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Ground-state cooling of quantum systems via a one-shot measurement
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We prove that there exists a family of quantum systems that can be cooled to their ground states by a one-shot
projective measurement on the ancillas coupled to these systems. Consequently, this proof gives rise to the
conditions for achieving the one-shot measurement ground-state cooling (OSMGSC). We also propose a general
procedure for finding unitary propagators and corresponding Hamiltonians to realize such cooling by means of
inverse engineering techniques.
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I. INTRODUCTION

Quantum ground-state cooling of small objects exemplified
by nanosystems has long been a challenge and one of the
most desirable quantum technologies. Physically, the cooling
process can be formulated as a transformation from an initial
thermal state of a small object into its ground state. The
transformation is irreversible and cannot be realized when the
object is isolated. It is an indispensable part in the initialization
of quantum devices such as an adiabatic quantum computer
[1–5], and it also plays a crucial role in the ultrahigh-precision
measurements using mechanical resonators [6–8]. Over the
years, scientists have made great efforts to develop ground-
state cooling techniques [8–19], in particular, sideband cooling
[9–11].

Recently, the ground-state cooling of small objects via
quantum measurements has been proposed theoretically [8]
and verified experimentally [12]. In this approach, the target
system A is coupled to an ancilla B. The composite system
A + B undergoes a unitary evolution for a random interval
of time before a projective measurement is taken on the
ancilla. If the outcome of this projective measurement on B

is found to be the ground state, the evolution-measurement
procedure is repeated. It was reported that efficient ground-
state cooling can be achieved by repeating such random-
time-interval evolutions and measurements, and the cooling
efficiency hardly depends on time intervals between any two
consecutive measurements [8] but increases with the frequency
of measurements. The major disadvantage of this cooling
approach is that it requires many measurements to achieve
ground cooling, and consequently the survival probability
becomes so small that a very large ensemble of identical
systems is required. Here we prove an existence theorem
that, for a family of physical systems, guarantees ground-state
cooling by making a one-shot projective measurement at a
specified time, and we derive explicit conditions for this one-
shot measurement cooling method to be valid. Furthermore,
we show a general approach to engineering Hamiltonians that
are able to realize the one-shot measurement cooling by means
of inverse engineering techniques. For existing Hamiltonians,
our approach can be used to find the optimal times when
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the projective measurement is taken, and it is interesting to
note that the probability to realize the one-shot measurement
cooling remains high even if the abovementioned conditions
are not strictly satisfied.

II. EXISTENCE PROOF OF ONE-SHOT MEASUREMENT
GROUND-STATE COOLING (OSMGSC)

Consider an n-level quantum system A coupled with an an-
cilla B with m levels. The system A may not be experimentally
accessible so that ground-state cooling cannot be processed,
exemplified by a mechanical resonator [8]. To remedy this,
we choose a fully controllable ancilla B to manipulate the
system A through the A-B interaction and measurements on
B, for instance, a flux qubit as the ancilla [8]. Without loss
of generality, we prepare the ancilla in its ground state |g〉.
The preparation for a qubit ancilla has recently been done
experimentally [12]. In general, the ancilla could be initialized
by a measurement before it interacts with the system A. The
joint unitary propagator for the composite system A + B

is expressed by U (t) = ∑
i,α;j,β Ui,α;j,β(t)|i〉A〈j | ⊗ |α〉B〈β|

with nm × nm independent real parameters. It has been shown
that it is possible to achieve efficient ground-state cooling with
repeated projective measurements.

Theorem. For the composite system A + B, there exist
joint unitary propagators U which allow the ground-state
cooling of subsystem A through a one-shot selective projective
measurement on the ancilla B.

Proof. Consider a general initial state of system A,

ρi
A =

n−1∑
l=0

pl |l〉 〈l| , (1)

where pl are probabilities arising from the thermal bath, |l〉
are energy eigenstates of A, and n > 1 is the dimension of
the system Hilbert space. After the joint unitary evolution,
the state becomes ρ

f

A+B(t) = Uρi
A ⊗ |g〉〈g|U †. We then make

a projective measurement on B. Given that the outcome of
the measurement is |g〉, the output of the composite A + B

is ρ
f

A(t) ⊗ |g〉〈g|, where ρ
f

A(t) is the final state of the target
A. A schematic diagram of the cooling procedure is depicted
in Fig. 1.
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FIG. 1. One-shot measurement ground-state cooling scheme. An
ancilla B initially in its ground state is coupled to the target A that
is expected to be cooled to the ground state. The composite system
undergoes a unitary evolution for a duration of t and the final state
ρ

f

A+B (t) is correlated. A projective measurement is then applied on
the ancilla. We discard the result if the output of the ancilla is not the
ground state.

