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We provide a rigorous generalization of the quantum adiabatic theorem for open systems described by a
Markovian master equation with time-dependent Liouvillian L(t). We focus on the finite system case relevant
for adiabatic quantum computing and quantum annealing. Adiabaticity is defined in terms of closeness to the
instantaneous steady state. While the general result is conceptually similar to the closed-system case, there are
important differences. Namely, a system initialized in the zero-eigenvalue eigenspace of L(t) will remain in this
eigenspace with a deviation that is inversely proportional to the total evolution time T . In the case of a finite
number of level crossings, the scaling becomes T −η with an exponent η that we relate to the rate of the gap
closing. For master equations that describe relaxation to thermal equilibrium, we show that the evolution time T

should be long compared to the corresponding minimum inverse gap squared of L(t). Our results are illustrated
with several examples.
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I. INTRODUCTION

The origins of the celebrated quantum adiabatic theorem
(QAT) date back to Einstein’s “Adiabatenhypothese”: “If a
system be affected in a reversible adiabatic way, allowed mo-
tions are transformed into allowed motions” [1]. Ehrenfest was
the first to appreciate the importance of adiabatic invariance,
guessing (before the advent of a complete quantum theory) that
quantum laws would only allow motions which are invariant
under adiabatic perturbations [2]. The more familiar, modern
version of the QAT was put forth by Born and Fock already in
1928 for the case of discrete spectra [3]. Since then, a series of
increasingly sophisticated techniques have been developed in
order to generalize the QAT to include degeneracy, unbounded
models, continuous spectra, and exponential error estimates
[4–11].

This long history of adiabatic theorems is almost exclu-
sively concerned with closed systems undergoing unitary
evolution. Previous approaches to formulating an adiabatic
condition for open quantum systems [12] have focused on a
Jordan block decomposition of the dissipative generator [13],
the weak coupling limit [14,15], zero temperature [16], or on
a noiseless subsystem decomposition [17,18]. Here, we prove
that in analogy to the closed-system case, where the system
follows the instantaneous (pure) eigenstates of the Hamiltonian
in the adiabatic limit of arbitrarily large total evolution time
T , the open system follows the instantaneous steady state
(ISS) of the Liouvillian. In doing so, we extend the seminal
closed-system result by Kato [4] to infinite order in 1/T .

Rigorous extensions of the adiabatic theorem for generators
of contractive semigroups, similar to ours, have also appeared
in the mathematical literature [19–22]. Our focus is on estimat-
ing the adiabatic error in terms of the physical parameters of the
theory, thus making the result more suitable for applications.
We demonstrate that in the case of thermal baths satisfying
the Kubo-Martin-Schwinger (KMS) condition [23], where the
ISS is the instantaneous Gibbs state, a sufficient criterion

for adiabaticity is T � �−2
min, where �min is the smallest

Liouvillian gap in absolute value. Our QAT also allows for
a finite number of level crossings in the Liouvillian spectrum,
for which we demonstrate that the error scales asymptotically
as T −η with a known exponent η ∈ (0,1) related to the rate at
which the gap closes. This setting is directly relevant to recent
theoretical and experimental work on quantum annealing
[15,24–26], where the Liouvillian gap may close at the end
of the evolution, and we verify this prediction using numerical
simulations.

II. INSTANTANEOUS STEADY STATES

We assume that the evolution of a d-dimensional (d < ∞)
quantum system with state ρ(t) can be described by a linear,
time-local master equation dρ/dt = LT (t)ρ, where T is the to-
tal evolution time. We also assume that LT (sT ) = L(s) where
s = t/T ∈ [0,1] is a rescaled, dimensionless time coordinate,
and L(s) is T independent. Setting ρT (s) = ET (s,0)ρT (0), the
evolution operator ET (s,s0) satisfies

E ′
T (s,s0) = TL(s)ET (s,s0), (1)

with E(s,s) = 1 [we drop the subscript T from now on; we
also write E(s) for E(s,0) for simplicity], and where the prime
denotes ∂s . We are interested in the solutions of Eq. (1) for
large T . We further assume that the Liouvillian L(s) can be
written in Lindblad form for all s, i.e., L(s)• = −i[H (s),•] +∑

l [Ll(s) • L
†
l (s) − 1

2 {L†
l (s)Ll(s),•}], where H (s) is the sys-

tem Hamiltonian and {Ll(s)} are the Lindblad operators.
Equation (1) then describes a Markovian master equation with
a time-dependent Lindblad generator, and the corresponding
evolution operator E(s2,s1) is a completely positive trace-
preserving (CPTP) map for any s2 � s1 [15,27,28]. We formu-
late our results in terms of Lindblad operators and CPTP maps,
but in fact all our results are valid in the more general case
where L(s) generates a contractive semigroup (i.e., ‖etL(s)‖ �
1 ∀ s and t > 0). A special role is played by the ISSs, i.e.,
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the states in the kernel of L(s). In the time-independent case
[L(s) = L, ∀ s], it follows from the CPTP property that any
initial state evolves to KerL in the long time limit [29]. Let us
denote by P (s) the (instantaneous) spectral projection of L(s)
with eigenvalue zero. The Lindblad form guarantees that zero
is a semisimple, possibly degenerate, eigenvalue of L(s) (see
Appendix A for a proof), and so there are no nilpotent terms
in the zero sector, i.e., L(s)P (s) = P (s)L(s) = 0.

We are now ready to informally state the QAT for open
systems: If a system is initialized at s = 0 in KerL(0), the
final state at s = 1 will be close to KerL(1), provided the
Lindbladian changes sufficiently slowly.

In principle, one could formulate an open-system QAT
considering other (nonzero) eigenvalues of L(s). However,
their corresponding invariant subspaces contain no physical
states, so that the physical interest in such a generalization
is questionable.1 We proceed to rigorously establish the QAT
and identify the time scales it entails.

III. GAPPED CASE

We start by assuming that the zero eigenvalue is sepa-
rated by a finite gap �min from the rest of the spectrum
σ [L(s)] for all s ∈ [0,1], i.e., dist[σ [L(s)]\{0},0] = �(s) �
�min > 0, a condition we relax later. The ideal adiabatic
evolution is represented by an operator V (s) that satisfies
the intertwining property: V (s)P (0) = P (s)V (s). It is well
known [4] (see Appendix B) that a possible choice for
V (s) is given by the solution of the differential equation
V ′(s) = [P ′(s),P (s)]V (s) with V (0) = 1. We are interested
in quantifying the deviation of the actual evolution, governed
by the CPTP map E(s), from the ideal adiabatic evolution.
However, V (s) is not CPTP in general. Instead, we can
prove that W (s) := V (s)P (0) is a CPTP map since it can
be written as a product of projectors (CPTP maps): W (s) =
limN→∞ P (s) . . . P (2s/N)P (s/N)P (0) (see Appendix C) or
Proposition 3 in [22]). Therefore, to state the QAT we wish
to bound the deviation from the ideal adiabatic evolution
projected to KerL, ‖E(s)P (0) − V (s)P (0)‖, in the large-T
limit.2

To proceed, we introduce the reduced resolvent S(s) =
limz→0 Q(s)[L(s) − z]−1Q(s), where Q(s) = 1 − P (s) [30].
We further assume that L is m times differentiable, and
let Xn+1(s) = S(s)X′

n(s), with X1(s) = S(s). Under the ad-
ditional simplifying assumption that the ISS is unique, we
then prove the following in Appendix D using integration by

1To see this, let P0 be the projector onto the zero eigenvalue. Since
it can be realized as the infinite time limit of a CPTP map, P0 is itself
a CPTP map, and in particular it is trace preserving. Let Pj be the
projector onto another invariant subspace, with j 	= 0. Assume there
is a state in its range, i.e., ∃ x | ρ = Pjx is a state. But P0Pj = 0
so Tr(ρ) = Tr(P0ρ) = 0 (where the first equality holds since P0 is a
CPTP map), a contradiction.

