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Parameter estimation in atomic spectroscopy using exceptional points
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We suggest a method for accurate parameter estimation of atomic systems, employing the special properties
of the exceptional points. The non-Hermitian degeneracies at the exceptional points emerge from the description
of the spontaneous emission of the atomic system in the framework of an open quantum system, resulting in
a non-Hermitian quantum master equation. The method is demonstrated for the atomic spectrum of S → P

transitions of 85Rb and 40Ca+.
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I. ELECTRONIC TRANSITIONS AND SPONTANEOUS
EMISSION IN ATOMIC SYSTEMS

Atomic spectroscopy is unique in its experimental accuracy,
able to achieve a dynamical range of precision of up to
18 significant digits. High-performance frequency standards
are the technological result of this precision, leading to
applications such as network synchronization and global
positioning systems (GPS) [1]. This technology is enabled by
atomic clocks [2,3]. High accuracy has implications in other
fields of physics, such as radioastronomy (very-long-baseline
interferometry) [4], tests of general relativity [5], and particle
physics [6]. Atomic spectroscopy has been a primary source
of fundamental constants [7]. For example, a small deviation
of the Rydberg constant can indicate the radius of the proton
[8].

A. Electronic transitions and spontaneous emission

Atomic spectroscopy is the study of electronic transition in
atoms. The spectral lines correspond to Bohr frequencies of
the transitions between energy levels of the atom. Within this
viewpoint, the spectral theory involves calculating the eigen-
values of the atomic Hermitian Hamiltonian. The observed
spectrum is then predicted by perturbation theory, assuming
weak excitation and knowledge of the transition dipole matrix
elements.

The simple picture of atomic spectroscopy is hampered by
the notion that atoms are imbedded in the radiation field. The
primary influence is spontaneous emission and Lamb shifts [9].
In principle, one can employ quantum field theory and treat the
radiation field and the atom using a Hamiltonian description
[10],

Ĥ = Ĥatom + Ĥradiation + Ĥinteraction. (1)

Our aim is to concentrate on the atomic spectra. We therefore
employ a reduced description where we derive effective
equations of motion for the atomic system by tracing out
the radiation field. This is the approach incorporated in open
quantum systems. In this case, the reduced dynamics is
described by a non-Hermitian generator L. We will show that
due to non-Hermitian degeneracies, there is a profound and
unexpected influence on the atomic spectrum.

B. The L-GKS equation for spontaneous emission

The phenomena of spontaneous emission (SE) can-
not be described by a unitary description, such as the
Schrödinger equation for the wave function, or the counterpart
Liouville–von Neumann master equation for density matri-
ces. Hamiltonian-based approaches incorporate only coherent
dynamics. Dissipation and dephasing phenomena are properly
described by the quantum master equation [11,12]. The general
structure of the quantum master equation was introduced by
Lindblad [13] and Gorini, Kossakowski, and Sudarshan [14]
(L-GKS). Based on a mathematical construction, they obtained
the general structure of the generatorL of a completely positive
dynamical semigroup. The L-GKS master equation (known
also as the Lindblad equation) adds dissipative terms to the
master equation which handles SE,

∂ρ̂

∂t
= Lρ̂ = − i

�
[Ĥ,ρ̂] +

∑
(a,b)

�a→b

×
(

Â(a,b) ρ̂ Â
†
(a,b) − 1

2
[Â

†
(a,b)Â(a,b),ρ̂]+

)
, (2)

where [·,·] denotes a commutator and [·,·]+ denotes an
anticommutator.

The first term is the commutator of the Hamiltonian with
the density matrix, which generates the unitary dynamics. The
second term is the dissipator, which generates the spontaneous
emission. The sum is over the pairs of levels (a,b): Each of the
annihilation operators

Â(a,b) ≡ Âa→b = |b〉〈a| (3)

generates a decay from the upper source level |a〉 to the lower

destination level |b〉. The anticommutator [Â
†
(a,b)Â(a,b),ρ̂]+

expresses the decrease in population of the excited state |a〉,
while the resulting increase of population of the lower state

|b〉 is expressed by the term Â(a,b) ρ̂ Â
†
(a,b). Note that the

anticommutator contains the term

Â
†
(a,b)Â(a,b) = (|a〉〈b|)(|b〉〈a|) = |a〉〈a| ≡ P̂a, (4)
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where P̂a is the projection operator, projecting on the subspace
spanned by |a〉. Therefore, the decrease in population of the
excited state is expressed using only the population on this
state and does not require knowledge of other states.

The decay rate for the pair of levels (b,a),�a→b can be
obtained by a microscopic derivation of the quantum optical
master equation from the Hamiltonian of Eq. (1) under
the weak-coupling limit. The Born-Markov approximation
is employed where the perturbation parameter is the dipole
interaction between the atom and the radiation at temperature
T = 0. The rate obtained is equivalent to the golden rule
formula [15],

�a→b = 4

3

ω3
ab

�c3
|dab|2, (5)

with ωab as the transition frequency, c the speed of light, and
dab the transition dipole matrix element. For states with defined
angular momentum, the transition dipole matrix element
becomes

�a→b = 4

3

ω3
ab

c2
α

|〈Ja||r̂||Jb〉|2
2Jb + 1

. (6)

Here, α is the fine-structure constant, and Ja,Jb are the angular
momenta of the states |a〉 and |b〉. 〈Ja||r̂||Jb〉 is the reduced
dipole matrix element between Ja and Jb.

The total decay rate from a state |a〉 is the sum �a =∑
b �a→b. This decay rate defines the lifetime of the excited

state: τa = �−1
a .