After the projective measurement, the probability Pl,g of
finding the composite system ρ

f

A+B(t) in state |l,g〉 is

Pl,g =
∑

k

pk|Ul,g;k,g|2. (2)

It manifests that the conditions to achieve ground-state cooling
are all Pl,g = 0 for l � 1 such that there is no population in the
excited states. Seeing that all pk � 0, if we require stronger
constraints,

Ul,g;k,g ≡ 0, l � 1,∀k, (3)

the conditions Pl,g = 0 will always hold true. The equation
provides 2n2 − 2n constraints upon the nm × nm real pa-
rameters of the propagator U , leaving n[n(m2 − 2) + 2] free
parameters. This clearly shows that there always exists a
propagator U such that the system can be cooled to its ground
states by a one-shot measurement.

Here we would like to point out that for any given finite
system A with Hamiltonian HA, one can always have HB

and HAB such that the total Hamiltonian H = HA + HB +
HAB will produce the desired propagator U for ground-state
cooling. As shown above, the number of free parameters for
the total H is p = n(m − 1)[2n(m + 1) − 1]. When we have
a given HA it means that the number of free parameters is
reduced to p′ = p − n2, we still have p′ > 1 for any n > 1
and m � 2. Therefore, our theorem remains valid for any finite
system.

Corollary. One can always construct a Hamiltonian H for
the composite system A + B, whose propagator U (t) satisfies
the OSMGSC condition, Eq. (3).

Proof. Generally, a Hamiltonian can be expressed in terms
of the propagator:

H = iU̇U †. (4)

We take the Planck constant � = 1 throughout the paper. By
imposing the Hermiticity of the Hamiltonian, it can be shown
that there are p = n(m − 1)[2n(m + 1) − 1] free parameters

to choose in the construction of the Hamiltonian H . Since the
number of free parameters p > 1 for any n � 1 and m � 2, it
is self-evident that there always exists a family of Hamiltonians
H which can be used to realize the ground-state cooling by a
one-shot measurement.

The Hamiltonians of these good for cooling systems can be
found by using Eqs. (3) and (4). Note that p is even greater than
nm × nm, the number of real parameters of a Hermitian matrix
H . As such, one can always construct a Hamiltonian from
the unitary propagator by using inverse engineering control
techniques [20].

III. INVERSE ENGINEERING

As an illustrative example, we now consider a two-level
system as the target A, coupled to an ancillary qubit B. Our
purpose is to construct a propagator U that satisfies the condi-
tion (3) and then construct the corresponding Hamiltonian by
inverse engineering [20].

The unitary propagator of a two-level system can be
generally written as

U (t) = cos θ (t) + i sin θ (t)�σ · �n(t), (5)

where �σ = (σx,σy,σz) represents a vector of Pauli operators
and �n denotes a unit vector. The corresponding Hamiltonian
can be written as [21,22]

H = iU̇U †

= −�σ · [θ̇ �n + sin θ cos θ �̇n + sin2 θ (�̇n × �n)]. (6)

Assume that the two-qubit unitary propagator is a direct sum
of two 2 × 2 block-diagonal matrices,

U =

⎛
⎜⎝

U0,g;0,g U0,g;0,e 0 0
U0,e;0,g U0,e;0,e 0 0

0 0 U1,g;1,g U1,g;1,e

0 0 U1,e;1,g U1,e;1,e

⎞
⎟⎠; (7)

we can directly use Eq. (5) to inversely engineer the blocks
of U and then the corresponding blocks of H by Eq. (6).
The OSMGSC conditions U1,g;0,g = U1,g;1,g = 0 in Eq. (3) are
accordingly satisfied. Another OSMGSC condition U1,g;1,g =
0 in the bottom block U2,

U2 =
(

U1,g;1,g U1,g;1,e

U1,e;1,g U1,e;1,e

)
, (8)

is inversely engineered by using Eq. (5). Consequently the vec-
tor �n is not allowed to have the z component because otherwise
the component will lead to U1,g;1,g = cos θ + ia sin θ 	= 0
(a 	= 0). For simplicity, assume that �n(t) = (−1,0,0) and
θ (t) = t , then the U2 block reads

U2 =
(

cos t −i sin t

−i sin t cos t

)
, (9)

with U1,g;1,g = 0 at time instants t = π/2 + πn (n =
0,1,2, . . . ). The corresponding H block is H2 = σx . Equation
(5) does not impose constraints on U1. For simplicity, we set
θ (t) = t and �n(t) = (0,0, − 1), such that Eq. (6) becomes

U1 =
(

e−it 0
0 eit

)
, H1 =

(
1 0
0 −1

)
. (10)
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FIG. 2. The measure f (t) as a function of time. The optimal times
for our one-shot projective measurements show up periodically and
are highlighted by solid red circles.

