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We investigate the generic aspects of quantum coherence guided by the concentration of measure phenomenon.
We find the average relative entropy of coherence of pure quantum states sampled randomly from the uniform
Haar measure and show that it is typical, i.e., the probability that the relative entropy of coherence of a randomly
chosen pure state is not equal to the average relative entropy of coherence (within an arbitrarily small error) is
exponentially small in the dimension of the Hilbert space. We find the dimension of a random subspace of the
total Hilbert space such that all pure states that reside on it almost always have at least a fixed nonzero amount
of the relative entropy of coherence that is arbitrarily close to the typical value of coherence. Further, we show,
with high probability, every state (pure or mixed) in this subspace also has the coherence of formation at least
equal to the same fixed nonzero amount of the typical value of coherence. Thus, the states from these random
subspaces can be useful in the relevant coherence consuming tasks like catalysis in the coherence resource theory.
Moreover, we calculate the expected trace distance between the diagonal part of a random pure quantum state and
the maximally mixed state and find that it does not approach to zero in the asymptotic limit. This establishes that
randomly chosen pure states are not typically maximally coherent (within an arbitrarily small error). Additionally,
we find the lower bound on the relative entropy of coherence for the set of pure states whose diagonal parts are
at a fixed most probable distance from the maximally mixed state.
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I. INTRODUCTION

Random pure quantum states offer new insights for various
phenomena in quantum physics and quantum information the-
ory by exploiting the strong mathematical tools of probability
theory and random matrix theory [1]. These states play a
fundamental role in providing a satisfactory explanation to the
postulate of equal a priori probability of statistical physics
[2,3]. Moreover, various properties of complex quantum
systems become typical for these states, allowing one to
infer general structures on the set of states on the Hilbert
space [1,4,5]. In particular, the entanglement properties of
pure bipartite quantum states sampled from the uniform Haar
measure have been studied extensively [4–15]. It has been
shown that the overwhelming majority of random bipartite
pure quantum states sampled from the uniform Haar measure
are extremely close to the maximally entangled state [5], which
seems very counterintuitive. Notably, Lévy’s lemma and in
general, the concentration of measure phenomenon used in
proving the above result paved the way to construct coun-
terexamples to the conjecture of the additivity of minimum
output entropy [16–18] among other important implications
[19]. Also, the physical relevance of generic entanglement has
been established by showing that it can be generated efficiently
[20].

In recent years, quantum coherence has been deemed
important in a wide spectrum of physical situations, includ-
ing quantum thermodynamics [21–30] and quantum biology
[31–36]. This has led to the development of resource theories
of coherence [37–39] adapting the well-established notions
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of the entanglement resource theory [40]. Since then, these
theories have steered various explorations of the coherence
properties of quantum systems [41–59]. Also, the possible
connections between the coherence resource theories and those
of entanglement have been explored [43,60–62]. However,
coherence properties of random pure states of single quantum
systems have not been studied in great detail. In this work,
we find the behavior of the quantum coherence for a system
in a pure quantum state chosen randomly from the uniform
Haar measure. We show that for higher-dimensional systems
the coherence behaves generically, i.e., most of the systems in
these random pure states possess almost the same amount
of coherence. We demonstrate that the generic nature of
coherence of these states holds for various measures of
coherence, such as the relative entropy of coherence [39],
which is also equal to the distillable coherence, the coherence
of formation [45], and the l1 norm of coherence [39]. In
these situations the coherence is solely determined by a
few generic parameters that appear in the “concentration of
measure phenomenon,” such as the dimension of the Hilbert
space. We find a large concentrated subspace of the full
Hilbert space with the property that the relative entropy of
coherence [39] of every pure state in this subspace is almost
always lower bounded by a fixed number that is very close
to the typical value of coherence. Moreover, for all the states
(pure or mixed) in this subspace, the coherence of formation
[45] is also lower bounded by the same fixed number. These
subspaces are of immense importance in situations where
quantum coherence is a useful resource as they guarantee a
lower bound on the amount of coherence that may be used. An
important example, that consumes coherence, is the catalysis
of coherence [63], which allows the state transformations that
are otherwise forbidden (as may be required in work extraction
protocols in quantum thermodynamics) within the allowed set
of operations. Furthermore, we find that most of the pure states
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sampled randomly from the Haar measure are not typically
maximally coherent. This is in sharp contrast to the fact that
most of the bipartite pure states sampled randomly from the
Haar measure are typically maximally entangled [5]. Since
the quantum coherence quantifies the wave nature of a particle
[64,65], one may ask how “wavy” is a quantum particle if the
state of the particle is chosen at random from the uniform Haar
measure. Our result shows that the “typical wave nature” of
a quantum particle such as a qudit is directly related to dth
harmonic number.

