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Requirements for a loophole-free photonic Bell test using imperfect setting generators

Johannes Kofler,1 Marissa Giustina,2,3 Jan-Åke Larsson,4 and Morgan W. Mitchell5,6
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Experimental violations of Bell inequalities are in general vulnerable to so-called loopholes. In this work, we
analyze the characteristics of a loophole-free Bell test with photons, closing simultaneously the locality, freedom-
of-choice, fair-sampling (i.e., detection), coincidence-time, and memory loopholes. We pay special attention to
the effect of excess predictability in the setting choices due to nonideal random-number generators. We discuss
necessary adaptations of the Clauser-Horne and Eberhard inequality when using such imperfect devices and—
using Hoeffding’s inequality and Doob’s optional stopping theorem—the statistical analysis in such Bell tests.
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I. INTRODUCTION

Bell’s theorem [1] about the incompatibility of a local
realist world view with quantum mechanics is one of the most
profound discoveries in the foundations of physics. Since the
first experimental quantum violation of Bell’s inequality [2],
countless experimental tests have been performed with various
different physical systems, closing all major “loopholes.”
While it is unlikely that nature exploits these loopholes, let
alone different ones for different experiments, there are at least
two reasons why a loophole-free test is of great relevance: First,
a definitive ruling on local realism is of central importance to
our understanding of the physical world. Second, there are
quantum information protocols whose security is based on
Bell’s inequality, and eavesdroppers could actively exploit the
loopholes.

This work is structured as follows: We first briefly review
Bell’s derivation and the five major loopholes—the locality,
freedom-of-choice, fair-sampling (detection), coincidence-
time, and memory loopholes (Sec. II). Then, we give an
analysis of how a photonic Bell test can simultaneously close
all of them. We discuss an inequality based on those developed
by Clauser-Horne (CH) and Eberhard (Sec. III). The low detec-
tion efficiency requirement of this CH-Eberhard inequality is
essential given the current status of equipment and technology.
We outline the necessary space-time arrangement (Sec. IV) and
show how to take into account—by adapting the CH-Eberhard
inequality—imperfect random-number generators that some-
times choose settings outside the allowed space-time interval
or are for some other reason partially predictable beyond the
a priori probability (Sec. V). Finally, while allowing both
bias and excess predictability of the settings, we demonstrate
how to apply Hoeffing’s inequality and Doob’s optional
stopping theorem to achieve high statistical significance of
a Bell inequality violation within feasible experimental run
time (Sec. VI). Readers who are familiar with loopholes
in Bell tests and the CH-Eberhard inequality can skip to
Sec. IV.

II. BELL’S THEOREM AND LOOPHOLES

Let us consider the simplest scenario of only two parties
called Alice and Bob, who perform measurements on distant
physical systems. Alice’s and Bob’s measurement settings are
labeled with a and b, and their outcomes are denoted by A and
B, respectively. There are essentially two versions of Bell’s
theorem:

Deterministic local hidden-variable models. Determinism
states that hidden variables determine the outcomes, which
are then functions of the form A = A(a,b,λ), B = B(a,b,λ).
Locality demands that the local outcomes do not depend on
the distant setting,

A = A(a,λ), B = B(b,λ). (1)

The original 1964 version of Bell’s theorem [1] is based on
the assumptions of perfect anticorrelation and locality which
imply determinism. The assumption of perfect anticorrelation
was later avoided by Clauser, Horne, Shimony, and Holt
(CHSH) in the derivation of their famous inequality [3].

Stochastic local hidden-variable models. Following
Refs. [4,5], in the 1976 version of Bell’s theorem [6] the
assumptions are relaxed to include stochastic models. There,
hidden variables only define probabilities for the outcomes,
P (A|a,b,B,λ), P (B|a,b,A,λ), and a joint assumption called
local causality (or Bell locality) demands that the joint
probability of Alice’s and Bob’s outcomes factorizes as
follows:

P (A,B|a,b,λ) = P (A|a,λ) P (B|b,λ). (2)

This is equivalent to assuming outcome independence
P (A|a,b,B,λ) = P (A|a,b,λ) as well as setting independence
(or parameter independence) P (A|a,b,λ) = P (A|a,λ), with
similar expressions for Bob’s outcome probability [7].