The spontaneous-emission rate is completely determined
by the fundamental physical constants: i.e., magnetic moment
of the electron and the nuclei, etc. These constants determine
the values of the energy level’s splitting and lifetime. By
inversion, an accurate measurement of the energies and
lifetime constitutes an appropriate determination of universal
parameters.

C. Population leakage

Typically, in atomic systems, the excitation and deexcitation
transitions are not closed. Population can leak to other levels of
the atomic system. The population is expressed by the diagonal
entries in the density matrix ρ̂, and the total population is Tr{ρ̂}.
The dissipative term in Eq. (2) conserves the total population
in the system, i.e., ∂t Tr{ρ̂(t)} = 0. To incorporate population
loss, we utilize the fact that the decrease of population in an ex-
cited state is described by the anticommutator terms, which use
only the population on this state and do not require knowledge
about other states. Therefore, the dissipator L will include
additional terms composed only from the anticommutators.
Such terms cause a decrease in the population of the excited
state which are not compensated by an increase of population
of other states. For each excited state |a〉, the additional term
will have the form

L(a)
leakρ̂ = − 1

2�a,leak[P̂a,ρ̂]+. (7)

The total decay rate from the state |a〉 is now �a = �a,leak +∑
b �a→b. We define χa = �leak/�a as the branching fraction

that decays from the excited state |a〉 to states out of the primary
system. Introducing such leaking terms into the dissipator
reduces the total population and, therefore, ∂t Tr{ρ̂(t)} < 0.

The total spontaneous-emission part of the L-GKS equation
will have the form

LSE ρ̂ =
∑

a

{∑
b

�a→b

(
Â(a,b) ρ̂ Â

†
(a,b) − 1

2
[P̂a,ρ̂]+

)

− 1

2
�a,leak[P̂a,ρ̂]+

}

=
∑

a

(∑
b

�a→bÂ(a,b) ρ̂ Â
†
(a,b) − 1

2
�a[P̂a,ρ̂]+

)
.

(8)

If the excited state |a〉 decays to a manifold B with NB

states |b〉 ∈ B with equal decay rate, then we have �a→b =
(1 − χa)�a/NB . The spontaneous-emission part will have the
form

LSE ρ̂ =
∑

a

�a

{
(1 − χa)

NB

∑
b∈B

Â(a,b) ρ̂ Â
†
(a,b) − 1

2
[P̂a,ρ̂]+

}
.

(9)

D. Pure dephasing

Pure dephasing is the loss of coherence without change
in population. Random fluctuations of the energy levels will
generate pure dephasing. A possible mechanism is caused
by elastic collisions with other atoms in the chamber. An
additional mechanism is caused by noise in the monitoring
or driving laser. As a result, the pure dephasing rate can be
controlled, for example, by changing the density of the atomic
gas or by generating fluctuations in the external field. We
denote the pure dephasing rate by �deph.

Within the L-GKS equation, pure dephasing is described
by a generator L which commutes with the Hamiltonian, for
example, L = �deph[Ĥ,[Ĥ,·]].

E. The Heisenberg form

An alternative description is to describe the dynamics in an
operator base. As a result, the L-GKS equation is employed
in the Heisenberg representation [15–17], the Hermitian
conjugate of Eq. (2). The equation of motion for an operator
X̂ becomes

d

dt
X̂ = ∂X̂

∂t
+ i

�
[Ĥ,X̂]

+
∑
(a,b)

�a→b

(
Â

†
(a,b)X̂Â(a,b) − 1

2
[P̂a,X̂]+

)
. (10)

For a system with population leakage, the equation will have
additional anticommutator terms, as in Eqs. (8) and (9).

II. DYNAMICS AT THE EXCEPTIONAL POINTS
AND PARAMETER ESTIMATION

The dynamics generated by L will be represented by an
explicit matrix vector notation. The density matrix ρ̂, which
is an element in Liouville space, is represented as a vector,
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while L, which is a linear superoperator operating in this
space, is represented by a matrix. There are a few methods
to generate such a representation; cf. a recent demonstration
in Ref. [17]. In this study, we employed the Heisenberg
approach for the two-level systems and the “vec-ing” approach
for larger systems. The vec-ing approach flattens the density
matrix into a vector, representing the L-GKS generator by an
appropriate matrix. This results in N2 × N2 matrices for the
L-GKS generator. We denote the vector representation of the
density matrix ρ̂ as �ρ and the matrix representation of L by
L. In this notation, Eq. (2) is expressed by a matrix-vector
equation,

�̇ρ = L �ρ. (11)

The eigenvalues of the matrix L reflect the non-Hermitian
dynamics generated by L. In general, they are complex,
with the steady-state eigenvector having an eigenvalue of
zero.

A. L-GKS dynamics and exceptional points

The solution for Eq. (2), given an initial density matrix ρ̂0
and assuming that the generator L is time independent, can be
formally expressed by

ρ̂(t) = eLt ρ̂0. (12)

In the matrix-vector representation, we have

�ρ(t) = eLt �ρ(0). (13)

The dynamics described by Eq. (13) typically is de-
scribed by a sum of decaying oscillatory exponentials. The
dynamics of expectation values of operators, as well as
other correlation functions, will have the analytical form (see
Appendix A)

〈X(t)〉 =
∑

k

dk exp[−iωkt], (14)

where −iωk are the eigenvalues of L,dk are the associated
amplitudes, and both ωk and dk can be complex.