The paper is organized as follows. We start with a discussion
on random pure quantum states, measures of coherence,
the concentration of measure phenomenon, and a few other
preliminaries in Sec. II. In Sec. III, we calculate the average
relative entropy of coherence for random pure states sampled
from the uniform Haar distribution, establish the typicality
of the obtained average amount of coherence, and find the
dimension of the subspace of the total Hilbert space with the
property that all pure states in this subspace have at least a fixed
amount of relative entropy of coherence as well as coherence
of formation. We then present our results on expected classical
purity, its typicality, and the upper bound on the l1 norm of
coherence in Sec. IV. Subsequently, in Sec. V we establish
that most of the randomly sampled pure states are not typically
maximally coherent. Finally, we conclude in Sec. VI with an
overview on the implications of the results presented in the
paper.

II. RANDOM PURE QUANTUM STATES, MEASURES OF
COHERENCE, AND CONCENTRATION OF MEASURE

PHENOMENON

Random pure states. It only makes sense to talk about
random quantum states after we have fixed a measure μ on the
set of quantum states. Having fixed a measure μ on the set of
quantum states, one can calculate the desired averages over all
states with respect to this measure. Here we are interested in the
set of pure quantum states. For a d-dimensional Hilbert space
H, the set of pure states is identified as complex projective
space CP d−1. On this space there exists a unique natural
measure d(ψ), induced by the uniform Haar measure dμ(U )
on the unitary group U(d) [66–70]. This amounts to saying
that any random pure state |ψ〉 is generated equivalently by
applying a random unitary matrix U ∈ U(d) on a fixed pure
state |ψ0〉, i.e., |ψ〉 = U |ψ0〉. Now one can define the average
value of some function g of a pure state as follows:

Eψg(ψ) :=
∫

d(ψ)g(ψ) =
∫

U(d)
dμ(U )g(Uψ0).

In what follows, by random pure states we mean the states
generated by applying random Haar distributed unitaries on
some fixed pure state and all the averages are with respect to
the Haar measure.

Measures of coherence. The measures of coherence that we
consider in this work are the l1 norm of coherence, the relative
entropy of coherence, and the coherence of formation. For a
density matrix ρ of dimension d and a fixed reference basis

{|i〉}, the l1 norm of coherence Cl1 (ρ) [39] is defined as

Cl1 (ρ) =
d∑

i,j=1
i �=j

| 〈i| ρ|j 〉|. (1)

The relative entropy of coherence Cr (ρ) [39] is defined as

Cr (ρ) = S(ρD) − S(ρ), (2)

where ρD is the diagonal part of the density matrix ρ in
the fixed reference basis and S is the von Neumann entropy,
defined as S(ρ) = − Tr (ρ ln ρ). Here and in the rest of the
paper, all the logarithms are taken with respect to the base e.
The coherence of formation Cf (ρ) [45] is defined as

Cf (ρ) = min
{pa,|ψa〉〈ψa |}

∑
a

paS(ρD(ψa)), (3)

where ρD(ψa) is the diagonal part of the pure state |ψa〉,
ρ = ∑

a pa |ψa〉 〈ψa|, and the minimum is taken over all such
decompositions of ρ. We emphasize that here we consider an
intrinsically basis-dependent notion of coherence applicable
to finite-dimensional systems. It may be remarked that the
above notion of coherence has attracted a great deal of interest
recently, although it is not widely accepted by all. There are
other notions of coherence, such as those based on the resource
theory of asymmetry [37,38] and the optical coherence in
quantum optics [71,72].

Concentration of measure phenomenon. For many func-
tions defined over a vector space, the overwhelming majority
of vectors take a value of the function very close to the average
value as the dimension of the vector space goes to infinity. This
observation, collectively, is referred to as the concentration of
measure phenomenon. Here we show that several measures of
coherence have this property. Let us consider a simple example
to demonstrate the concentration of measure phenomenon.
Consider the k sphere Sk in Rk+1 with k being very large.
A direct calculation yields that the uniform measure μ on
Sk is almost concentrated around every equator when k is
large. Similarly, an explicit calculation [19] of the measure of
spherical caps implies that given any measurable set S with
μ(S) � 1/2, for every r > 0, μ(Sr ) � 1 − exp{(k − 1)r2/2},
where Sr = {x ∈ Sk : d(x,S) < r} and d(x,y) is the Eu-
clidean distance on Rk+1. This is one of the first quantitative
instances of the concentration of measure phenomenon. For
Lipschitz continuous functions on the sphere, Lévy’s lemma
is a rigorous statement about the concentration of measure
phenomenon [19]. Let us first define the Lipschitz continuous
functions.

Lipschitz continuous function and Lipschitz constant. Sup-
pose (M,d1) and (N,d2) are metric spaces and F : M → N .
If there exists η ∈ R+ such that d2(F (x),F (y)) � ηd1(x,y)
for all x,y ∈ M , then F is called a Lipschitz continuous
function on M with the Lipschitz constant η. Every real number
larger than η is also a Lipschitz constant for F [73]. Next,
we introduce a form of Lévy’s lemma that will be the key
ingredient in our paper.