2Unless explicitly noted otherwise, from hereon the norm is the
induced trace norm, i.e., ‖A‖ = supx 	=0 ‖A(x)‖1/‖x‖1, where ‖x‖1

denotes the trace norm, i.e., the sum of the singular values [46]. For
a discussion of the properties of the induced trace norm see, e.g.,
Ref. [49], where it is denoted ‖ . . . ‖∞,1, or Ref. [50].

parts:

[E(s)−V (s)]P (0) =
m∑

n=1

�n

T n
− 1

T m

∫ s

0
dσE(s,σ )X′

m(σ )W ′(σ ),

�n = E(s,σ )Xn(σ )W ′(σ )|s0
−

∫ s

0
dσ E(s,σ )Xn(σ )W ′′(σ ). (2)

The general result, valid also for degenerate kernels, is given
in Appendix F.

It turns out that Eq. (2) is valid in the m = 1 case even
without requiring that the ISS be unique, and as we show
in Appendix D we can bound the deviation from the ideal
adiabatic evolution in general as

‖[E(s) − V (s)]P (0)‖ � C/T . (3)

A similar result has been derived in [22] where, however, the
constant C is left undetermined. We show that the constant C,
independent of T , can be taken to be

C = ‖S(s)‖‖P ′(s)‖ + ‖S(0)‖‖P ′(0)‖
+ sup

σ∈[0,s]
‖[S ′P ′ + SP ′′](σ )‖. (4)

Following, we discuss how C relates to the physical parameters
of the model associated with L. Inequality (3) states the QAT
for open systems and implies the QAT in the standard form for
states.

To see the latter, let us initialize the system in a
state ρ̃(0) in KerL(0), i.e., ρ̃(0) = P (0)ρ̃(0). Then ρ̃(s) :=
V (s)ρ̃(0) is an instantaneous steady state at time s

since L(s)ρ̃(s) = L(s)V (s)P (0)ρ̃(0) = L(s)P (s)V (s)ρ̃(0) =
0, i.e., ρ̃(s) ∈ KerL(s). Under the actual evolution, the state
is mapped to ρ(s) = E(s)ρ̃(0) and one has ‖ρ(s) − ρ̃(s)‖1 �
‖[E(s) − V (s)]P (0)‖‖ρ̃(0)‖1 � C/T . Namely, if T � C/ε

(ε > 0), then the system is guaranteed to find itself ε-close
in norm to the instantaneous steady state, at the end of the
evolution.

IV. CLOSED-SYSTEM LIMIT

It is useful to comment on how our result relates to
adiabatic theorems for closed systems, described by a system
Hamiltonian H (s) with eigenvalues En. First, if one is
interested in initial states belonging to the −iE0 level, one
may simply set L(s) = −i[H (s) − E0], as our formalism
encompasses (with minor modifications) the case where L is
anti-Hermitian. In this way, one recovers the standard adiabatic
theorem for closed system. The relevant gap is given by the
eigenvalue closest to E0 in modulus, i.e., |E1 − E0|. The bound
we obtained for the constant C in this case is similar to that
given in Ref. [10], at least for what concerns the dependence
on the gap.

Another possibility is to write L(s) = K(s) = −i[H (s),•].
The eigenvalues of K are {−i(En − Em)}. There is a � d-fold
degenerate zero eigenvalue arising from En = Em constituting
KerK. The relevant energy scale is determined by the next
eigenvalue which is closest to zero in modulus. This is given
by the smallest difference |En − Em| with En 	= Em (nonzero
since we assume d < ∞ and hence discrete spectra). This is
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consistent with the previous result because in KerK one has
the freedom to pick any state |n〉〈n| leading to a gap minm

|En − Em|. In this manner, one obtains an adiabatic theorem
for closed systems in the Liouvillian (superoperator) formal-
ism. We discuss the closed-system limit further in Appendix E.

V. THERMAL BATH

It turns out that the open-system version of the QAT can
have additional structure that is absent in the closed-system
case. To demonstrate this, we consider the important class of
Lindbladians generated by the interaction of a system with a
thermal bath, for which we can make the bounds above more
specific. As a result of the KMS condition, such Lindbladians
satisfy the quantum detailed balance condition [31,32]. This
fact has important consequences, namely, (i) the Gibbs state
is an ISS, i.e., L(s)ρG(s) = 0 with ρG(s) ≡ exp [−βH (s)]/Z,
where Z = Tr exp [−βH (s)] is the partition function; (ii) the
generator L(s) is normal.

Let us now show how we can relate C to standard quantities
such as the gap and H ′(s) using the assumption of a thermal
bath. Assume for simplicity that ρG(s) is the unique state in
KerL(s). For such thermal baths the projector onto the ISS
manifold is P (s) = |ρG(s)〉〈1|. Then, P (n)(s) = |ρ(n)

G (s)〉〈1|,
so that ‖P (n)(s)‖ = ‖ρ(n)

G (s)‖1. Thus, if H (s) is bounded with
bounded derivatives, ‖P (n)(s)‖ is bounded for all s, and hence
P ′ and P ′′ in the constant C [Eq. (4)] do not introduce any
singularities. In addition, sinceL is normal, ‖S‖ = c/� where
the constant c depends only on the norm used [33]. Moreover,
the identity S ′ = S2L′P + PL′S2 − SL′S (Appendix G) im-
plies that ‖S ′‖ � 3‖S‖2‖L′‖. Thus, from Eq. (4), for thermal
baths the dependence on the Liouvillian gap is C = O(�−2

min).
Note that in the absence of the KMS condition, one only
has C = O(�−3

min), implying T = O(�−3
min) as a criterion for

adiabaticity in accordance with the closed-system result of
Ref. [10]. However, in particular cases the dependence can
be even milder. For example, if L(s) is a unitary family, i.e.,
L(s) = esKL(0)e−sK, with K an anti-Hermitian superoperator,
one has (Appendix H) P ′ = KP − PK, so neither P ′ (nor P ′′)
depends on �min. Moreover, S ′ = KS − SK so that in this
case C = O(�−1

min), as also shown and extensively exploited
in [34,35].