The spectrum of the non-Hermitian matrix L is a function of
the external parameters of the system. For specific values, the
spectrum becomes incomplete. This is due to the coalescence
of several eigenvectors, denoted as a non-Hermitian degener-
acy. For such parameters, the matrix L is not diagonalizable.
Such points in the parameter space are known as exceptional
points (EPs). At the exceptional point, the dynamics has
a polynomial character. The temporal value of expectation
values of operators has the form

〈X(t)〉 =
∑

k

rk∑
α=0

dk,αtα exp
[−iω

(rk )
k t

]
, (15)

which replaces the form of Eq. (14) (see Appendix A).
When two eigenvalues of the master equations coalesce into

one, a second-order non-Hermitian degeneracy is obtained. We
refer to it as a second-order exceptional point and denote it with
EP2. A third-order non-Hermitian degeneracy is denoted by
EP3. There are points in the parameter space in which n pairs
of eigenvectors coalesce, each pair coalesces into a distinct
eigenvector. They will be denoted as EP2 n.

B. Identification of EPs using the dynamics

The analytical form of decaying exponentials, given by
Eq. (14), is used in harmonic inversion methods to find the
frequencies and amplitudes of the time-series signal [18–20].
Harmonic inversion methods are widely used for the analysis
of experiments in diverse fields such as NMR spectroscopy
[21], Fourier-transform mass spectrometry [22], and ultrafast
pump-probe molecular spectroscopy [23].

However, at exceptional points, the analytical form is
different: Fuchs et al. showed that applying standard harmonic
inversion methods, which were designed for Eq. (14), to
a signal generated by Eq. (15) leads to divergence of the
amplitudes dk [24]. We used the Padé approximant harmonic
inversion algorithm presented in Refs. [20,24]. The divergence
of the amplitudes dk in the vicinity of exceptional points is
employed to accurately locate them in the parameter space
[24,25].

C. Parameter estimation using EPs

The ability to accurately locate the EPs in the parameter
space is used for parameter estimation. The procedure is as
follows.

(1) Accurately locate in the parameter space the desired
exceptional point by iterating the following steps:

(a) Perform an experiment to obtain a time series of a
physical observable.

(b) Obtain the characteristic frequencies and amplitudes of
the signal.

(c) In the parameter space, estimate the direction and
distance to the EP and determine new parameters for the next
iteration.

(2) At the EP, invert the relations between the characteristic
frequencies and the system parameters to obtain the system
parameters.

The accurate location of the exceptional points, followed
by inverting the relations, will lead to an accurate parameter
estimation. This procedure was used to estimate the parameters
of the Bloch system from iterations of time series [25]. This
parameter estimation is robust to uncertainties in the location
of the EPs. The noise sensitivity is affected by the harmonic
inversion. See a short discussion regarding noise in harmonic
inversion methods in Appendix C.

III. PARAMETER ESTIMATION OF EFFECTIVE
TWO-LEVEL SYSTEMS

A. Closed two-level systems

Under the influence of polarized driving fields, some
atomic transitions behave as a closed two-level system.
An example is the transition between the hyperfine states
|52S1/2,F = 3,mF = 3〉 and |52P3/2,F = 4,mF = 4〉 of the
85Rb atom, with σ+ polarization. The selection rules impose
that all of the transitions—stimulated and spontaneous—occur
only between these states. The system parameters are system
frequency of ωs = 384.229 241 689 THz (assuming no Zee-
man splitting), decay rate of � = 38.117 × 106 s−1, and dipole
moment of μ = 2.98931 ea0 [26]. We define the detuning
between the system frequency ωs and the electromagnetic
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field carrier frequency ωs as 
 = ωs − ωL. The resonance
Rabi frequency is �R = −μE0/�, where E0 is the amplitude
of the electromagnetic field.

We employ the Heisenberg representation to describe the
dynamics. We define |s〉 as the lower state and |p〉 as the upper
state. The dynamics are described by the set of operators,

X̂ ≡ |s〉〈p| + |p〉〈s|,
Ŷ ≡ i(|s〉〈p| − |p〉〈s|),

(16)
Ẑ ≡ |p〉〈p| − |s〉〈s|,
Î ≡ |p〉〈p| + |s〉〈s|.

We form a four vector from these operators. We write the
Heisenberg equations, given by Eq. (10), for the operators in
this vector and get a differential equation with a 4 × 4 matrix
[17]. The conservation of population is expressed by d

dt
Î = 0.

Therefore, we can omit the equation for the operator Î and
add an inhomogeneous term instead. This results in the Bloch
equations [25]. To find the exceptional points, we need only
the homogeneous part of the equation, which is incorporated
in the matrix

M =
⎛
⎝−�

2 
 0
−
 −�

2 �R

0 −�R −�

⎞
⎠. (17)

The EPs of this matrix compose a deltoidlike curve. The
curve is demonstrated in Fig. 1 (i.e., the χ = 0 curve; the other
curves in this figure refer to systems with population leakage
and will be described below). The cusps of this EP curve are
identified as EP3. The accurate location of the EP3 can be
used to estimate the parameters of such systems, as described
in Sec. II C above and in a previous study [25].

Ω
R

/Γ
0 0.1 0.2 0.3 0.4 0.5

Δ
/Γ

-0.1

-0.05
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0.1 χ = 0
χ = 0.2
χ = 0.4
χ = 0.6
χ = 0.8
χ = 0.9

FIG. 1. A map of the Bloch-like EP curves of the matrix in
Eq. (19), which describes the dynamics of a two-level system with
spontaneous emission, when some of the excited population decays
out of the system, with χ as the branching fraction. Figure in scaled
coordinates could correspond to any leaking TLS such as Rb or
Ca+. The curves are twofold non-Hermitian degeneracy (EP2). The
curves merge into cusps which are identified as EP3. The map of the
EP curves can be used for estimation of the system parameters: the
system frequency, the decay rate, and the branching fraction.

FIG. 2. A scheme of the relevant energy levels in 40Ca+. The
2
S1/2 and 2

P1/2 orbitals have total angular momentum of j = 1
2 .