Lévy’s lemma (see [19] and [5]). Consider a sequence F =
{Fk : Sk → R}k of Lipschitz continuous functions from the k

sphere to the real line with each function Fk having the same
Lipschitz constant η that is independent of k (with respect to
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the Euclidean norm). Let a point X ∈ Sk be chosen uniformly
at random. Then, for all ε > 0 and k,

Pr{|Fk(X) − E(Fk)| > ε} � 2 exp

(
− (k + 1)ε2

9π3η2 ln 2

)
. (4)

Here E(Fk) is the mean value of Fk . It is insightful to consider
ε = r−1/4 in Eq. (4). With this choice, the bound on the right-
hand side decreases exponentially as exp (−√

r) while the
bound on the left-hand side decreases like r−1/4, making it
clear that the probability of being nontypical decreases much
faster and hence is “essentially zero” for large r . Note that the
average over the Haar distributed d-dimensional pure states is
equivalent to the average over the k sphere with k = 2d − 1.

At various places in our work, we use the trace norm and
the Euclidean norm for matrices: (1) The trace norm of a
matrix A, denoted by ||A||1, is defined as ||A||1 = Tr

√
A†A,

where † is the Hermitian conjugate. (2) The Euclidean norm
of a matrix A, denoted by ||A||2, is defined as

√
Tr(A†A). The

trace distance between two density matrices ρ and σ is defined
as ||ρ − σ ||1 [74]. Notice that we follow a definition of trace
distance without a factor of half in front of the trace norm.
Finally, for proving the existence of concentrated subspaces
with a fixed amount of coherence we need the notion of small
nets [4].

Existence of small nets. It is known [4] that given a Hilbert
space H of dimension d and 0 < ε0 < 1, there exists a setN of
pure states in H with |N| � (5/ε0)2d such that for every pure
state |ψ〉 ∈ H there exists |ψ̃〉 ∈ N with || |ψ〉 − |ψ̃〉 ||2 �
ε0/2. Such a set is called an ε0 net.

We emphasize here that all the main results presented below
are based on Lévy’s lemma and hence are of probabilistic
nature. The method to demonstrate the typical properties is
always to prove that the opposite is an unlikely event.

III. AVERAGE RELATIVE ENTROPY OF COHERENCE
AND ITS TYPICALITY FOR RANDOM PURE STATES

To show the typicality of coherence of random pure
quantum states, we first find the average relative entropy of
coherence for a random pure state, where the average is taken
over the uniform Haar measure, and then apply Lévy’s lemma
to show the concentration effect for quantum coherence. Now
consider a pure state |ψ〉 and denote by ρD(ψ) the diagonal
part of |ψ〉 in the fixed reference basis {|i〉}, i.e., ρD(ψ) =∑d

i=1 | 〈i| ψ〉|2�i , where �i = |i〉 〈i|. The relative entropy of
coherence of the state |ψ〉 in the fixed reference basis {|i〉}
is Cr (ψ) = S(ρD(ψ)) = −∑d

i=1 | 〈i| ψ〉|2 ln | 〈i| ψ〉|2. If we
draw pure states |ψ〉 from the uniform Haar measure, then the
expected value of the relative entropy of coherence is given by

EψCr (ψ) := −
d∑

i=1

∫
d(ψ)| 〈i| ψ〉|2 ln | 〈i| ψ〉|2. (5)

As discussed earlier, we can take |ψ〉 = U |1〉, where U is
sampled from the Haar distribution and |1〉 is a fixed state.
This allows us to rewrite the above equation as

EψCr (ψ) = −
d∑

i=1

∫
dμ(U )| 〈i| U |1〉|2 ln | 〈i| U |1〉|2. (6)

Since the Haar measure is invariant under the left translation,
we have

EψCr (ψ) = −d

∫
dμ(U )|U11|2 ln |U11|2, (7)

where U11 = 〈1| U |1〉. Note that all entries Uij of a Haar uni-
tary U have the same distribution [75]: d−1

π
(1 − r2)d−2rdrdθ ,

where r = |Uij | ∈ [0,1] and θ ∈ [0,2π ]. We remark here that
the distribution of each entry Uij = reiθ is just the joint
distribution of r and θ . The distribution of |U11|2 is given
by (d − 1)(1 − r)d−2dr , where 0 � r � 1. Now, we have

EψCr (ψ) = −d(d − 1)
∫ 1

0
r(1 − r)d−2 ln rdr

= −d(d − 1)
∂B(α,β)

∂α

∣∣∣
(α,β)=(2,d−1)

, (8)

where B(α,β) is the β function, defined as

B(α,β) :=
∫ 1

0
rα−1(1 − r)β−1dr = (α)(β)

(α + β)
. (9)

Note that ∂B(α,β)/∂α = [�(α) − �(α + β)]B(α,β), where
�(z) := ′(z)/(z) and (z) = ∫∞