In addition, for thermal baths the constants appearing in
Eq. (4) bear an explicit dependence on H (s). For example, one
can show that ‖ρG

′(s)‖1 � 2β
√

〈[H ′(s)]2〉G, where 〈•〉G =
Tr[ρG•] is the thermal average (see Appendix I). This fact has
important consequences for adiabatic quantum computation
where the complexity of a computation is encoded into H (s)
and depends on the system size L. In general, we expect
‖P (n)(s)‖ to display a stronger divergence with L, for some n,
e.g., at (positive temperature) phase transition points of H (s).3

When the gap �min is very small and is attained in-
side the interval [0,s], the constant C is dominated by
the third term in Eq. (4), i.e., C � supσ ‖S ′(σ )P ′(σ )‖.
Using the above estimates for S ′ and P ′ we obtain C �

3In general, one can directly relate ‖P (n)(s)‖ to expectation values
of powers of the Hamiltonian and its derivatives.

6c2β‖L′(σ )‖max

√〈[H ′(σ )]2〉G,max�
−2
min, where the subscript

“max” means that the corresponding quantities must be
maximized over σ ∈ [0,s]. In other words, taking T �
c2β‖L′(σ )‖max

√〈[H ′(σ )]2〉G,max�
−2
min/ε guarantees adiabatic-

ity up to an error O(ε) in trace norm.

VI. CASE OF LEVEL CROSSINGS

The gapped case is typical since a random Lindbladian will
have a gap above zero with probability one for all values of s.
However, symmetries may give rise to degeneracies, and so we
would like to extend our result and consider the case where a
finite number of level crossings with the zero eigenvalue may
take place along the path.4

Since singularities are only algebraic in the finite-
dimensional case, it is reasonable to expect that, in the case
of level crossing, one has ‖[E(s) − V (s)]P (0)‖ ∼ 1/T η for
large T , with a positive exponent η < 1. We are interested
in estimating η for large T . For definiteness assume that at
the level crossings the gap vanishes as �min(s) � vi(s − s∗

i )αi

with some positive exponents αi . The analysis is detailed in
Appendix J. The final result is

‖[E(s) − V (s)]P (0)‖ �
N∑

i=1

Di

T ηi
, ηi = 1

1 + αi

, (5)

where Di are positive constants. Clearly, the asymptotic
behavior of the right-hand side is dictated by the smallest
exponent ηi , i.e., by the largest αi , and hence the most divergent
of the N gaps.

VII. EXAMPLES

We now illustrate our results with a few examples.

A. Example 1

Let us first consider a time-dependent generalization of
the amplitude damping master equation. The Lindbladian is
L(s) = K(s) + L0 with K(s) = −i[H (s),•], H (s) = m(s) ·
σ , and L0 = 2γ [σ− • σ+ − (1/2){σ+σ−,•}] (σα Pauli ma-
trices and σ± = σx ± iσ y). The steady-state manifold is one
dimensional. The ISS is given by the solution of L(s)ρ̃(s) = 0
and is (in the σ z basis)

ρ̃ = 1

c

(
m2 − m2

z −m−(2mz + iγ )

−m+(2mz − iγ ) m2 + 3m2
z + γ 2

)
, (6)

where c = 2(m2 + m2
z) + γ 2 and m± = mx ± imy . A plot

of the absolute values of the Lindbladian’s eigenvalues is
shown in Fig. 1(a). Parameters are chosen to illustrate a
phenomenon which is not possible in the unitary case. Namely,
the eigenvalues can have algebraic singularities of the form
(s − s∗)r with r a noninteger rational number. Also shown, in
Fig. 1(b), is the expected scaling of ‖ρ(1) − ρ̃(1)‖1 as C/T .

4A generalization where the spectrum becomes continuous at some
point (e.g., at a second-order quantum phase transition) is possible in
the unitary case [8]. Such an extension is not considered here.
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(a) (b)

FIG. 1. QAT for the gapped case using the model of Example 1.
(a) Absolute values of the eigenvalues of the Lindbladian (zero is not
shown). The eigenvalues show square-root singularities at s � 0.88
and 0.94. (b) Trace norm distance between the actual state and the ISS
for increasing T . The blue line is given by ‖ρ(1) − ρ̃(1)‖ ∼ 7.88/T .
Parameters: mx(s) = 1 − s, my(s) = 0, mz(s) = s/150, γ = 1

2 arb.
units Initial condition is ρ̃(0) as given in Eq. (6).

B. Example 2

Consider a qubit with system Hamiltonian H (s) = m(s) · σ

interacting with a heat bath at inverse temperature β, so
that the total Hamiltonian is Htot(t) = H (t) + Hint + HB, with
Hint = A ⊗ B, where A (B) is a system (bath) operator,
and HB is the bath Hamiltonian. For H (s) of the form of
Landau-Zener driving, exact expressions for the transition
probabilities for a particular zero-temperature bosonic bath
have been obtained in Ref. [36]. To treat the more general
case we use the time-dependent Lindblad master-equation
approximation for a slowly varying system Hamiltonian [15]:
Ltot(t) = K(t) + L(t), where K(t) = −i[H (t) + HLS(t),•].

The dissipative part, specialized to the single-qubit case,
reads as

L(t) =
∑

ω

γ (ω)

[
Aω(t) • Aω(t)† − 1

2
{Aω(t)†Aω(t),•}

]
, (7)

with rates γ (ω) = ∫ ∞
−∞ dτ eiτω〈eiτHBBe−iτHBB〉. The Lind-

blad operators are given by the Fourier resolution
eiτH (t)Ae−iτH (t) = ∑

ω eiωτAω(t), where ω are the Bohr fre-
quencies of H (t). HLS(t) = ∑

ω S(ω)Aω(t)†Aω(t) is the
Lamb shift Hamiltonian, with S(ω) = ∫ ∞

−∞ dω′γ (ω′)P( 1
ω−ω′ ),

where P denotes the principal value. Moreover, γα(−ω) =
e−βωγα(ω) as a consequence of the KMS condition. This
implies that the generatorL(t) together withK(t) andKLS(t) =
−i[HLS(t),•] all commute at the same time.

The corresponding Lindbladian has the following instanta-
neous eigenvalues (derived in Appendix K):

λ = {0, − γ (δ)|A01|2(1 + e−βδ), − � ± iμ}, (8)

with 2� = γ (0)(|A00|2 + |A11|2) + γ (δ)|A01|2(1 + e−βδ) and
μ = δ − S(0)(|A00|2−|A11|2)+|A01|2[S(δ) − S(−δ)], where
δ = 2‖m‖ is the instantaneous Hamiltonian gap, Aab =
〈εa|A|εb〉, and |εa〉, a = {0,1}, denotes the instantaneous
eigenvectors of H (s).