They are split by magnetic field two sublevels of mj ± 1
2 . External

electromagnetic fields with σ+ and σ− circular polarizations induce

m = +1 and 
m = −1 transitions, respectively. Linearly polarized
electromagnetic fields (π polarization) induce 
m = 0 transitions.
The excited population at the 2

P1/2 state spontaneously decays to the
2
S1/2 and 2

D3/2 states. Energy levels are not to scale.

B. Two-level systems with population leakage

The Bloch equation can be extended to include SE that
leaks into states that are external to the Hamiltonian, resulting
in population loss; see Sec. I C above. Here are two examples
for such systems:

(i) Rubidium atom. Consider the two-level system (TLS)
composed by the two hyperfine states |52S1/2,F = 3,mF = 2〉
and |52P3/2,F = 3,mF = 3〉 of the 85Rb atom [26], with
σ+ polarization. The selection rules impose stimulated
transitions between these states, but the excited state,
|52P3/2,F = 3,mF = 3〉, decays spontaneously also to other
states in the system. Under σ+ polarization, there are no
transitions from these other states back to the TLS. Therefore,
we can treat this system as a TLS with population loss.

(ii) Calcium ion. Consider the TLS composed by the
two states |42S1/2,mJ = −1/2〉 and |42P1/2,mJ = 1/2〉 of the
40Ca+ ion, with σ+ polarization (cf. Sec. IV B and Fig. 2
below). Again, there are stimulated transitions between these
states, but the excited states also decay to |32D3/2〉 states
(≈6.5% of the decay rate) and to the state |42S1/2,mJ = 1/2〉
(50% of the remaining decay rate). The population on these
states does not revert to the TLS [27].

The Heisenberg equation in this case [cf. Eq. (9) with NB =
1 and Eq. (10)] is

d

dt
Ô = i

�
[Ĥ,Ô] + �

{
(1 − χ )Ŝ+ÔŜ− − 1

2
[Ŝ+Ŝ−,Ô]+

}
.

(18)

Here, � is the total decay rate of the excited state. It is the
sum of the decay rate into the lower level |s〉, as in Eq. (10)
above, and of the decay rate out of the system, as in Eq. (7).
χ is the branching fraction that decays to states out of the
primary system. Ŝ+ ≡ |p〉〈s| and Ŝ− ≡ |s〉〈p| are the raising
and lowering operators. We write the equations for the four
operators of Eq. (16). In this case, d

dt
Î 	= 0 and we cannot omit
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the equation for this operator. The resulting set of equations is

d

dt

⎛
⎜⎜⎝

X̂
Ŷ
Ẑ
Î

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

− 1
2� 
 0 0

−
 − 1
2� �R 0

0 −�R −(
1 − χ

2

)
� −(

1 − χ

2

)
�

0 0 −χ

2 � −χ

2 �

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

X̂

Ŷ

Ẑ

Î

⎞
⎟⎟⎟⎟⎠. (19)

The EPs of this matrix compose a deltoid curve, with
χ -dependent shape. Figure 1 shows EP curves for different
values of χ . The EP curve and the time series of the driven
system can be used for accurate parameter estimation:

(a) The total decay rate � can be calculated from the
eigenvalues of the matrix in Eq. (19): the sum of the
eigenvalues is always 2�.

(b) The transition frequency is found by the locations of the
EPs at small amplitudes of the driving field.

(c) The branching fraction χ of a given system can be
found by fitting the shape of the EP curve to the appropriate
branching fraction.

IV. EPs IN THE H LINE OF THE CALCIUM ION
AND PARAMETER ESTIMATION

A. The 40Ca+ ion

The 40Ca is the most abundant calcium isotope. The
total spin of the 40Ca nucleus vanishes. The ground state
of the 40Ca+ ion includes 18 electrons in closed shells, and
the remaining single electron occupying the lower orbital of
the 4th shell. Therefore, the 40Ca+ ion is isoelectronic to alkali
metals. However, since the total spin of the nucleus vanishes,
there is no hyperfine structure.

The structure of the energy levels of the 40Ca+ ion has
been found to be suitable for many applications. In particular,
40Ca+ has been used in the field of quantum computing
and quantum information [28–33], for atomic clocks and the
frequency standard [1–3,34–37], and, recently, as a single-
atom heat engine [38]. The spectrum of 40Ca+ has also
been employed in the quest for drifts of the fine-structure
constant over a time span of many billion years [39,40].

B. The H transition of the 40Ca+ system

At the ground electronic state, the electron occupies the
orbital 4s, with an orbital angular momentum l = 0. The total
angular momentum including the electron spin becomes j =
1
2 . The spectroscopic notation for the ion at this state is 42S1/2.
At the first excited electronic state, the electron occupies the
orbital 4p, with an orbital angular momentum l = 1. This state
has a fine-structure splitting due to spin-orbit coupling either
j = 1

2 (denoted as 42P1/2) or j = 3
2 (denoted as 42P3/2).