We now combine H1 and H2 and write the total Hamiltonian
of system A + B:

H = |0,g〉 〈0,g| − |0,e〉 〈0,e| + |1,e〉 〈1,g| + |1,g〉 〈1,e|
= |0〉〈0| ⊗ σz + |1〉〈1| ⊗ σx. (11)

Driven by this Hamiltonian, it is easy to verify that the system
A reaches its ground state by a one-shot measurement on
B, when the measurement is made at t = π/2 + πn (n’s
are integers). Specifically, let us consider the general initial
state (p |0〉 〈0| + (1 − p) |1〉 〈1|) ⊗ |g〉 〈g|, where 0 < p � 1.
At the moment of good for cooling, the system evolves to
p |0〉 〈0| ⊗ |g〉 〈g| + (1 − p) |1〉 〈1| ⊗ |e〉 〈e|. Therefore, as
long as p 	= 0, we always have a nonzero probability of
making the measurement on the ancilla and find it to be in its
ground state. Since other measurement results are discarded,
we deterministically have the system cooled to its ground
state after this one-shot selective measurement on the ancilla.
Notice that the good-for-cooling joint density matrix above is
a classically correlated state [23–26].

To quantify the ability of achieving OSMGSC, we define
the measure f ,

f = 1∑
m |U0,g;m,g|2

∑
n�1,m

|Un,g;m,g|2. (12)

This measure entails that if we make measurements at times
when f = 0, the OSMGSC scheme will be fulfilled. Figure 2
shows f (t) for the system driven by the Hamiltonian (11),
where the optimal times for OSMGSC indicated by f = 0
show up periodically over the course of time.

We can also engineer θ (t) in U2 to create a steady
good-for-cooling state to allow our OSMGSC scheme to be
preformed in a wide time domain. This relaxes the experi-
mental constraints of making the measurement precisely at the
optimal time instants. For example, if θ (t) = π (1 − e−ωt )/2,
the corresponding Hamiltonian is

H (t) = |0〉〈0| ⊗ σz + h(t)|1〉〈1| ⊗ σx, (13)

where h(t) = θ̇ (t) = πωe−t /2. Here a part of the interaction
decays with time and becomes effectively switched off for a
longer time. In Fig. 3 we plot the measure f (t) for the system
under the Hamiltonian (13) with ω = 1. This Hamiltonian

FIG. 3. The measure f (t) as a function of time. The light pink
(shaded) area marks the time domain where f (t) < 10−4.

drives the system into a steady state p|0,g〉〈0,g| + (1 −
p)|1,e〉〈1,e|, which satisfies the OSMGSC condition (3).

Under the constraints (3), we are free to choose H and U

in different manners, for example, by including the transition
term |0〉 〈1| + H.c. in the constructed Hamiltonian. Consider
the propagator U ,

U = diag(u1,U2,u3), (14)

where u1 and u3 are complex numbers, with |u1| = |u3| =
1, and U2 is a 2 × 2 unitary matrix different from the
previous case. By using the above method, we can obtain
the corresponding H with transition terms |0〉 〈1| and |1〉 〈0|:

H = ω1 |0,g〉 〈0,g| + ω2 |1,e〉 〈1,e|
+ |1,g〉 〈0,e| + |0,e〉 〈1,g| , (15)

where ω1 and ω2 are free parameters.
The last approach can be applied to engineering U and H

matrices for an arbitrary A + B system. Suppose that A is an
n-level system and the ancilla B is a qubit, U is engineered in
the same manner as Eq. (14), i.e.,

U = diag(u1,U2,U3, . . . ,Un,u2). (16)

We then use Eqs. (5) and (6) to obtain all Ui (i = 2,3, . . . ,n),
where we select θ (t) and time t carefully such that, for each
Ui block, all Ui,g;i,g = 0 simultaneously. We underline that the
inverse engineering scheme is only one of possible ways to find
Hamiltonians which satisfy the OSMGSC theorem.

IV. EXISTING HAMILTONIANS AND ONE-SHOT
MEASUREMENT COOLING

The ground-state cooling of nanomechanical resonators
(NAMR) has become increasingly important in ultrahigh-
precision measurements, classical to quantum transitions,
preparations of nonclassical states, and quantum information
processing. Efficient ground-state cooling of the NAMR
with repeated measurements on an ancillary qubit has been
proposed [8]. Below we analyze the possibility of achieving
OSMGSC for such a system.