The world view in which all physical phenomena can
be described by local hidden variables is often referred
to as local realism. While local causality is implied by
the conjunction of determinism and locality, the opposite
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implication is not true. Nonetheless, the two classes of local
hidden-variable models are mathematically equivalent in the
sense that deterministic models are special cases of stochastic
ones (where all probabilities are 0 or 1), and that every
stochastic model can be viewed as a mixture of deterministic
ones [8,9]. Physically, however, the difference is significant. It
is conceivable to adhere to a stochastic world view in which the
hidden variables only define probabilities, rejecting a hidden
determinism, although this determinism might mathematically
exist and explain the probabilities.

In addition to local causality (or, stronger, determinism
and locality) there is another essential assumption in the
derivation of every Bell inequality called freedom of choice (or
measurement independence). It demands that the distribution
ρ of the hidden variables λ is statistically independent of the
setting values,

ρ(λ|a,b) = ρ(λ). (3)

By Bayes’ theorem, this assumption can also be written as
ρ(a,b|λ) = ρ(a,b). The freedom-of-choice assumption was
first pointed out in a footnote in Ref. [5] and later discussed in
an exchange [6,10,11], which is reprinted in [12].

Bell’s theorem states that the joint assumption of local
hidden variables and freedom of choice enables the derivation
of inequalities that put local realist bounds on combinations
of probabilities for Alice’s and Bob’s measurement results. In
Bell experiments, measurements on entangled quantum states
can violate Bell’s inequality and thus refute the existence of
local hidden variables.

The translation from any mathematical expression to a
physical experiment employs further physical assumptions,
which may render an experimental Bell violation vulnerable
to a local realist explanation. In the following, we discuss
the five main “loopholes” in Bell tests. For further details on
the assumptions in Bell’s theorem, the use of entanglement in
Bell experiments, and the loopholes that can arise, we refer
the reader to the recent reviews [13–16].

A. The locality loophole

The locality loophole refers to the possibility of violating
outcome or setting independence via subluminal or luminal
influences between the two outcomes or from one setting to
the distant outcome. It is generally acknowledged that the
best possible way to close the loophole is to invoke special
relativity. Spacelike separation of the two outcome events
enforces outcome independence, and spacelike separation
of each party’s independent setting choice event from the
opposite party’s outcome event enforces setting indepen-
dence. In this way, the locality loophole is considered to
have been closed for photons by the experiments [17–21],
and with nitrogen-vacancy (NV) centers by the experiment
[22].

This, however, rests on the assumption that there were no
prior influences for the setting choice events that could have
been communicated to the distant party. Deterministic setting
mechanisms as, e.g., the periodic switching used in [23], are
predictable into the future and thus, in principle, still allow a
local realist explanation [24] unless restrictions are imposed
on the information communicated.

B. The freedom-of-choice loophole

The freedom-of-choice loophole refers to the possibility
that the freedom-of-choice condition ρ(λ|a,b) = ρ(λ) fails
due to an influence of the hidden variables on the setting
choices, an influence of the setting choices on the hidden
variables, or, more generally, a common influence on both
the setting choices and the hidden variables.

As with the locality loophole, spacelike separation allows
an experiment to exclude certain influences within any local
theory. For example, spacelike separation of the pair generation
from the setting choices eliminates the pair generation as
a possible influence. This has been achieved in the experi-
ments [18–21]. However, again, it is not possible to exclude
all possible influences in this way because these could, in
principle, extend arbitrarily far into the past.

Note that freedom of choice does not require the factoriza-
tion ρ(a,b) = ρ(a) ρ(b). However, if the setting choices are
not spacelike separated with respect to each other, then one of
the outcome events will always be in the future light cone of
the distant setting event, leaving the locality loophole open.

A second, complementary way to address the freedom-of-
choice loophole is to derive the setting choices from events
that are plausibly beyond the control of hidden variables, for
example spontaneous emission, chaotic evolution, human de-
cision making, or cosmic sources. A Bell inequality violation
using one or more of these sources can exclude local realist
theories in which the setting events are unpredictable, pushing
the unexcluded theories in the direction of a full determinism
(cf. Sec. II F).