The transition from 42S1/2 to 42P1/2 is known as the H
line. The transition from 42S1/2 to 42P3/2 is known as the K
line. These terms stem from the study of the solar spectrum.
In the following, we concentrate on the H line, i.e., the
42S1/2 ⇔ 42P1/2 transition. The frequency of this transition
was measured to be 755 222 766.2(1.7) MHz [39]. The 42P1/2

has a lifetime of τ ≈ 7 ns and it spontaneously decays back to
the 42S1/2 state, as well as to the 32D3/2 state. The branching
between these two decays is �P→S ≈ 0.935 × �total. We treat
the decay into the 32D3/2 state as leakage out of the system,
with χ = 1 − 0.935 = 0.065. Each of the states 42S1/2 and
42P1/2 is twofold degenerated, with sublevels of mj = ± 1

2 .
When an external magnetic field is applied, the Zeeman effect
removes degeneracies. The magnetic-field-dependent shift in
the transition frequency is ±19 kHz/μT for the 
m = ±1
transitions (i.e., the transitions that are induced by circularly
polarized electromagnetic fields) [39]. This shift is the sum of
two contributions: the decrease of energy of the lower sublevel
of the S1/2(≈75%) and the increase of the upper sublevel of the
P1/2(≈25%). The ratio is determined by the appropriate Landé
factors. For a linearly polarized electromagnetic field, 
m = 0
transitions are induced. Therefore, we expect to obtain only
half of the above shift, i.e., ±9.5 kHz/μT. However, in weak
magnetic fields, this shift is obscured by the natural linewidth
in the standard frequency-domain spectroscopy (see Ref. [39],
for example). A scheme of the relevant energy levels is
presented in Fig. 2.

C. The system model

The energy level’s structure and the spontaneous emission
of the 40Ca+ ion system allow the use of EPs in the task
of parameter estimation. The reduced system Hamiltonian
includes four levels (see Fig. 2 for a sketch of these levels).
The 42S1/2 sublevels are denoted as |1〉 and |2〉, and the
42P1/2 sublevels are denoted as |3〉 and |4〉. The rotating-
wave Hamiltonian, under the influence of an oscillating
electromagnetic field of detuning 
 and amplitude �R , and
under a constant magnetic field which induces a split of ω21

between the two S1/2 sublevels, and a split of ω43 between the
two P1/2 sublevels, is

Ĥ0 = �

⎛
⎜⎜⎜⎜⎝

1
2 (ω43 − 
) 0 �R 0

0 1
2 (−ω43 − 
) 0 �R

�R 0 1
2 (ω21 + 
) 0

0 �R 0 1
2 (−ω21 + 
)

⎞
⎟⎟⎟⎟⎠. (20)
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FIG. 3. Left panel: An example of two emission time signals of Ca+, obtained by simulating the dynamics of the populations Ôpop and the
coherences Ôcoher (see definitions in text). The initial state is the steady state with repumping lasers switched on. The transient dynamics is
initiated by turning the pumping laser off. The time interval in this figure, 100 ns, reflects the population decay lifetime, τpopulation ≈ 108 ns.
Right panel: The locations in the complex plane of the complex frequencies that were obtained from these signals using harmonic inversion
(HI). The actual eigenvalues of the generator L are marked with asterisks. Different subsets of the generator eigenvalues were obtained for
different signals. The frequencies of the population signal are marked by circles, while the frequencies of the coherence signal are marked by
diamonds.

The spontaneous emission is incorporated into the dynamics
by the dissipative part of the L-GKS equation, as described in
Sec. I B above. We used the operators

Âp→s ≡ |s〉〈p|, (21)

where |s〉 denotes the states of the two lower levels, |1〉 and
|2〉, and |p〉 denotes the states of the upper levels, |3〉 and
|4〉. This results in four terms in the dissipator, where each of
the P1/2 sublevels decays to each of the S1/2 sublevels, with
rate of �Pi→Sk

= 1
2�(P→S)total = 1−χ

2 �total. Another two terms
describe the decay from the P1/2 sublevels to the D3/2 state,
using only the anticommutator terms as shown in Eq. (7), with
the decay rate of �P→D = χ�total. These dynamical terms are
incorporated in L, leading to the dynamical equation for the
4 × 4 density matrix ρ̂:

∂

∂t
ρ̂ = Lρ̂ = − i

�
[Ĥ0,ρ̂] +

∑
p∈P1/2

�total

×
⎧⎨
⎩ (1 − χ )

2

∑
s∈S1/2

Â(p,s) ρ̂ Â
†
(p,s) − 1

2
[P̂p,ρ̂]+

⎫⎬
⎭.

(22)

D. Locations of the EPs and parameter estimation

Our task is to find the exceptional points, which are
the non-Hermitian degeneracies of the L-GKS generator of
Eq. (22). Experimentally, the first step is to obtain a time series
from the driven system. As an example, we mimic a possible
experiment by simulating the time series of the emission signal
by solving Eq. (22). The initial condition is obtained by first
setting the laser detuning and amplitude to obtain the steady
state. To overcome the population leakage, two examples for
such measurable observables are the populations of the excited
states, Ôpop ≡ |3〉〈3| + |4〉〈4|, and the coherences between
these states, Ôcoher ≡ |3〉〈4| + |4〉〈3|. The population from

D3/2 is repumped to P1/2 using an auxiliary laser. After a steady
state is reached, the auxiliary laser is turned off, obtaining ρ̂(0).
The decay signal is now collected from ρ̂(t) for a particular
observable in an ordered time grid. The left panel of Fig. 3
shows an example for such time signals. The time series
is the input for the harmonic inversion, which extracts the
frequencies and amplitudes of the time signal. The frequencies
are determined by the system parameters, while the initial
state ρ̂(0) determines the amplitudes. The right panel of Fig. 3
shows the obtained frequencies in the complex plane. The time
interval in this figure is 100 ns, reflecting the population decay
lifetime, τpopulation = τSE/χ ≈ 108 ns. To map the EP at the
parameter space, this procedure is repeated for other values of
the laser detuning and amplitude.

For any such parameter set defining L, the sum of the 16
eigenvalues of L can be shown to be

∑16
k=1 ωk = 8�total. A

similar relationship was obtained for the two-level system,
where the sum of the four eigenvalues is 2�.