When the coupling strength between the NAMR and the
qubit is much smaller than the qubit frequency, the rotating
wave approximation becomes valid and the total Hamiltonian
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is reduced to the standard Jaynes-Cummings model [8,27]:

H = ωa†a + 	

2
(|e〉 〈e| − |g〉 〈g|)

+ g(a ⊗ |e〉 〈g| + a† ⊗ |g〉 〈e|), (17)

where a† (a) are creation (annihilation) operators of phonons,
ω is the fundamental mode frequency of the NAMR, 	 is the
tunneling amplitude between the two qubit states, and g is
the coupling strength. For this existing model, we study the
possibility of OSMGSC by using Eq. (3). Since the propagator
U has a block structure [8], we can analytically give

U0,g;0,g(t) = ei	t/2,

Un−1,e;n−1,e(t) = e−iε+
n t cos2 θn + e−iε−

n t sin2 θn, (18)

Un,g;n,g(t) = e−iε+
n t sin2 θn + e−iε−

n t cos2 θn,

where ε±
n = ω(n − 1/2) ±

√
(	 − ω)2 + 4g2n/2 and

tan(2θn) = 2g
√

n/(	 − ω).
It is seen that the constraints Un,g;n,g = 0 cannot be fulfilled

for all n � 1 no matter how we adjust the parameters. Although
the exact OSMGSC is impossible for this model, we may
still numerically explore optimal times when the measurement
should be taken. This amounts to numerical estimation of the
time instants when the measure f ,

f = 1

|U0,g;0,g|2
∞∑

n=1

|Un,g;n,g|2, (19)

approximates to zero, though does not completely vanish.
If we consider a thermal input state as in the conventional

cooling process,

ρi
A = 1

Z

∑
n=0

e−nω/T |n〉 〈n| , Z =
∑
n=0

e−nω/T , (20)

our numerical analysis shows that only the first few blocks of
U determine the possibility of OSMGSC when T is not too
large. Therefore, we can truncate the sum to the kth level:

fk = 1

|U0,g;0,g|2
k∑

n=1

|Un,g;n,g|2. (21)

Using Eqs. (2), (20), and (21) we can derive an inequality for
the cooling success probability Pc:

Pc = P0,g

Pg

> 1 − 〈n〉
1 + 〈n〉 [fk + 〈n〉k(1 + 〈n〉)2−k], (22)

where Pg = ∑∞
n=0 Pn,g is the probability of obtaining the qubit

ground state |g〉. We illustrate fk in a resonate case with ω =
	 = 1 and g = 0.2. Figure 4 shows f3(t) for the parameters
given in the figure caption. Interestingly, we indeed find
f3(150) = 0.04 ≈ 0, which is the optimal time to implement

FIG. 4. The measure f3(t) as a function of time for the NAMR
with ω = 	 = 1 and g = 0.2. The optimal times for our one-
shot projective measurements is highlighted by a solid red circle
at t ≈ 150.

a projective measurement to achieve the ground-state cooling
of the NAMR. The inequality (22) also concludes that the
probability of achieving the ground-state cooling is greater
than 93% at T = 1. The example suggests the possibility that
the propagator U generated by certain existing Hamiltonians
may directly result in OSMGSC at specific time instants or
domains.

As another example, Ref. [12] uses a specific joint
unitary matrix U , an ordered product of a Hadamard gate,
a phase γ shifter on ancillary qubit B, a controlled-U(s),
and another Hadamard gate on B. Here U(s) = exp(−iHs),
where H is the Hamiltonian of the target system A. A
direct calculation shows that U1,g;0,g = 0 and U1,g;1,g(s) =
1 − i exp(iγ )[cos s − i sin s]. Interestingly, our requirement
(3) can be met when s = π/2 and γ = 0. Our OSMGSC
scheme helps to find the optimal measurement instant of the
experiment and provides clear guidance for the experiment.

V. CONCLUSION

In conclusion, we have proven the existence of a family of
systems that can be efficiently cooled to their ground states by
making one-shot projective measurement on a coupled ancilla.
The explicit condition for achieving this one-measurement
cooling has been given, and we have also shown an example of
a general procedure for finding the corresponding Hamiltonian
to realize this technique by means of inverse engineering.
For existing Hamiltonians, our method can be used to find
an optimal time when the projective measurement should
be taken, which provides clear guidance for the existing
experiments and for designing experiments in rapid-cooling
techniques.
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