C. The fair-sampling (detection) loophole

The fair-sampling assumption states that the ensemble
detected by Alice and Bob is representative of the total emitted
ensemble. This is the case if the detection efficiency depends
only on the hidden variable and not on the local setting. Unfair
sampling opens the fair-sampling (or detection) loophole [25].

Inequalities that make use of the fair-sampling assumption
in their derivation, such as the CHSH inequality [3], can
be rendered immune to the fair-sampling loophole only by
explicitly demonstrating sufficiently large detection efficiency
or by incorporating the undetected events into the inequal-
ity [4]. This latter, more elegant approach—not assuming fair
sampling in the first place—is used in the derivation of the
Clauser-Horne (CH) [5] and the Eberhard inequalities [26].
The fair-sampling loophole has been closed for atoms [27–29],
superconducting qubits [30], and NV centers [22]. Using
superconducting detectors, it has also been closed for photons
[20,21,31,32].

D. The coincidence-time loophole

The fair-coincidence assumption states that the statistics of
the identified pairs are sufficiently representative of the statis-
tics of all detected pairs, had they been correctly identified. In
experiments where (near-)coincident arrival times are used to
identify which detections belong to a pair, the assumption is
fulfilled if the local detection time depends only on the hidden
variable and not on the local setting. Unfair coincidences open
the coincidence-time loophole [33].
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This loophole arises in any situation where a (setting-
dependent) shift in detection time could alter the number of
identified pairs; it is especially applicable to continuous-wave
photonic experiments. The loophole can be closed using
locally predefined time slots or (for the CH-Eberhard inequal-
ity) by employing a window-sum method for coincidence-
based identification of pairs [34,35]. Regarding photonic
experiments, the loophole was closed in [20,21,31,32,34,36].

E. The memory loophole

One can imagine a situation in which the experimental
apparatuses use memory of the previous measurements
to skew the apparent significance of a violation. In this
case, say, the probability for Alice to find outcome A(m)

in the mth measurement can depend not only on her
current setting a(m) and hidden variable λ, but also on
the m − 1 previous settings and outcomes on her side
(a(1), . . . ,a(m−1),A(1), . . . ,A(m−1), one-sided memory) and
maybe also on Bob’s side (b(1), . . . ,b(m−1),B(1), . . . ,B(m−1),
two-sided memory), and vice versa for Bob’s outcome
probability for B(m) [37–40]. Then, the no-memory
assumption that successive measurement trials are independent
and identically distributed (i.i.d.) is not valid.

The memory loophole does not change a Bell inequality’s
local realist bound but forbids quantifying the statistical
significance of a Bell test by the amount of conventional
standard deviations between the observed Bell value and the
local realist bound. The loophole could, in principle, be closed
by using separate apparatuses and spacelike separation of each
of Alice’s measurements from all of Bob’s measurements.
However, this is technologically unfeasible. Thus, a more use-
ful approach is to apply statistical methods, such as hypothesis
testing, that can—without the assumption of i.i.d. measure-
ment trials—bound the probability that the data can be ex-
plained by a random variation of a local hidden-variable model.

Table I summarizes the assumptions used in derivations of
Bell inequalities as well as the corresponding loopholes and
the procedures for closing them.

F. Additional assumptions and unclosable loopholes

By attributing significance to spacelike separation, one
implicitly assumes that one can localize key events to particular
space-time regions. For example, spacelike separation of the
setting choices from the detection events closes the locality
loophole, but requires that the setting choices are independent
of prior conditions. This break between the past and the
present means that closure of the locality loophole can
only be attempted within nondeterministic (i.e., stochastic)
local realism. Within determinism, the settings would also
be deterministic and thus predictable arbitrarily far in the
past, rendering spacelike separation impossible. Similarly,
using spacelike separation to close the freedom-of-choice
loophole can only eliminate theories in which the hidden
variable is created in a defined space-time region (e.g., at the
down-conversion event in a photonic experiment).

Likewise, arguments based on spacelike separation of the
detection events from the distant setting choices requires that
one knows when the measurement is complete. In all practical
scenarios for Bell tests, there is an identifiable time window
in which a microscopic observable, such as the polarization
of a single photon, becomes amplified into a macroscopic
observable, such as a large number of electrons moving in
a wire. Usually this conversion to a macroscopic event is
taken as the time of the measurement, but there is no logical
contradiction in assuming that the measurement happens later
(“collapse locality loophole” [41]).