The task is to calculate the expected locations of the
exceptional points of Eq. (22) in the parameter space of the
amplitude and detuning. We used the method of fixed relative
distance (MFRD) and the eigenvalues condition number
methods for this task (see Appendix B and Refs. [41,42]). The
map of EP curves is shown in Fig. 4 for the 40Ca+ ion, with
Zeeman splitting of 200 MHz. Note the gaps in the y axis.
The resulting EP curves of the four-level system are more
involved than the two-level case. In principle, there could be
very high-order non-Hermitian degeneracies of Eq. (22). In
practice, we found few EP curves of second-order degeneracy,
and two other fourth-order EPs.

Close to each of the resonances between the upper and lower
levels, there is an EP curve which is similar to the deltoid EP
curve we got for the Bloch system [25]. The exact frequency
of the resonances can be found by locating pairs of EPs with
detunings above and below the resonance, while maintaining
a fixed amplitude. The shape of the curves can be fitted to
estimate the branching ratio.
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FIG. 4. A map of the EP curves of 40Ca+ ion [Eq. (22)], with
Zeeman splitting of 200 MHz, under linearly polarized driving field.
Each of the Bloch-like curves (compare to the Bloch curves in Fig. 1)
is found on a resonance between a pair of sublevels, one from 4 2

S1/2

and one from 4 2
P1/2. Note the gaps in the y axis of the different

curves. To the right of each of the Bloch-like EP curves, there is a point
of EP2 4 (marked with asterisks), in which four pairs of eigenvectors
coalesce into four distinct eigenvectors. The detuning at these points is
the splitting of the relevant resonance. The amplitude is �R = 1

4 �total.
Between the two Bloch-like EP curves, at the detuning 
 = 0, which
is the H-line transition frequency, there is a degeneracy curve of
the L-GKS generator. It is not decisive whether this curve is an EP
curve.

These resonance frequencies can be verified by locating
the distinct EPs on the right of the Bloch-like curves (see
Fig. 4). These two isolated points are classified as EP2 4, i.e.,
coalescence of four pairs of eigenvectors with four distinct
eigenvalues. Each of these points is located with detuning

 at the same frequency as the resonance, and amplitude of
�R = 1

4�total. These points can also be used to extract the total
decay rate �.

Between the two Bloch-like EP curves, in the 4 2
S1/2 ⇔

4 2
P1/2 transition frequency, there is a curve of degeneracy

points. However, we could not determine whether these
degeneracies are exceptional points. Anyway, locating these
degeneracies can be employed for determining the transition
frequency.

To summarize, the suggested procedure for parameter
estimation which includes four transition frequencies, laser
driving power, spontaneous-emission rate, and leakage is as
follows:

(1) The sum of the 16 frequencies obtained by the harmonic
inversion of the time signal can be used to estimate the total
spontaneous-emission rate:

∑16
k=1 ωk = 8�total.

(2) The locations of the Bloch-like curves are used for the
estimation of the frequencies of the resonances between the
Zeeman sublevels.
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FIG. 5. A map of the EP curves of the 40Ca+ ion [Eq. (22)], with
Zeeman splitting of 30 MHz. The general structure is similar to the
case of 200 MHz splitting (Fig. 4), but the Bloch-like curves get closer
and interfere. The interference leads to skewing of these curves. The
EP2 2 still can be located and employed for parameter estimation.
Another two isolated EP2 2 can be seen at the right corners.

(3) The shapes of the Bloch-like curves are used for the
estimation of the branching ratio (in particular the EP3 points).

(4) The locations of the EP2 4 points are used to verify the
resonances frequencies and the decay rate.

(5) The location of the degeneracy curve between the Bloch-
like curve is used to estimate the H-line transition frequency.

Repetition of this procedure for various magnitudes of the
external magnetic field can be used to trace the Zeeman and
Paschen-Back effects.

For small external magnetic field, the Bloch-like curves
approach each other and interfere. The shape of these curves
is then skewed. This is demonstrated in Fig. 5, which shows
the map of EP curves for the 40Ca+ ion, with Zeeman splitting
of 30 MHz. However, the resonances frequencies can be
estimated using the locations of the EPs at small amplitudes,
and verified by the location of the isolated EP2 4 points. In
addition to those EP curves and points, we observed two other
isolated EP2 2, at larger detuning and slightly larger amplitude.
We did not find exact analytical expressions for these points.

E. Dependency of the EPs on other dephasing rates

Most of the sources for pure dephasing of laser-driven
atomic spectroscopy are well controlled experimentally, for
example varying the density of the ion gas or the medium gas,
or the instrument noise in the laser amplitude and frequency.
Care must be taken when analyzing EP curves in atomic
spectra to get the relaxation rate �, since the rate depends on
the various relaxation and dephasing rates in the system. For
example, in the Bloch equations, if the spontaneous emission
rate is �SE and pure dephasing rate is �PD , then the relaxation
rate that appears in the matrix of Eq. (17) is � = �SE − �PD

[25].
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FIG. 6. A map of the upper EP curve of the driven 40Ca+ ion with
Zeeman splitting of 200 MHz and noise in the laser amplitude [Eq.
(22) with additional double commutator with V̂deph term, defined in
Eq. (23)]. Blue line: The EP curve for dissipation rate of �deph = 0.01
ns−1, along with the associated two EP2 2 (blue asterisks). The orange
dashed line and “x” are the EP curve and the EP2 4 obtained for
the noiseless case (�deph = 0 ns−1), shown in Fig. 4. For the case
of �deph = 0.01 ns−1, the two branches do not merge at a small
amplitude. Instead, they are split symmetrically around the resonance.
The splitting magnitude is equal to the dephasing rate �deph. In
addition, the added dephasing splits the EP2 4 of the noiseless case
into two distinct EP2 2s.

