. Rev. A 85, 024101

(2012).
[39] C. Zhang, Y.-F. Huang, Z. Wang, B.-H. Liu, C.-F. Li, and G.-C.

Guo, Phys. Rev. Lett. 115, 260402 (2015).
[40] J.-D. Bancal, N. Gisin, Y.-C. Liang, and S. Pironio, Phys. Rev.

Lett. 106, 250404 (2011).
[41] J. T. Barreiro, J.-D. Bancal, P. Schindler, D. Nigg, M. Hennrich,

T. Monz, N. Gisin, and R. Blatt, Nat. Phys. 9, 559 (2013).

032127-6

http://dx.doi.org/10.1103/RevModPhys.86.419
http://dx.doi.org/10.1103/RevModPhys.86.419
http://dx.doi.org/10.1103/RevModPhys.86.419
http://dx.doi.org/10.1103/RevModPhys.86.419
http://dx.doi.org/10.1103/PhysRevLett.86.1911
http://dx.doi.org/10.1103/PhysRevLett.86.1911
http://dx.doi.org/10.1103/PhysRevLett.86.1911
http://dx.doi.org/10.1103/PhysRevLett.86.1911
http://dx.doi.org/10.1103/PhysRevLett.71.1665
http://dx.doi.org/10.1103/PhysRevLett.71.1665
http://dx.doi.org/10.1103/PhysRevLett.71.1665
http://dx.doi.org/10.1103/PhysRevLett.71.1665
http://dx.doi.org/10.1103/PhysRevA.87.042104
http://dx.doi.org/10.1103/PhysRevA.87.042104
http://dx.doi.org/10.1103/PhysRevA.87.042104
http://dx.doi.org/10.1103/PhysRevA.87.042104
http://dx.doi.org/10.1103/PhysRevA.86.032322
http://dx.doi.org/10.1103/PhysRevA.86.032322
http://dx.doi.org/10.1103/PhysRevA.86.032322
http://dx.doi.org/10.1103/PhysRevA.86.032322
http://dx.doi.org/10.1038/srep00470
http://dx.doi.org/10.1038/srep00470
http://dx.doi.org/10.1038/srep00470
http://dx.doi.org/10.1038/srep00470
http://dx.doi.org/10.1038/ncomms1951
http://dx.doi.org/10.1038/ncomms1951
http://dx.doi.org/10.1038/ncomms1951
http://dx.doi.org/10.1038/ncomms1951
http://dx.doi.org/10.1103/PhysRevLett.114.160501
http://dx.doi.org/10.1103/PhysRevLett.114.160501
http://dx.doi.org/10.1103/PhysRevLett.114.160501
http://dx.doi.org/10.1103/PhysRevLett.114.160501
http://dx.doi.org/10.1103/PhysRevLett.65.1838
http://dx.doi.org/10.1103/PhysRevLett.65.1838
http://dx.doi.org/10.1103/PhysRevLett.65.1838
http://dx.doi.org/10.1103/PhysRevLett.65.1838
http://dx.doi.org/10.1103/PhysRevA.46.5375
http://dx.doi.org/10.1103/PhysRevA.46.5375
http://dx.doi.org/10.1103/PhysRevA.46.5375
http://dx.doi.org/10.1103/PhysRevA.46.5375
http://dx.doi.org/10.1070/PU1993v036n08ABEH002299
http://dx.doi.org/10.1070/PU1993v036n08ABEH002299
http://dx.doi.org/10.1070/PU1993v036n08ABEH002299
http://dx.doi.org/10.1070/PU1993v036n08ABEH002299
http://dx.doi.org/10.1103/PhysRevA.64.032112
http://dx.doi.org/10.1103/PhysRevA.64.032112
http://dx.doi.org/10.1103/PhysRevA.64.032112
http://dx.doi.org/10.1103/PhysRevA.64.032112
http://dx.doi.org/10.1103/PhysRevLett.88.210401
http://dx.doi.org/10.1103/PhysRevLett.88.210401
http://dx.doi.org/10.1103/PhysRevLett.88.210401
http://dx.doi.org/10.1103/PhysRevLett.88.210401
http://dx.doi.org/10.1103/PhysRevD.35.3066
http://dx.doi.org/10.1103/PhysRevD.35.3066
http://dx.doi.org/10.1103/PhysRevD.35.3066