We now illustrate the QAT for H (s) = ωx(1 − s)σx +
ωzsσ

z and system operator A = gσy,z, where g is a coupling
constant. For A = gσy , there is always a gap in the Liouvillian
spectrum above the zero eigenvalue. Correspondingly, the
decay is T −1 as shown in Fig. 2(a). For A = gσ z, the system
Hamiltonian commutes with A when s = s∗ = 1, at which
point the spectrum becomes degenerate. Indeed, one can check

(a) (b)

FIG. 2. Illustration of the QAT for a single qubit coupled to a
thermal bath (Example 2). (a) Gapped case with A = gσ y . The fit
(blue line) gives ‖ρ(1) − ρ̃(1)‖1 = 148.5/T 0.9990. (b) Gapless case
with A = gσ z. Now the fit gives ‖ρ(1) − ρ̃(1)‖1 = 1.910/T 0.324. Fits
are for T � 105.4. Parameters: g = 10−2, ωx = ωz = − 1

2 arb. units,

β = 1 arb. units, γ (ω) = 2πωe−|ω|/8π

1−e−βω .

that |A01|2 = ω2
x(1 − s)2/‖m(s)‖2 and, correspondingly, from

Eq. (8), the second eigenvalue goes to zero quadratically
in s − s∗: λ2(s) � −γ (δ)(ωx/ωz)2(1 − s)2(1 + e−βδ ). This
corresponds to α = 2 and hence [recall Eq. (5)] an exponent
η = 1

3 . Our numerical simulations are in agreement with this
prediction, as seen in Fig. 2(b). Note that the Hamiltonian gap
δ enters only indirectly via λ.

VIII. CONCLUSIONS

Using an adiabatic expansion we have extended the
adiabatic theorem of quantum mechanics to open systems
described by a time-dependent master equation with generator
L(t) in Lindblad form. The theorem, first proven using differ-
ent methods in [20–22], states that if one initializes the system
in KerL(0) and a gap condition is satisfied, the evolution brings
the system close to KerL(T ) up to an error C/T , where C is
a constant and T the total time. Our approach allowed us to
extend the results of [20–22] in two directions particularly
relevant for quantum state preparation and quantum annealing
in open systems. On the one hand, we related the constant C

to the smallest (in absolute value) gap �min of the Liouvillian.
For general Liouvillians, we obtained C = O(�−3

min), whereas
for thermal baths satisfying the KMS condition we found an
improved scaling C = O(�−2

min). More precisely, we showed
that taking T � β‖L′(σ )‖max

√〈[H ′(σ )]2〉G,max�
−2
min/ε guar-

antees adiabaticity up to an error O(ε) in trace norm. On
the other hand, we extended previous results to the case of
level crossing, for which the error becomes O(T −η) with an
exponent η that depends on the rate of the gap closing. Thus,
level crossings with the instantaneous steady state can slow
convergence down. We provided several examples to illustrate
our findings, which confirm the predicted scaling with T .
An interesting open question is whether the growing body of
techniques developed for bath engineering [37–39] can be used
to enact boundary cancellation methods and reduce the error
to O(T −n) with controllable n > 1, as in the closed-system
case [11,40–42]. Our results have implications for adiabatic
quantum computation and quantum annealing in the presence
of dissipation, where the closed-system adiabatic theorem
cannot be directly applied.
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APPENDIX A: PROOF THAT ZERO IS A SEMISIMPLE
EIGENVALUE OF L(s)

We assume in this section that L(s) is finite dimensional.
We show that zero is a semisimple eigenvalue of L(s), i.e., that
there are no idempotents in the Jordan block decomposition
of L corresponding to its zero eigenvalue. Assume the con-
trary, i.e., that one can write L(s) = 0 × P (s) + D(s) + R(s)
where D(s) is nilpotent, i.e., D(s)m = 0, D(s)m−1 	= 0, and
R(s)P (s) = P (s)R(s) = 0. Then,

etL(s)P (s) = P (s) +
m−1∑
n=1

tnD(s)n

n!
, (A1)

where we also used that D(s)P (s) = P (s)D(s) = D(s). By
assumption, L(s) is Markovian, which means that for each s

and t > 0, etL(s) is CPTP and so ‖etL(s)‖ = 1. Taking the norm
of both sides of Eq. (A1) we obtain that the left-hand side is
bounded while the right-hand side grows unboundedly with
t , which is a contradiction. Hence, D(s) = 0 and L(s)P (s) =
P (s)L(s) = 0. For an alternative proof see, e.g., Ref. [43] or
Proposition 5 of Ref. [22].

Note that when the generator L(s) is normal (i.e.,
[L(s),L∗(s)] = 0, where ∗ denotes the adjoint with respect
to the scalar product 〈X,Y 〉G := Tr[ρG(s)X†Y ]), as is the case
for a thermal bath, this has the pleasant consequence that all
the eigenprojectors of L(s) are bounded (in fact have norm
one) and there are no nilpotent terms in its Jordan block
decomposition.

APPENDIX B: PROOF THAT P(s)V (s) = V (s)P(0)

Recall that we defined the intertwiner to be the solution of
the following differential equation: V ′(s) = [P ′(s),P (s)]V (s).
To check that V (s) satisfies the intertwining relation, define
W (s) = P (s)V (s). From now on, we drop the s depen-
dence when not explicitly needed. Differentiating P 2 = P

gives P ′ = P ′P + PP ′, and after right multiplying by P

gives PP ′P = 0 and likewise QQ′Q = 0 [which also im-
plies QP ′Q = 0 since 0 = Q1′Q = Q(P ′ + Q′)Q]. Thus,
[[P ′,P ],P ] = P ′P − 2PP ′P + PP ′ = P ′. Using this, note
that W ′ = P ′V + PV ′ = (P ′ + P [P ′,P ])V = [P ′,P ]PV =
[P ′,P ]W , which is the same differential equation as the
one satisfied by V . Since W and V differ in their initial
condition, i.e., V (0) = 1 and W (0) = P (0), it follows that
W (s) = V (s)P (0), i.e.,

W (s) = P (s)V (s) = V (s)P (0). (B1)

APPENDIX C: COMPLETE POSITIVITY OF V (s)P(0), AND
LACK OF POSITIVITY OF V (s)

Here, we show that W (s) = V (s)P (0) is a CPTP map even
though the intertwiner V (s) itself is not in general. From

Appendix B, we obtain

W ′ = [P ′,P ]W

= P ′PW − PP ′W = P ′PW − PP ′PW

= P ′PW = P ′W. (C1)

Now, we write the solution of the differential equa-
tion using the method of Euler lines [44,45], i.e.,
W (s) = limN→∞ [1 + εP ′(s − ε)] . . . [1 + εP ′(0)]P (0), with
ε = s/N . Using P (s)2 = P (s) we get, in the ε → 0 limit,

[1 + εP ′(0)]P (0) = [P (0) + εP ′(0)]P (0) = P (ε)P (0),

where the second equality is up to first order in ε. Then (with
the same notation),

[1 + εP ′(ε)]P (ε) = [P (ε) + εP ′(ε)]P (ε) = P (2ε)P (ε),

etc., until W (s) = limN→∞ P (s) . . . P (2ε)P (ε)P (0). In this
form, W (s) is an infinite product of CPTP maps, so it is a
CPTP map itself. It follows from submultiplicativity of the
norm [46] that ‖W (s)‖ = ‖V (s)P (0)‖ � 1.