Generally, every noise source that can be added to the
L-GKS equation is reflected by the complex eigenvalues of
the generator L. These eigenvalues are complex frequencies
of the time signal. Therefore, the noise source can be traced
by the harmonic inversion. The noise will result in changes in
the EP-curve map. The experimental noise will influence only
the harmonic inversion. See Appendix C for a short discussion
regarding noise in harmonic inversion methods.

As an example, the influence of noise in the amplitude
of the driving laser was analyzed. Such a noise is modeled
in the L-GKS equation by a double commutator with the
laser amplitude operator V̂deph, which commutes with the �R

amplitude part of the Hamiltonian,

V̂deph =
√

1

2

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠. (23)

The dissipation generated by the double commutator with
this operator is not pure dephasing since it also generates
relaxation.

We calculated the EP map in the parameter space for the
dissipation rate of �deph = 0.01 ns−1 with Zeeman splitting
of 200 MHz. The upper Bloch-like EP curve of the results is
presented in Fig. 6, along with the associated two EP2 2. For
comparison, the upper curve of the noiseless case (presented
in Fig. 4) is also shown. Two prominent differences can
be found. The first is that the two branches do not merge
at a small amplitude. Instead, they are split symmetrically
around the resonance. The splitting magnitude is equal to the
dephasing rate �deph. The second difference is the splitting
of the EP2 4 into two distinct EP2 2s. This splitting is not
symmetric; therefore we cannot deduce the system parameters
from the locations of these EP2 2s.

V. DISCUSSION

The irreversible character of the L-GKS equation is well
known and indicated by the semigroup character of the
evolution operator [15,43–45]. The generator of the dynamics
L is therefore non-Hermitian. This means that non-Hermitian
degeneracies EPs play an important role in open quantum
systems.

So far, EPs were studied in the coalescence of two
resonances. The resonances were metastable states associated
with predissociation or autoionization phenomena and with
leaking modes in waveguides [46,47]. A theoretical quest for
multiple EPs [48], or for high-order EPs in dissipative physical
systems, is pursued [49–52], specifically in the spectra of
atoms in external fields [53].

The first study of EPs in the context of the L-GKS equation
was for the simple two-level system described by the Bloch
equations [25]. In the present study, we generalize to an
open two-level system where population can leak out. Then
we extend to a four-level system where the splitting can be
controlled by a magnetic field. We found a rich and fascinating
structure of EPs and EP curves, including higher-order EPs.
Such phenomena is expected for many other open quantum
systems described by the L-GKS equation.

The methods developed pave the way for a generic
framework of employing EPs for parameter estimation of
atomic systems. The dynamics near the EPs has enhanced
sensitivity due to their analytic properties: small changes in
the parameters lead to different harmonic inversion. Therefore,
for parameter estimation, the harmonic inversion at the EPs is
superior to standard inversion methods.

The first stage is to predict the EP map of the system: The
state of an atom driven by a cw laser can be described in
the rotating frame by a time-independent L-GKS equation.
The parameter space for such a L-GKS generator contains the
field amplitude and the detuning frequency. Such a parameter
space can be scanned using the MFRD method to find the
approximate locations of degeneracies of the generator. The
location and character of these degeneracies are then examined
using the condition number of the eigenvalues to identify
and locate the EPs. The second stage is to search for the
predicted EPs experimentally: The time signals obtained from
the experiments are analyzed using harmonic inversion. The
resulting frequencies and amplitudes are then used to find
the degeneracies and exceptional points. Finally, we estimate
the system parameters by comparing the predicted and the
experimental EPs.

An interesting different system for an EP search can be two
molecular electronic surfaces, with vibrational relaxation. A
simple model for such a system can include only four levels
[54], or even three: one level from the ground state and two
vibrational levels from the excited state. Such systems can
have multiple steady states and therefore can possess richer
dynamics.
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APPENDIX A: DYNAMICAL SIGNATURE OF THE EPs

The solution for the L-GKS equation in the matrix-vector
representation, given by Eq. (11), is

�ρ(t) = eLt �ρ(0). (A1)

When L is diagonalizable, we can write L = T 
T −1, for a
nonsingular matrix T and a diagonal matrix 
, which has the
eigenvalues {λi} on the diagonal. Then we have

eMt = T e
tT −1. (A2)

The matrix e
t is a diagonal matrix, which has the exponential
of the eigenvalues, exp[λit], on its diagonal. The resulting
dynamics of expectation values of operators, as well as other
correlation functions, follows a sum of decaying oscillatory
exponentials. The analytical form of such dynamics is

〈X(t)〉 =
∑

k

dk exp[−iωkt], (A3)

where −iωk are the eigenvalues of L,dk are the associated
amplitudes, and both ωk and dk can be complex.

For special values of the system parameters, the spectrum
of the non-Hermitian matrix L is incomplete. This is due
to the coalescence of several eigenvectors, referred to as a
non-Hermitian degeneracy. The difference between Hermitian
degeneracy and non-Hermitian degeneracy is essential: In the
Hermitian degeneracy, several different orthogonal eigenvec-
tors are associated with the same eigenvalue. In the case of
non-Hermitian degeneracy, several orthogonal eigenvectors
coalesce to a single eigenvector [47]. As a result, the matrix
L is not diagonalizable and the exponential eLt cannot be
expressed using the eigenvalue decomposition.