0 xz−1e−xdx with Re(z) >

0 is the γ function. In particular, for natural number n,
�(n) = ∑n−1

k=1 1/k − γ , with γ ≈ 0.577 21 being the Eu-
ler constant. Therefore, we get ∂B(α,β)/∂α|(α,β)=(2,d−1) =
−[d(d − 1)]−1 ∑d

k=2 1/k. Using this in Eq. (8), we have
EψCr (ψ) = ∑d

k=2
1
k
. Thus, a d-dimensional random pure state

has Hd − 1 amount of average relative entropy of coherence,
where Hd = ∑d

k=1 1/k is the dth harmonic number. Now we
are ready to discuss the concentration of measure phenomenon
for quantum coherence.

Theorem 1 (Concentration of the relative entropy of
coherence). Let |ψ〉 be a random pure state on a d-dimensional
Hilbert space H with d � 3. Then for all ε > 0,

Pr{|Cr (ψ) − (Hd − 1)| > ε} � 2 exp

(
− dε2

36π3 ln 2(ln d)2

)
,

(10)

where Hd = ∑d
k=1 1/k is the dth harmonic number.

Proof. We will apply Lévy’s lemma, Eq. (4) for aver-
ages, to prove the theorem. Consider the map F : |ψ〉 →
F (ψ) := S(ρD(ψ)) = Cr (ψ). We have already shown that
EψF = Hd − 1. We prove the theorem by identifying k

with 2d − 1 in Lévy’s lemma [Eq. (4)]. We just need the
Lipschitz constant η for the function F such that |F (ψ) −
F (φ)| � η|| |ψ〉 − |φ〉 ||2. Let |ψ〉 = ∑d

i=1 ψi |i〉 and there-
fore, ρD(ψ) = ∑d

i=1 pi(ψ) |i〉 〈i| with pi(ψ) = |ψi |2. Now,
F (ψ) = −∑d

i=1 pi(ψ) ln pi(ψ). The Lipschitz constant for
F can be bounded as follows:

η2 := sup
〈ψ |ψ〉�1

∇F · ∇F = 4
d∑

i=1

pi(ψ)[1 + ln pi(ψ)]2

� 4

(
1 +

d∑
i=1

pi(ψ)( ln pi(ψ))2

)

� 4(1 + (ln d)2) � 8(ln d)2, (11)
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FIG. 1. The frequency plot showing the (scaled) relative entropy
of coherence Cr (ψ)/ ln d for the Haar distributed random pure
states for dimensions d = 20,30,40, and 500. Here, both the axes are
dimensionless. We have EψCr (ψ)/ ln 20 ≈ 0.87, EψCr (ψ)/ ln 30 ≈
0.88, EψCr (ψ)/ ln 40 ≈ 0.89, and EψCr (ψ)/ ln 500 ≈ 0.93. The
plot shows that the (scaled) relative entropy of coherence is indeed
very close to the average value

∑d

k=2 1/k. As we increase the
dimension, the figure shows that more and more states have coherence
close to the average value and the variances approach zero.

where the last inequality is true for d � 3. Therefore, η �√
8 ln d for d � 3. By definition, any upper bound on the

Lipschitz constant can also serve as a valid Lipschitz constant;
therefore, we can take η = √

8 ln d for d � 3. This concludes
the proof of the theorem. �

The inequality (10) means that for large d, the number of
pure states with the relative entropy of coherence not very
close to Hd − 1 are exponentially small, or in other words,
most pure states chosen randomly have Hd − 1 amount of
relative entropy of coherence to within an arbitrarily small
error. This is the concentration of relative entropy of coherence
around its expected value (the typical value of the relative
entropy of coherence). Further, as quantum coherence is a
quantifier of the wave nature of a quantum particle [64,65],
Theorem 1 has a nice physical meaning and it quantifies the
“typical wave nature” of a random pure state. Figure 1 plots the
relative entropy of coherence for numerically generated Haar
distributed random pure quantum states and shows that indeed
most of the states have coherences close to the expected value.

Having established the concentration of relative entropy of
coherence, it is of great practical importance to delineate the
largest subspace of the total Hilbert space such that all the
pure states in this subspace have a fixed nonzero amount of
coherence. Specifically, we find a large subspace of the total
Hilbert space such that the amount of the relative entropy of
coherence for every pure state in this subspace can be bounded
from below almost always by a number that is arbitrarily
close to the typical value of coherence. The following theorem
formalizes this.

Theorem 2 (Coherent subspaces). LetH be a Hilbert space
of dimension d � 3 of a quantum system. Then, for any
positive ε < ln d, there exists a subspace S ⊂ H of dimension

s =
⌊
dK

( ε

ln d

)2.5
⌋

(12)

such that all pure states |ψ〉 ∈ S almost always satisfy
Cr (ψ) � Hd − 1 − ε. K may be chosen to be 1/16 461. Here
� denotes the floor function.