Next, let us demonstrate that V (s), in general, is not
even positive. Consider, e.g., the case where P (s) is one
dimensional, so that P (s) = |ρ(s)〉〈1|, where 〈x| is the adjoint
of |x〉 with respect to the Hilbert-Schmidt scalar product
〈A|B〉 = Tr[A†B]. We assume that ρ(s) is differentiable.
Then, P ′(s) = |ρ ′(s)〉〈1| and so P ′P = P ′ while PP ′ = 0
since ρ ′(s) is traceless. Thus, V ′ = [P ′,P ]V becomes V ′ =
P ′V [with V (0) = 1], with the solution

V (s) = Texp

[∫ s

0
P ′(σ )dσ

]
, (C2)

where Texp denotes the time-ordered exponential. However,
P ′(s1)P ′(s2) = P ′(s2)P ′(s1) = 0 [again, since ρ ′(s) is trace-
less] so the time-ordered exponential in the above equation
reduces to a standard exponential. The solution is then

V (s) = exp {[|ρ(s)〉 − |ρ(0)〉]〈1|}
= 1 + [|ρ(s)〉 − |ρ(0)〉]〈1|, (C3)

where in the second line we used the fact that {[|ρ(s)〉 −
|ρ(0)〉]〈1|}2 = 0. Now, it is easy to see that, unless ρ(s) = ρ(0)
such that V (s) = 1, V (s) does not even preserve positivity. Let
us define, for clarity, δρ := ρ(s) − ρ(0). This is a Hermitian
and traceless operator, so it must have a negative eigenvalue,
i.e., there exist a vector |α〉 and a real number α > 0, such that
δρ|α〉 = −α|α〉. Let us consider the following state:

x0 := λ
1

d
+ (1 − λ)|α⊥〉〈α⊥|, (C4)

where d is the dimension of the ISS, |α⊥〉 is a vector satisfying
〈α|α⊥〉 = 0 and λ ∈ [0,1]. It is clear that x0 is a positive
operator. However,

V (s)x0|α〉 =
(

λ

d
− α

)
|α〉, (C5)

such that, for λ < min(αd,1), V (s)x0 has a negative eigen-
value, i.e., V (s) does not preserve positivity.

APPENDIX D: PROOF OF EQ. (2)

We assume that L is m-fold differentiable.
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1. The m = 1 case

The proof of Eq. (2) of the main text for m = 1 closely
follows the classic reference [4]. As above, let P (s) be the
projector onto the instantaneous, zero eigenvalue of L(s). In
this section, we do not require the ISS to be unique. Since we
established in Appendix A that LP = PL = 0 (from now on
we omit the explicit dependence on s if not strictly needed),
it follows that L = QL = LQ. Therefore, the reduced resol-
vent S = limz→0 Q(L − z)−1Q satisfies SL = limz→0 Q(L −
z)−1QL = Q limz→0(L − z)−1L = Q. To summarize,

LS = SL = Q, (D1a)

SP = PS = 0. (D1b)

It follows from Eq. (C1) and PP ′P = 0 that PW ′ = 0 and
so

W ′ = QW ′. (D2)

Recall [Eq. (1) of the main text] that the evolution operator
E satisfies E ′ = TLE . Now, 0 = (EE−1)′ = E ′E−1 + E(E−1)′,
so that

(E−1)′ = −T E−1L. (D3)

Therefore, (E−1)′W = −T E−1LPV = 0 since LP = 0.
Hence, (E−1W )′ = E−1W ′, which integrated over [0,s] gives

E−1(s)V (s)P (0) − P (0) =
∫ s

0
E−1(σ )W ′(σ )dσ. (D4)

Now, we use

E−1W ′ = E−1QW ′

= E−1LSW ′

= −T −1(E−1)′SW ′, (D5)

where we used Eqs. (D2), (D1a), and (D3). We plug this into
Eq. (D4) and integrate by parts, to obtain

E−1(s)W (s) − P (0)

= 1

T

{∫ s

0
E−1(σ )[S(σ )W ′(σ )]′dσ − (E−1SW ′)|s0

}
.

(D6)

Now, we act with E(s) from the left and use the property
E(a,b)E(b,0) = E(a,0) to obtain

[E(s) − V (s)]P (0) = 1

T
E(s,σ )S(σ )W ′(σ )|s0

− 1

T

∫ s

0
dσ E(s,σ )(S ′W ′ + SW ′′)(σ ).

(D7)

At this point recall that W ′ = P ′W [Eq. (C1)] and hence [using
Eq. (B1)] W ′(s) = P ′(s)V (s)P (0), and also W ′′ = [P ′′ +
(P ′)2]W . It follows from the latter, together with S = SQ

[from Eq. (D1b)] and W = PW [from Eq. (B1)], that SW ′′ =
SQ[P ′′ + (P ′)2]PW . But, Q(P ′)2P = QP ′(P + Q)P ′P =
0 because PP ′P = 0 and QP ′Q = 0 (see Appendix B), so

that SW ′′ = SP ′′W . Collecting all these results we finally
obtain

[E(s) − V (s)]P (0)

= 1

T

{
[S(s)P ′(s)V (s)P (0) − E(s)S(0)P ′(0)P (0)]

−
∫ s

0
dσ E(s,σ )[S ′P ′ + SP ′′](σ )V (σ )P (0)

}
. (D8)

Using submultiplicativity along with ‖P (s)‖ = 1 and
‖V (s)P (0)‖ � 1 (as shown in Appendix C) and ‖E(s)‖ � 1
(see immediately below) we obtain

‖[E(s) − V (s)]P (0)‖ � C/T (D9)

with

C = ‖S(s)‖‖P ′(s)‖ + ‖S(0)‖‖P ′(0)‖
+ sup

σ∈[0,s]
‖[S ′P ′ + SP ′′](σ )‖, (D10)

as stated in Eqs. (3) and (4) of the main text.
Note that when restricted to acting on normalized states,

clearly ‖E‖ = 1 by trace preservation. More generally, since
L(s) is a Lindbladian we have ‖ exp[tL(s)]‖ � 1 for each fixed
s and t > 0 [i.e., L(s) generates a contraction for any fixed s].
Using the method of Euler lines (see Appendix C) one can
show that this implies that ‖E(s,t)‖ � 1 because E(s,t) can
be written as an infinite product of evolutions of the form
exp[tL(si)].

2. Extension to arbitrary order

Next, we show how to extend the integration by parts
technique of the previous subsection to arbitrary order m. A
particularly simple series will result under the assumption that
the ISS is unique, i.e., P (s) = |ρ(s)〉〈1|, as in Appendix C
(this assumption is not essential, but it significantly simplifies
our calculations below). As before, we also assume that L
generates a trace-preserving map. Both of the latter two
assumptions are usually satisfied for thermal (i.e., Davies)
generators.

We begin by considering the first term of Eq. (D6), i.e.,
(SW ′)′ = S ′W ′ + SW ′′. Our strategy will be to repeat the
integration by parts on the term arising from W ′, while keeping
(i.e., not integrating by parts) the term arising from W ′′. We
will show how this can be done repeatedly and thus extend the
result to arbitrary order.