The exponential of a nondiagonalizable matrix L can be
expressed using its Jordan normal form: L = T JT −1. Here, J
is a Jordan-blocks matrix which has (at least) one nondiagonal
Jordan block, Ji = λiI + N , where I is the identity and N has
ones on its first upper off-diagonal. The exponential of L is
expressed as

eLt = T eJ tT −1. (A4)

The exponential of the block Ji in eJ t will have the form

eJi t = eλiI t+Nt = eλi t eNt . (A5)

The matrix N is nilpotent and therefore the Taylor series of eNt

is finite, resulting in a polynomial in the matrix Nt . This gives
rise to a polynomial behavior of the solution, and the dynamics
of expectation values of operators will have the analytical form
of

〈X(t)〉 =
∑

k

rk∑
α=0

dk,αtα exp
[ − iω

(rk )
k t

]
, (A6)

instead of the form of Eq. (A3). Here, ω(rk )
k denotes a frequency

with multiplicity of rk + 1. Note that for nondegenerate
frequencies, i.e., rk = 0, we have dk,0 = dk and ω

(0)
k = ωk .

The difference in the analytic behavior of the dynamics results
in non-Lorentzian line shapes, with higher-order poles in the

complex spectral domain. The point in the spectrum where the
eigenvectors coalesce is known as an exceptional point (EP).

APPENDIX B: SEARCHING FOR EPs AT
THE PARAMETER SPACE

Given a parameter-dependent matrix, the task is to find the
exceptional points, i.e., to calculate the parameter set for which
the matrix is not diagonalizable.

1. Condition number of an eigenvalue

The diagonalization of matrices in the vicinity of a defective
matrix is extremely sensitive to perturbations. The sensitivity
of the diagonalization can be characterized by the condition
numbers of its eigenvalues. Therefore, the divergence of
the condition number of an eigenvalue can be used to find
exceptional points. The condition number of an eigenvalue λ

of a matrix A with y and x as the corresponding (normalized)
left and right eigenvectors, respectively, is defined by

κ(λ,A) = 1

yH x
, (B1)

where yH is the Hermitian transpose of y [42,55,56]. At excep-
tional points, the left and right eigenvectors are perpendicular
and the scalar product yH x vanishes, leading to divergence of
the eigenvalue condition number. The condition number of the
eigenvalues is implemented in the MATLAB function CONDEIG.

2. Newton methods

There are a couple of methods that use the special properties
of the exceptional points in order to find them iteratively:

(a) Mailybaev developed a Newton method of finding
multiple eigenvalues with one Jordan block and the corre-
sponding generalized eigenvectors for matrices dependent on
parameters. The method computes the nearest value of a
parameter vector with a matrix having a multiple eigenvalue
of given multiplicity [57]. This method worked well for us in
some cases, but failed to find points in which two different
eigenvalues had double multiplicity.

(b) Akinola and co-workers used an implicit determinant
method to obtain a numerical technique for the calculation
of a two-dimensional Jordan block in a parameter-dependent
matrix [58].

3. The MFRD method for finding a double eigenvalue
of a parameter-dependent matrix

Jarlebring and co-workers suggested a method that for a
given two n × n matrices, A and B, computes all pairs (λ,μ)
such that λ is a double eigenvalue of A + μB [41]. The method
they suggest is the method of fixed relative distance (MFRD).
It is based on the assumption that in the vicinity of the double
eigenvalue (i.e., for close enough μ), there are two close
eigenvalues λ and (1 + ε)λ. In order to find such λ and μ,
we have to solve the following coupled eigenvalue equations:

(A + μB)u = λu, (B2)

(A + μB)v = λ(1 + ε)v, (B3)
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where I is the n × n identity matrix. This kind of problem
is called “the two-parameter eigenvalue problem.” The most
common way to solve and analyze two-parameter eigenvalue
problems is by means of three so-called matrix determinants,


0 = −I ⊗ B + (1 + ε)B ⊗ I, (B4)


1 = −A ⊗ B + B ⊗ A, (B5)


2 = I ⊗ A − (1 + ε)A ⊗ I. (B6)

These are n2 × n2 matrices. After constructing these matrices,
we solve the following generalized eigenvalues problems:

λ
0z = 
1z, (B7)

μ
0z = 
2z, (B8)

to get the approximation for μ and λ and a tensor product
z = u ⊗ v.

The value of ε has to be small in order to reflect the double
eigenvalue, but not too small in order to maintain stability. As
a rule of thumb, a good choice is

ε ∼ ε
1/3
mach, (B9)

where εmach is the machine precision.
To summarize, the steps of the method are as follows. Given

two n × n matrices A and B,
(1) Choose appropriate ε [see Eq. (B9)]. For εmach = 2.2 ×

10−16 (MATLAB), we have ε
1/3
mach ≈ 6 × 10−6.

(2) Construct the matrix determinants of Eqs. (B4)–(B6).
(3) Solve the generalized eigenvalues given by the Eqs. (B7)

and (B8) problem to get the approximation for μ and λ.
By construction, this method yields only an approximation

of the pairs (λ,μ). But this approximation can be an initial
guess for an iterative method or an exact one to get an exact
pair (λ,μ).

APPENDIX C: NOISE SENSITIVITY OF THE HARMONIC
INVERSION

Parameter estimation naturally raises the issue of sensitivity
to noisy experimental data. The noise sensitivity will be
determined by the method of harmonic inversion. If the
sampling periods have high accuracy, then the time series
can be shown to have an underlying Hamiltonian generator.
This is the basis for linear methods, such as filter diago-
nalization (FD) [18,19]. The noise in these methods results
in normally distributed underlying matrices, and the model
displays monotonous behavior with respect to the noise. This
was verified analytically and by means of simulations in
Ref. [59]. As a result, sufficient averaging will eliminate
the noise. Practical implementations require further analysis
with evidence of nonlinear effects of noise. For example,
Mandelshtam et al. analyzed the noise sensitivity of the FD
in the context of NMR experiments [21,60] and Fourier-
transform mass spectrometry [22]. For some other methods, a
noise-reduction technique was proposed in Ref. [20].
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