Proof. Here we follow the strategy of Ref. [5], which is
based on the construction of nets to prove the theorem. Let S
be a random subspace ofH of dimension s. LetNS be an ε0 net
for states on S, for ε0 = ε/(

√
8 ln d). By definition, we have

|NS | � (5/ε0)2s . Note that S may be thought of as US0, with
a fixed S0 and a unitary U distributed according to the Haar
measure. We can fix the net NS0 on S0 and let NS = UNS0 .
This is a natural way to choose a random subspace. Now, given
|ψ〉 ∈ S, we can choose |ψ̃〉 ∈ NS such that || |ψ〉 − |ψ̃〉 ||2 �
ε0/2. Note that Cr (ψ) is a Lipschitz continuous function with
the Lipschitz constant η = √

8 ln d. From the definition of the
Lipschitz function and ε0 net, we have

|Cr (ψ) − Cr (ψ̃)| � η|| |ψ〉 − |ψ̃〉 ||2 � ηε0/2 = ε/2.

Define P = Pr{inf|ψ〉∈S Cr (ψ) < Hd − 1 − ε}. Now, we have

P � Pr
{

min
|ψ̃〉∈S

Cr (ψ̃) < Hd − 1 − ε/2
}

� |NS |Pr{Cr (ψ) < Hd − 1 − ε/2}

� 2(10
√

2 ln d/ε)2s exp

(
− dε2

144π3 ln 2(ln d)2

)
, (13)

where in the last line we have used our Theorem 1 and the
definition of ε0 net. If this probability is smaller than 1, a
subspace with the stated properties will exist. This can be
assured by choosing

s <
(d − 1)ε2

6190(ln d)2 ln[(10
√

2 ln d)/ε]
. (14)

Now, using the fact that ln x �
√

x/2 for x � 10
√

2, we
have ln [(10

√
2 ln d)/ε] �

√
5
√

2 ln d/ε with ε < ln d. For a
nontrivial dimension s, i.e., s � 2, we require d � 32 921.
Therefore, s =  dε2.5

16 461(ln d)2.5 �. This completes the proof of the
theorem. �

The theorem implies that if a subspace of dimension s

(which can be appropriately large), given by Eq. (12), of total
Hilbert space is chosen at random via the Haar distribution,
then the relative entropy of coherence of any pure state in this
subspace is almost always greater than Hd − 1 − ε, which
is very close to the typical value of coherence. This follows
from the fact that the probability that the chosen subspace
will not have the above said property is small. Now, for
any pure state |ψ〉 in S, the relative entropy of coherence
Cr (ψ) is typically lower bounded by Hd − 1 − ε. Therefore,
for all ρ ∈ S, the coherence of formation, which is defined as
Cf (ρ) = min

∑
i piS(ρD(ψi)) such that ρ = ∑

i pi |ψi〉 〈ψi |
[45], is also typically lower bounded by Hd − 1 − ε, i.e.,
Cf (ρ) � Hd − 1 − ε.
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IV. AVERAGE CLASSICAL PURITY OF RANDOM PURE
QUANTUM STATES

In this section, we calculate the average classical purity
[54] of random pure quantum states and show its typicality.
It is not straightforward to find the expected value of the l1
norm of coherence for random pure states. Therefore, we
resort to an indirect method to obtain an upper bound on it
using the expected value of classical purity. The classical purity
P (�(ψ)) of a state |ψ〉 is defined as P (�(ψ)) := Tr[(�(ψ))2]
where � : ρ → ∑

i 〈i| ρ |i〉 |i〉 〈i|, i.e., it maps any state to
its diagonal part in a fixed basis {|i〉} [54]. For a pure
state |ψ〉, we have �(ψ) = ρD(ψ). The expected classical
purity EψP (�(ψ)) can be obtained as follows. For a random
pure state |ψ〉 sampled from the uniform Haar measure, the
expected classical purity is given by

EψP (�(ψ)) =
∫

d(ψ)P (�(ψ)) =
∫

U(d)
dμ(U )P (�(Uψ0)).

Let � be a linear superoperator that transforms a random pure
state |ψ〉〈ψ | to �(|ψ〉〈ψ |). The purity of the state �(|ψ〉〈ψ |) is
defined as Tr[�(|ψ〉〈ψ |)2]. Therefore, the expected purity for
the states �(|ψ〉〈ψ |) is given by

EψP (�(ψ)) =
∫

d(ψ)Tr[�(|ψ〉〈ψ |)2]

=
∫

d(ψ)Tr[�† ◦ �(|ψ〉〈ψ |)|ψ〉〈ψ |]