Now, thanks to the assumption of uniqueness P (s) =
|ρ(s)〉〈1|. Hence, from PS = 0 we obtain 〈1|S = 0 and so
P ′S = |ρ ′(s)〉〈1|S = 0. Using P ′S + PS ′ = 0 we get PS ′ =
0 so that writing S ′Q = (P + Q)S ′Q = PS ′Q + QS ′Q it
thus follows that

S ′Q = QS ′Q. (D11)

This means that, using Eq. (D2), we can write

S ′W ′ = S ′QW ′ = QS ′W ′. (D12)
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Returning to the term of interest in Eq. (D6), we have

E−1S ′W ′ = E−1QS ′W ′ (D13a)

= E−1LSS ′W ′ (D13b)

= −T −1(E−1)′SS ′W ′, (D13c)

where in the last equality we used Eq. (D3). This term can
now be integrated by parts again, in analogy to the term in
Eq. (D5). Differentiating SS ′W ′, we obtain two terms, one
of which is SS ′W ′′, which we keep. The other is (SS ′)′W ′,
which we would like to integrate by parts again (because
it diverges more strongly when �min → 0). We now show
that this procedure can be iterated to any order provided L is
differentiable sufficiently many times.

Let us assume that at order n we obtained the term

1

T n

∫ s

0
dσ E−1X′

nW
′. (D14)

Assume for the moment that X′
nW

′ = QX′
nW

′; we will
show shortly that this is legitimate. In this case, we can
repeat the calculation of Eq. (D13) and write E−1X′

nW
′ =

−T −1(E−1)′SX′
nW

′. We can thus use the integration by parts
trick:

1

T n

∫ s

0
dσ E−1X′

nW
′

= − 1

T n+1

∫ s

0
dσ (E−1)′SX′

nW
′

= − 1

T n+1
E−1SX′

nW
′∣∣s

0 + 1

T n+1

∫ s

0
dσ E−1(SX′

nW
′)′

= − 1

T n+1
E−1SX′

nW
′∣∣s

0 + 1

T n+1

∫ s

0
dσ E−1SX′

nW
′′

+ 1

T n+1

∫ s

0
dσ E−1(SX′

n)′W ′. (D15)

The first integral (with W ′′) is the one we keep, while the
second (with W ′) is the one we continue to integrate by parts.
This shows that the process can be iterated with Xn+1 = SX′

n.
We now verify that we can plug in a Q term at each order as

claimed above. We prove it by induction. Assume that X′
nW

′ =
QX′

nW
′. We wish to show that this implies that X′

n+1W
′ =

QX′
n+1W

′. But, this is clear since

X′
n+1W

′ = (S ′X′
n + SX′′

n)W ′

= (S ′QX′
n + QSX′′

n)QW ′

= Q(S ′QX′
n + SX′′

n)QW ′

= Q(S ′X′
n + SX′′

n)W ′ = QX′
n+1W

′, (D16)

where we used the induction hypothesis, Eqs. (D2) and
(D11). We have already shown that the claim holds for n = 1
[Eq. (D12) for X1 = S] so we are done.

We thus obtain

E−1(s)W (s) − P (0) =
m∑

n=1

�n

T n
+ 1

T m

∫ s

0
dσ E−1X′

mW ′,

(D17)

�n = −E−1XnW
′|s0 +

∫ s

0
dσ E−1XnW

′′, (D18)

Xn+1 = SX′
n, X1 = S. (D19)

Multiplying from the left by E(s) we obtain

[E(s) − V (s)]P (0)

=
m∑

n=1

�n

T n
− 1

T m

∫ s

0
dσ E(s,σ )X′

m(σ )W ′′(σ ), (D20)

�n = E(s,σ )Xn(σ )W ′(σ )|s0 −
∫ s

0
dσE(s,σ )Xn(σ )W ′′(σ ).

(D21)

If L is differentiable infinitely many times, we can write

[E(s) − V (s)]P (0) =
∞∑

n=1

�n

T n
(D22)

under the assumption of convergence. We expect this as-
sumption to hold in the finite-dimensional case if L depends
analytically on s.

APPENDIX E: ADDITIONAL REMARKS ON THE
CLOSED-SYSTEM LIMIT

The closed-system limit may also be achieved by con-
sidering Lx(s) = K(s) + xD(s), where D(s) is a dissipative
generator, and taking the (weak coupling) limit x → 0. This
is a singular limit: for x 	= 0 there is typically only one
steady state, whereas for x = 0 there is a large degeneracy
(� d Hilbert’s space dimension). Calling P (x) the spectral
projection onto the zero eigenvalue for fixed s, one has
limx→0 P (x) 	= P (0) since the left-hand side has rank one,
whereas P (0) has rank �d. Moreover, for sufficiently small x

the smallest gap will be ∝ x and hence also (1/gap)η (η > 0)
will diverge. Thus, the constant C in Eq. (4), and even the
optimal constant Copt [obtained taking the infimum of all the
constants C satisfying the bound Eq. (3) for all T ] will, in
general, likely be large. In other words, in general the limit
x → 0 is singular and the adiabatic theorem for closed system
cannot be recovered in this form. A possible way to recover
it is to abandon projectors and move to states, at least in the
case of nondegenerate ISS for x 	= 0. In other words, let us
call ρx(s) the state evolved with generator Lx(s) from σx(0)
[Lx(s)σx(s) = 0 is assumed to be unique for x 	= 0]. Now, it
is possible that ρx(s) and σx(s) have a well-defined limit as
x → 0 such that the following bound

‖ρx(s) − σx(s)‖ � C̃x/T (E1)

may admit a nontrivial limit for x → 0 with limx→0 C̃x <

∞. This may be achieved by applying Eq. (D8) to σx(0) and
bounding the resulting expression.

APPENDIX F: EXTENSION TO THE CASE OF A
DEGENERATE KERNEL

If the kernel of L(s) is not one dimensional, in general we
will also have a P -Q block in Xn. The procedure, however,
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can still be iterated. Assume that at order n we obtained

1

T n

∫ s

0
dσ E−1XnW

′

= 1

T n

∫ s

0
dσ [E−1PXnQW ′ + E−1QXnQW ′]. (F1)

We keep the first term (we will have to show later that it scales
nicely), and integrate the second by parts, for which we use
E−1QXnQW ′ = E−1LSXnQW ′ = −T −1(E−1)′SXnW

′. The
above equation becomes

1

T n

∫ s

0
dσ E−1PXnQW ′ − 1

T n+1
E−1SXnW

′
∣∣∣∣
s

0

+ 1

T n+1

∫ s

0
dσ E−1(SXnW

′)′ (F2)

= 1

T n

∫ s

0
dσ E−1PXnQW ′ − 1

T n+1
E−1SXnW

′
∣∣∣∣
s

0

+ 1

T n+1

∫ s

0
dσ E−1(SXn)W ′′

+ 1

T n+1

∫ s

0
dσ E−1(SXn)′W ′, (F3)

from which we see that the recurrence is Xn+1 = (SXn)′ with
X0 = 1 as previously. However, now the series reads as