http://dx.doi.org/10.1103/PhysRevD.35.3066
http://dx.doi.org/10.1088/1367-2630/11/7/073051
http://dx.doi.org/10.1088/1367-2630/11/7/073051
http://dx.doi.org/10.1088/1367-2630/11/7/073051
http://dx.doi.org/10.1088/1367-2630/11/7/073051
http://dx.doi.org/10.1038/nphoton.2014.218
http://dx.doi.org/10.1038/nphoton.2014.218
http://dx.doi.org/10.1038/nphoton.2014.218
http://dx.doi.org/10.1038/nphoton.2014.218
http://dx.doi.org/10.1103/RevModPhys.79.555
http://dx.doi.org/10.1103/RevModPhys.79.555
http://dx.doi.org/10.1103/RevModPhys.79.555
http://dx.doi.org/10.1103/RevModPhys.79.555
http://dx.doi.org/10.1103/PhysRevA.68.042104
http://dx.doi.org/10.1103/PhysRevA.68.042104
http://dx.doi.org/10.1103/PhysRevA.68.042104
http://dx.doi.org/10.1103/PhysRevA.68.042104
http://dx.doi.org/10.1103/PhysRevLett.91.230403
http://dx.doi.org/10.1103/PhysRevLett.91.230403
http://dx.doi.org/10.1103/PhysRevLett.91.230403
http://dx.doi.org/10.1103/PhysRevLett.91.230403
http://dx.doi.org/10.1103/PhysRevLett.91.027901
http://dx.doi.org/10.1103/PhysRevLett.91.027901
http://dx.doi.org/10.1103/PhysRevLett.91.027901
http://dx.doi.org/10.1103/PhysRevLett.91.027901
http://dx.doi.org/10.1103/PhysRevLett.91.217905
http://dx.doi.org/10.1103/PhysRevLett.91.217905
http://dx.doi.org/10.1103/PhysRevLett.91.217905
http://dx.doi.org/10.1103/PhysRevLett.91.217905
http://dx.doi.org/10.1103/PhysRevLett.104.050401
http://dx.doi.org/10.1103/PhysRevLett.104.050401
http://dx.doi.org/10.1103/PhysRevLett.104.050401
http://dx.doi.org/10.1103/PhysRevLett.104.050401
http://dx.doi.org/10.1103/PhysRevA.83.022110
http://dx.doi.org/10.1103/PhysRevA.83.022110
http://dx.doi.org/10.1103/PhysRevA.83.022110
http://dx.doi.org/10.1103/PhysRevA.83.022110
http://dx.doi.org/10.1103/PhysRevA.91.052118
http://dx.doi.org/10.1103/PhysRevA.91.052118
http://dx.doi.org/10.1103/PhysRevA.91.052118
http://dx.doi.org/10.1103/PhysRevA.91.052118
http://dx.doi.org/10.1103/PhysRevA.82.012304
http://dx.doi.org/10.1103/PhysRevA.82.012304
http://dx.doi.org/10.1103/PhysRevA.82.012304
http://dx.doi.org/10.1103/PhysRevA.82.012304
http://dx.doi.org/10.1103/PhysRevA.85.024101
http://dx.doi.org/10.1103/PhysRevA.85.024101
http://dx.doi.org/10.1103/PhysRevA.85.024101
http://dx.doi.org/10.1103/PhysRevA.85.024101
http://dx.doi.org/10.1103/PhysRevLett.115.260402
http://dx.doi.org/10.1103/PhysRevLett.115.260402
http://dx.doi.org/10.1103/PhysRevLett.115.260402
http://dx.doi.org/10.1103/PhysRevLett.115.260402
http://dx.doi.org/10.1103/PhysRevLett.106.250404
http://dx.doi.org/10.1103/PhysRevLett.106.250404
http://dx.doi.org/10.1103/PhysRevLett.106.250404
http://dx.doi.org/10.1103/PhysRevLett.106.250404
http://dx.doi.org/10.1038/nphys2705
http://dx.doi.org/10.1038/nphys2705
http://dx.doi.org/10.1038/nphys2705
http://dx.doi.org/10.1038/nphys2705