= 〈ψ0|
∫

dμ(U )U †�†◦�(U |ψ0〉〈ψ0|U †)U |ψ0〉,
(15)

where �† is the dual of � in the following sense: Tr(Y�(X)) =
Tr(�†(Y )X) for any X,Y and |ψ0〉 is a fixed state such that
|ψ〉 = U |ψ0〉. We use the following formula from matrix
integral [76]:∫

dμ(U )U †ϒ(UXU †)U = dTr[ϒ(Id )] − Tr (ϒ)

d(d2 − 1)
Tr (X)Id

+ d Tr (ϒ) − Tr[ϒ(Id )]

d(d2 − 1)
X,

(16)

where Tr (ϒ) is the trace of the superoperator ϒ , defined by
Tr (ϒ) = ∑d

i,j=1 〈i|ϒ(|i〉 〈j |)|j 〉, to simplify Eq. (15). Now
identifying X with |ψ0〉〈ψ0| and ϒ with �† ◦ � in Eq. (16),
we get

EψP (�(ψ)) = dTr[�† ◦ �(Id )] − Tr(�† ◦ �)

d(d2 − 1)

+ d Tr(�† ◦ �) − Tr (�† ◦ �(Id ))
d(d2 − 1)

= 1

d(d + 1)
[Tr (�† ◦ �(Id )) + Tr(�† ◦ �)].

Let � = �, then �† = � and � ◦ � = �. Moreover,
Tr (�† ◦ �(Id )) = d and Tr (�† ◦ �) = d. The expected clas-
sical purity, therefore, is given by

EψP (�(ψ)) = 2

d + 1
. (17)

The following theorem establishes that the EψP (�(ψ)) is a
typical property of the pure quantum states sampled from the
uniform Haar distribution.

Theorem 3 (Concentration of classical purity). Consider a
random pure state |ψ〉 in a d-dimensional Hilbert space. The
classical purity of any pure state sampled from the Haar
distribution, for all ε > 0, satisfies

Pr

{∣∣∣∣P (�(ψ)) − 2

d + 1

∣∣∣∣ > ε

}
� 2 exp

(
− dε2

18π3 ln 2

)
.

(18)

Proof. We use Lévy’s lemma, Eq. (4), to prove the theorem.
For this we need the Lipschitz constant for the function G :
|ψ〉 → P (�(ψ)). Noting that P (�(ψ)) = ||�(ψ)||22, we have

|P (�(ψ)) − P (�(φ))|
= |(||�(ψ)||2 − ||�(φ)||2)(||�(ψ)||2 + ||�(φ)||2)|
� ||�(ψ) − �(φ)||2(||�(ψ)||2 + ||�(φ)||2)

� 2||�(ψ) − �(φ)||2
� 2|||ψ〉 − |φ〉||2. (19)

Here in the second line we have used the reverse triangle
inequality. In the third line we have used the fact that the
purity is upper bounded by 1 and in the last line, we have used
the monotonicity of the Euclidean norm under the map �.
Therefore, the Lipschitz constant for the function G : |ψ〉 →
P (�(ψ)) can be chosen to be 2. Now applying Lévy’s lemma
to the function G and noting k = 2d − 1, the proof of the
theorem follows. �

Now we exploit the relation between the l1 norm of
coherence and the classical purity [54] to get an upper bound
on the l1 norm of coherence,1 which is

Cl1 (ψ) �
√

d(d − 1)[1 − P (�(ψ))]. (20)

Since the classical purity of a random pure state is concentrated
on its expected value EψP (�(ψ)) = 2/(d + 1) (see Theorem
3), one may replace P (�(ψ)) by 2/(d + 1) in Eq. (20) to get
an upper bound on the l1 norm of coherence, which depends
only on the dimension of the Hilbert space. Thus, Cl1 (ψ) �√

d(d−1)2

d+1 . Although this bound is very close to the trivial bound
(d − 1), we note that better results on the average l1 norm of
coherence of random pure states and their typical nature can
be obtained.2

V. RANDOM PURE QUANTUM STATES ARE NOT
TYPICALLY MAXIMALLY COHERENT

It is well known that random bipartite pure states in higher
dimension sampled from the uniform Haar measure are maxi-
mally entangled with an overwhelmingly large probability [5].
Our explorations in previous parts suggest that the randomly
chosen pure states are not typically maximally coherent (to
within an arbitrarily small error), as they have their relative

1Note that some of the results on the average l1 norm of coherence
were mentioned in Ref. [54].

2Private communication with Kaifeng Bu.
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entropy of coherence concentrated around Hd − 1 �= ln d (see
also Fig. 1). Here we make this observation precise by proving
that indeed the trace distance between the diagonal part of a
random pure state and the maximally mixed state does not
typically go to zero in the higher-dimension case; instead, it is
almost always concentrated around a fixed nonzero value. To
establish this, we use the following lemma.

Lemma 4. Let |ψ〉 be a random pure state in a d-
dimensional Hilbert space. The average trace distance between
the diagonal part of a random pure state and the maximally
mixed state is given by 2(1 − 1/d)d , i.e.,

Eψ

∣∣∣∣
∣∣∣∣ρD(ψ) − I

d

∣∣∣∣
∣∣∣∣
1

= 2

(
1 − 1

d

)d

.