E−1(s)W (s) − P (0) =
∞∑

n=1

�n

T n
, (F4)

�n = − E−1XnW
′|s0 +

∫ s

0
dσ E−1XnW

′′

+
∫ s

0
dσ E−1PX′

nQW ′, (F5)

with Xn+1 = S(X′
n), X1 = S. Multiplying from the left by

E(s) we obtain

[E(s) − V (s)]P (0) =
∞∑

n=1

�n

T n
, (F6)

�n = E(s,σ )Xn(σ )W ′(σ )|s0 −
∫ s

0
dσ E(s,σ )Xn(σ )W ′′(σ )

−
∫ s

0
dσ E(s,σ )[PX′

nQW ′](σ ). (F7)

In order to repeat the arguments for the case of level crossings,
we now have to assess the scaling of PX′

nQ as one eigenvalue
goes to zero. We have separately shown that Xn ∼ 1/δβn with
βn = nα + n − 1. Now, Xn = S(X′

n−1), so

PX′
nQ = P [S(X′

n−1)]′Q (F8)

= PS ′X′
n−1Q (F9)

= PS ′QX′
n−1Q, (F10)

where the first equation holds because PS = 0 and the
second because PS ′P = 0. Now, as we know, PS ′Q = −P ′S
introduces only a power 1/δα . On the other hand, we know

that X′
n−1 ∼ 1/δβn−1+1. Hence,

PX′
nQ ∼ 1

δβn−1+1+α
= 1

δβn
. (F11)

We see hence that this potentially more dangerous term has the
same scaling as Xn. In other words, all our earlier conclusions
also hold for the case with a degenerate kernel.

APPENDIX G: PROOF OF AN IDENTITY FOR S′

Since S = SQ [Eq. (D1b)] we have S ′ = S ′Q + SQ′. Note
that

SQ′ = −SP ′ = −SQP ′ = −S2LP ′ = S2L′P, (G1)

where we used that SL = Q and LP ′ = −L′P . Differentiat-
ing SL = Q yields S ′L + SL′ = −P ′. Multiplying from the
right by S we obtain

S ′Q = −P ′S − SL′S. (G2)

Therefore, we have

S ′Q = −P ′QS − SL′S

= −P ′LS2 − SL′S = PL′S2 − SL′S. (G3)

Combining the last three equations, we have

S ′ = S2L′P + PL′S2 − SL′S. (G4)

APPENDIX H: GAP DEPENDENCE
FOR UNITARY FAMILIES

Assume here that L(s) is a unitary family, i.e., L(s) =
esKL(0)e−sK with K an anti-Hermitian superoperator. In this
case, one has (dropping the s dependence) L′ = KL − LK
and so, using first-order perturbation theory ([33], p. 77),

P ′ = −PL′S − SL′P (H1)

= −PKQ + QKP (H2)

= KP − PK. (H3)

Differentiating the above equation we get that both P ′ and
P ′′ are sums of products of P and K and so are everywhere
bounded under the assumption that P and K are bounded.
From Eq. (G4) and repeatedly using SL = LS = Q, LP =
PL = 0, and S = SQ = SQ [from Eq. (D1b)], we obtain

S ′ = S2(KL − LK)P + P (KL − LK)S2 − S(KL − LK)S

= −SQKP + PKQS − SKQ + QKS

= −SKP + PKS − SKQ + QKS

= −SK + KS. (H4)

Hence, in this case S ′ carries only one inverse Liouvillian gap
(hidden in S). Combining these results we see that the constant
C appearing in Eq. (D10) is in this case at most O(�−1

min).

APPENDIX I: BOUND ON ‖P ′‖ FOR THE KMS CASE

In the KMS case with a unique steady state we have
already seen (Appendix C) that P (s)x = ρG(s)Tr(x) with
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ρG = e−βH /Z and the partition function Z = Tre−βH . Then,
obviously P ′(s)x = ρ ′

G(s)Tr(x) and ‖P ′‖ = ‖ρ ′‖1. We first
recall the Bogoliubov-Duhammel scalar product [47,48]

(A,B) = 1

Z

∫ 1

0
dx Tr

[
e−β(1−x)H A†e−βxH B

]
, (I1)

and define 〈A〉G := Tr[Ae−βH ]/Z. Moreover, one has the
inequality [48]

(A,A) � 1
2 〈A†A + AA†〉. (I2)

Differentiating the Gibbs state we obtain

ρ ′
G = −β

1

Z

∫ 1

0
dx e−β(1−x)H H ′e−βxH + βρG〈H ′〉, (I3)

where the second term arises from the differentiation of the
partition function. Now, let Y denote the first term of the above
equation. We wish to bound its trace norm. We use [46]

‖Y‖1 = sup
U

|Tr(YU )|, (I4)

where the supremum is taken over the set of unitary
matrices U . Note that Tr(YU ) = −β(H ′,U ) since H ′ is
Hermitian. Using the Schwartz inequality we have |Tr(YU )| �
β
√

(H ′,H ′)(U,U ). We now use Eq. (I2) to obtain

‖Y‖1 � β
√

〈(H ′)2〉G. (I5)

On the other ‖ρG‖ = 1. Combining the bounds we get, all in
all,

‖ρ ′‖1 � β[
√

〈(H ′)2〉G + |〈H ′〉G|]. (I6)

Since in general 〈X2〉 > 〈X〉2, we can write an even more
compact bound

‖P ′‖ = ‖ρ ′‖1 � 2β
√

〈(H ′)2〉G, (I7)

as reported in the main text.

APPENDIX J: EXTENSION TO THE CASE
OF LEVEL CROSSING

The results obtained so far assume that there is a finite
gap from the zero eigenvalue to the rest of the spectrum.
However, this is not necessary and all of the above can
be generalized to include the case in which there are level
crossings along the adiabatic path [0,s]. Suppose that there are
N level crossings at positions s∗

i , i = 1, . . . ,N . We isolate each
level crossing by a short segment of length δi , so that no two
segments overlap. Then, define two sets A,B such that [0,s] =
A ∪ B, with A = ∪i[s∗

i + δi/2,s∗
i+1 − δi+1/2], i = 0, . . . ,N ,

with s∗
0 = 0, s∗

N+1 = s, δ0 = δN+1 = 0, and B = ∪i[s∗
i −

δi/2,s∗
i + δi/2],i = 1, . . . ,N . By construction, A avoids the

singularities while B comprises short segments around each
level crossing. We start with Eq. (D4), which we separate into
integrals over A and B:

E−1(s)V (s)P (0) − P (0)

=
∫

A∪B

E−1W ′dσ

= − 1

T

∫
A

(E−1)′SW ′dσ +
∫

B

E−1W ′dσ, (J1)

where in the integral over A we used Eq. (D5). From the above
equation, using the classic argument in Ref. [4] one can then
show that

lim
T →∞

[E(s) − V (s)]P (0) = 0. (J2)

However, we are interested in assessing the way in which the
limit is approached. In order to obtain a better estimate of the
asymptotic behavior, it is necessary to repeat the integration
by parts trick at all orders. Since in region A there are no
exceptional points we can immediately repeat all the steps
from Appendix D. Assuming convergence of the series, we
then obtain

[E(s) − V (s)]P (0) =
∞∑

n=1

�A
n

T n
−

∫
B

dσ E(s,σ )W ′(σ ), (J3)

�A
n =

N∑
i=0

E(s,σ )Xn(σ )W ′(σ )

∣∣∣∣∣
s∗
i+1−δi+1/2

s∗
i +δi/2

−
∫

A

dσ E(s,σ )Xn(σ )W ′′(σ ). (J4)

Each term in the above equations is bounded for finite δi ,
however, when δi → 0 some terms display singular behavior.
We are interested in estimating the size of the most singular
terms. Recall that we are assuming a Davies generator. In this
case, W ′ = P ′W [Eq. (C1)] is bounded (because P ′ is bounded
[30] and ‖W‖ = 1 because W is a CPTP map), and similarly
W ′′ = [P ′′ + (P ′)2]W is bounded because P ′′ is bounded [30].
Hence, when δi → 0, the only singularities in Eqs. (J3) and
(J4) arise from Xn(σ ). Now, assume that at each singular point
s∗
i , there is an eigenvalue going to zero as vi(s − s∗

i )αi (where
the coefficients vi can be complex). This algebraic vanishing of
the gap is the only possibility in the finite-dimensional case on
which we focus. Moreover, for normal operators and analytic
dependence on s, the exponents αi must be positive integers
(see Ref. [33]), but we will not be needing this. Consider then
the finite-dimensional case. The normality ofL guarantees that
there are no nilpotent terms in the spectral resolution of L and
so the reduced resolvent can be written as

S(s) =
∑
j>0

Pj (s)

λj (s)
, (J5)

where λj (s) [Pj (s)] are the eigenvalues (spectral projections)
of L(s), with P0(s) = P (s). Hence,

S ′ = −
∑
j>0

Pj

(λj )2
λ′

j +
∑
j>0

P ′
j

λj

. (J6)

Now, it is natural to assume that P ′
j are piecewise differentiable

also for j > 0. For normal operators and analytic dependence
on s this follows from a theorem of Kato (see Ref. [33],
Theorem 1.10, p. 71). In this case, the largest divergence of S ′,
when s − s∗

i = δi → 0, comes from the vanishing of the gap
in the first term of Eq. (J6) and is of the form

S ′(s) ∼ 1

δ
αi+1
i

. (J7)

Note that the prefactors may be different depending on whether
δi → 0±. This reasoning can be extended to Xn(s). Recall that
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Xn = SX′
n−1, with X1 = S, and note that Xn contains n powers

of S and a total of n − 1 derivatives with respect to s. So, we
conclude that Xn(s) ∼ 1/δ

nαi+n−1
i as δi → 0. More precisely,

we have

lim
δi→0±

δ
βi

n

i Xn(s∗
i + δi) = Y±

n , (J8)

where the Y±
n exist and where

βi
n = nαi + n − 1. (J9)

Thanks to the above, there exist positive constants Ai
n such

that, for sufficiently small δi ,

∥∥�A
n

∥∥ �
N∑

i=1

Ai
n

δ
βi

n

i

. (J10)

The Ai
n can be made independent of δi , for sufficiently small

δi . In fact, they can be taken to be the max of the norm of the
most diverging terms plus a small constant. On the other hand,
to bound the second term of Eq. (J3) we just need to notice
that W ′ is piecewise continuous:∥∥∥∥−

∫
B

dσ E(s,σ )W ′(σ )

∥∥∥∥
=

∥∥∥∥∥−
N∑

i=1

∫ s∗
i+δi /2

s∗
i−δi /2

dσ E(s,σ )W ′(σ )

∥∥∥∥∥ �
N∑

i=1

δiBi, (J11)

with positive Bi , because the integrand is piecewise continuous
{Bi ∼ (1/2)[‖P ′(s∗

i + 0+)‖ + ‖P ′(s∗
i − 0+)‖]}. All in all we

obtained

‖[E(s) − V (s)]P (0)‖ �
N∑

i=1

fi(T ,δi), (J12)

where

fi(T ,δi) =
∞∑

n=1

Ai
n

T nδ
βi

n

i

+ Biδi . (J13)

Now, for each fixed T , we are free to minimize each fi over
δi , to which we turn next.

Differentiating, we obtain

∂δi
fi = −

∞∑
n=1

βi
nA

i
n

T nδ
βi

n+1
i

+ Bi = 0, (J14)

where βi
n + 1 = n(αi + 1). Recall that all the Ai

n � 0 and
Bi > 0, so the only way Eq. (J14) can have a solution is that,
asymptotically as T → ∞, some of the terms in the series in

Eq. (J14) scale to constant, while some others may scale to
zero. Plugging in the ansatz δi = (ciT )−ηi one can check that
ηi = 1/(αi + 1) is the only possible solution. In fact, all the
terms scale to a constant. The constants ci must satisfy

∞∑
n=1

βi
nA

i
nc

n
i = Bi. (J15)

The extremum is indeed a minimum as it is easy to check
that the second derivative is always positive for positive T ,δ.
Substituting the solution back into Eq. (J13) we obtain

fi(T ,δmin) = Di

(ciT )ηi
, (J16)

Di =
[ ∞∑

n=1

Ai
n(ci)

n + Bi

]
. (J17)

Returning to Eq. (J12), we finally obtain

‖[E(s) − V (s)]P (0)‖ �
N∑

i=1

Di

(ciT )ηi
, (J18)

as stated in Eq. (5) of the main text.

APPENDIX K: DERIVATION OF THE EIGENVALUES
OF THE LINDBLADIAN OF EXAMPLE 2

Denote the instantaneous Hamiltonian gap by δ(s) and the
instantaneous ground state and first excited state by |ε0(s)〉 and
|ε1(s)〉, respectively. The action of the Lindbladian on ρ can be
written in this basis as (dropping the s dependence for clarity)

〈ε0|Lρ|ε0〉 = γ (δ)[|A01|2ρ11 − e−βδ|A10|2ρ00], (K1a)

〈ε0|Lρ|ε1〉 = (iμ − �)ρ01, (K1b)

〈ε1|Lρ|ε0〉 = (−iμ − �)ρ10, (K1c)

〈ε1|Lρ|ε1〉 = γ (δ)[e−βδ|A10|2ρ00 − |A01|2ρ11], (K1d)

where ρab ≡ 〈εa|ρ|εb〉, μ = δ − S(0)(A2
00 − A2

11) +
[S(δ) − S(−δ)]|A01|2, and 2� = γ (0)(|A00|2 + |A11|2) +
γ (δ)|A01|2(1 + e−βδ). This form immediately allows us
to read off two of the eigenvalues of L as ±iμ − �. The
remaining two are the eigenvalues of the following 2 × 2
matrix:

γ (δ)|A10|2
(

−e−βδ 1

e−βδ −1

)
, (K2)

whose eigenvalues are 0 and −|A01|2γ (δ)(1 + e−βδ).
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