Proof. Consider a pure state |ψ〉 = ∑d
j=1 ψj |j 〉 with ψj =

〈j | ψ〉 = xj + iyj , i = √−1, and xj ,yj ∈ R(j = 1, . . . ,d).
The unique, normalized, unitary invariant measure d(ψ) upon
the pure state manifold of normalized state vectors |ψ〉 is
realized by the following δ-function prescription

(d)

πd
δ

⎛
⎝1 −

d∑
j=1

(
x2

j + y2
j

)⎞⎠ d∏
j=1

dxjdyj ,

if one is interested in calculating the averages of the functions
of the form f (〈ψ | P̂ |ψ〉), where P̂ is a projector [77]. This
is the case for us. Here (d), which is equal to (d − 1)!, is
the γ function. By performing a change of variables, namely,
xj = √

rj cos θj and yj = √
rj sin θj in the above for each j

with rj � 0 and θj ∈ [0,2π ], d(ψ) can also be realized as

(d)

(2π )d
δ

⎛
⎝1 −

d∑
j=1

rj

⎞
⎠ d∏

j=1

drjdθj .

For a fixed reference basis {|j 〉}(j = 1, . . . ,d), we have
ρD(ψ) = ∑d

j=1 |ψj |2|j 〉〈j | with rj := x2
j + y2

j = |ψj |2. Now

Eψ

∥∥∥∥ρD(ψ) − Id

d

∥∥∥∥
1

=
∫

d(ψ)

⎛
⎝ d∑

j=1

∣∣∣∣|ψj |2 − 1

d

∣∣∣∣
⎞
⎠

= (d)
∫ ⎛
⎝ d∑

j=1

∣∣∣∣rj − 1

d

∣∣∣∣
⎞
⎠δ

⎛
⎝1 −

d∑
j=1

rj

⎞
⎠ d∏

j=1

drj

= (d + 1)
∫ 1

0
dr1

∣∣∣∣r1 − 1

d

∣∣∣∣
∫ ∞

0
δ

×
⎛
⎝(1 − r1) −

d∑
j=2

rj

⎞
⎠ d∏

j=2

drj

= (d + 1)

(d − 1)
K, (21)

where K = ∫ 1
0 dr1|r1 − 1

d
|(1 − r1)d−2. In what follows, we

calculate the integral K:

K =
∫ 1

d

0
dr1

(
1

d
− r1

)
(1 − r1)d−2

+
∫ 1

1
d

dr1

(
r1 − 1

d

)
(1 − r1)d−2

= −2

d(d − 1)

{(
d − 1

d

)d−1

− 1

}

− 2
∫ 1

d

0
dr1r1(1 − r1)d−2. (22)

Now ∫ 1
d

0
r1(1 − r1)d−2dr1

= −1

d(d − 1)

[(
d − 1

d

)d−1

+
(

d − 1

d

)d

− 1

]
.

Putting the above in Eq. (22), we get K = 2
d(d−1) (1 − 1

d
)
d
.

Therefore,

Eψ

∥∥∥∥ρD(ψ) − Id

d

∥∥∥∥
1

= 2

(
1 − 1

d

)d

. (23)

This completes the proof of the lemma. �
In the following theorem, we establish that most of the Haar

distributed pure quantum states are not typically maximally
coherent (within an arbitrarily small error). The main idea is
to show that the trace distance of the diagonal part of any
random pure quantum state from the maximally mixed state is
almost always concentrated around a nonzero number, even in
the d → ∞ limit.

Theorem 5. Let |ψ〉 be a random pure state in a d-
dimensional Hilbert space. The probability that the trace
distance between the diagonal part of a random pure state
and the maximally mixed state is not close to 2(1 − 1

d
)
d

is
bounded from above by an exponentially small number in the
large d limit, i.e., for all ε > 0,

Pr

{∣∣∣∣∣
∣∣∣∣
∣∣∣∣ρD(|ψ〉) − I

d

∣∣∣∣
∣∣∣∣
1

− 2

(
1 − 1

d

)d
∣∣∣∣∣ > ε

}

� 2 exp

(
− dε2

18π3 ln 2

)
.

Proof. The Lipschitz constant for the function F : |ψ〉 →
||ρD(ψ) − I

d
||

1
is 2 and it can be shown as follows:

|F (|ψ〉) − F (|φ〉)| =
∣∣∣∣
∣∣∣∣
∣∣∣∣ρD(ψ) − I

d

∣∣∣∣
∣∣∣∣
1

−
∣∣∣∣
∣∣∣∣ρD(φ) − I

d

∣∣∣∣
∣∣∣∣
1

∣∣∣∣
� ||ρD(ψ) − ρD(φ)||1
� |||ψ〉 〈ψ | − |φ〉 〈φ|||1
� 2

√
2[1 − Re[〈ψ | φ〉] = 2|||ψ〉 − |φ〉||,

where in the second line we have used the reverse triangle in-
equality |||A||1 − ||B||1| � ||A − B||1. Therefore, F : |ψ〉 →
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||ρD(ψ) − I
d
||

1
is a Lipschitz continuous function with the

Lipschitz constant η = 2. Now applying Lévy’s lemma for
averages to the function ||ρD(|ψ〉) − I

d
||

1
, we obtain

Pr

{∣∣∣∣
∣∣∣∣
∣∣∣∣ρD(|ψ〉) − I

d

∣∣∣∣
∣∣∣∣
1

− Eψ

∣∣∣∣
∣∣∣∣ρD(|ψ〉) − I

d

∣∣∣∣
∣∣∣∣
1

∣∣∣∣ > ε

}
� η,

where η = 2 exp (−dε2/18π3 ln 2). We complete the proof of
the theorem by using Lemma 4 in the above expression. �

Theorem 5 tells us that for the majority of pure quantum
states the trace distance of the diagonal part from the maxi-
mally mixed state is concentrated around 2(1 − 1

d
)
d
, which for

d → ∞ converges to 2/e = 0.735 7. Therefore, the diagonal
part of most of the random pure quantum states maintains a
fixed finite distance from the maximally mixed state. Thus,
Theorem 5 implies that the overwhelming majority of random
pure quantum states are not typically maximally coherent
(within an arbitrarily small error). Next, we find a lower bound
on the relative entropy of coherence of the majority of random
pure quantum states, for which ||ρD(|ψ〉) − I

d
||

1
= 2(1 − 1

d
)
d
.

Utilizing the Fannes-Audenaert inequality [78,79], we have∣∣∣∣S
(
I

d

)
− S(ρD(ψ))

∣∣∣∣ = ln d − S(ρD(ψ))

� T ln(d − 1) + H2(T )

� T ln d + H2(T ),

where T = ||ρD(|ψ〉) − I
d
||

1
/2 = (1 − 1

d
)
d

and H2(T ) =
−T ln T − (1 − T ) ln(1 − T ) is the binary Shannon entropy.
Therefore,

Cr (ψ) = S(ρD(ψ)) � (1 − T ) ln d − H2(T ). (24)

Combining Eq. (24) with Theorem 5, we conclude that the
relative entropy of coherence of a randomly picked pure state
is, with high probability, always greater than (1 − T ) ln d −
H2(T ). For d → ∞, we have

lim
d→∞

Cr (ψ)/ ln d � 1 − 1

e
− lim

d→∞
H2(T )/ ln d

= 1 − 1

e
≈ 0.632 1. (25)

VI. CONCLUSION AND OUTLOOK

In this work we have established various generic aspects
of quantum coherence of random pure states sampled from
the uniform Haar measure. We have shown that the amount of
relative entropy of coherence of a pure state picked randomly
with respect to the Haar measure, with a very high probability,
is arbitrarily close to the average relative entropy of coherence,
which is given by

∑d
k=2 1/k for a d-dimensional system. In

other words, an overwhelming majority of the pure states have
coherence equal to the expected value, within an arbitrarily
small error. This also establishes the typical wave nature of
a quantum particle in a random pure state. Further, we find a
large subspace (of appropriate dimension) of the total Hilbert
space of a quantum system such that for every pure state in this
subspace, the relative entropy of coherence (also equal to the
distillable coherence [45]) is almost always greater than a fixed
number (depending on the dimension of the Hilbert space) that
is arbitrarily close to the typical value of coherence. Also, for
every state (pure or mixed) in this subspace, the coherence of
formation is almost always bounded from below by the same
fixed number. Therefore, quantum states in these subspaces can
be useful for many coherence consuming protocols. Further,
we find the expected value of classical purity of randomly
chosen pure states, which is then used to find an upper
bound on the l1 norm of coherence, exploiting known relations
between coherence and classical purity. Furthermore, we find
the average distance of the diagonal part of a randomly chosen
pure quantum state from the maximally mixed state. We show
that the diagonal part of most random pure states maintains a
fixed nonzero distance from the maximally mixed state, thus
establishing its typicality. This amounts to stating that most of
the randomly chosen pure states are not typically maximally
coherent (within an arbitrarily small error).

The results obtained in our work show the strong typicality
of measures of coherence and establish that the description
of coherence properties of the Haar distributed pure states,
in larger dimensions, requires only a small number of typical
parameters such as the Hilbert space dimension. These param-
eters appear in formulation of the concentration of measure
phenomenon. This, in turn, greatly reduces the complexity of
coherence theory with respect to the Haar distributed pure
states. In the future, it will be very interesting, from a practical
viewpoint, to estimate the dimension of the largest subspace
such that it contains no incoherent state, unlike our result,
where we find the dimension of the subspace containing at
least some fixed nonzero amount of coherence.
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