The general feature of all these arguments is that a loophole-
free Bell test is possible only when a set of reasonable assump-
tions about the physical working of the experimental setup
is made. Experiments can shift hypothetical effects to more
and more absurd scales but can never fully rule them out. In
particular, it is, in principle, impossible to rule out “superdeter-
minism” [42], a world constructed such that Eq. (3) cannot be
fulfilled. Therefore, strictly speaking, the locality and freedom-
of-choice loopholes can only be addressed (i.e., closed within
some assumptions) and cannot be closed in general.

Finally, every Bell test needs to rest on metaprinciples,
most notably that the classical rules of logic hold. In 2015,

TABLE I. Summary of the five main loopholes in Bell experiments. The assumptions of outcome and setting independence as well as
freedom of choice are minimal in the sense that they enter the derivation of any Bell inequality. The corresponding loopholes are closed
by the spatiotemporal construction of the experiment and the means of choosing settings. The other three loopholes are related to auxiliary
assumptions and are closed by a suitable choice of Bell inequality (or additional tests) as well as appropriate data analysis. See main text for
further details and references.

Minimal assumptions Auxiliary assumptions Loopholes Closed by . . .

Outcome and setting Locality loophole spacelike separation between the outcome events and between
independence each outcome and the distant setting choice event

Freedom of choice Freedom-of-choice (for photonic experiments) spacelike separation between each
loophole pair emission event and the setting choice events

Fair sampling Fair-sampling violation of an inequality free of the fair-sampling assumption
(detection) loophole (e.g. CH-Eberhard) or explicit demonstration of sufficiently

large detection efficiency (e.g., for CHSH)

Fair coincidences Coincidence-time using fixed time slots or (for CH-Eberhard) a window-sum
loophole method for identifying coincidences

No memory Memory loophole sufficiently many measurement trials, no i.i.d. assumption
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three different groups were able to perform “loophole-free”
Bell tests [20–22].

III. THE CH-E INEQUALITY

Eberhard’s derivation [26] considered a source that pro-
duces photon pairs where the polarization of one photon of
every pair is measured by Alice with setting a1 or a2, while the
other photon’s polarization is measured by Bob with setting
b1 or b2. We label the outcome or “fate” (given by the hidden
variable) of every photon by ‘+’, ‘−’, or ‘0’, which denotes
being detected in the first (“ordinary”) output beam of the
polarizer, being detected in the second (“extraordinary”) beam,
or remaining undetected, respectively. We denote joint fates
for outcomes A (for Alice) and B (for Bob) by AB with
A,B ∈ {+,−,0}.

Eberhard considered N ′ pairs emitted for each of the
four setting combinations aibj with i,j ∈ {1,2}. For setting
combination aibj , we denote the number of joint outcomes A

and B by nAB(aibj ). Note that pairs with joint fate 00 also
count as pairs. Hence,

∑
A,B∈{+,−,0}nAB(aibj ) = N ′ for each

setting combination aibj .
In hidden-variable theories, the results for mutually ex-

clusive measurements exist simultaneously. Locality demands
that the local fate of a photon must not depend on the distant
measurement setting. Freedom of choice assumes that the
experimenters’ settings are independent of the designated
fate. Under these assumptions, Eberhard’s inequality bounds
the expectation value of a certain combination of outcome
numbers [26],

〈+n++(a1b1) − n+−(a1b2) − n+0(a1b2)
−n−+(a2b1) − n0+(a2b1) − n++(a2b2)〉 � 0. (4)

The logical bound of the inequality is N ′, which can be
attained by a model (violating local realism and/or freedom
of choice) where all N ′ pairs for settings a1b1 lead to
outcome ++, and no pairs in the other setting combinations
ever contribute to the five positive terms. The quantum
bound is (

√
2 − 1) N ′/2 ≈ 0.207 N ′, which can be attained

for perfect detection efficiency (i.e., absence of outcomes 0)
on both sides and maximally entangled states. However, for
imperfect detection efficiency (i.e., occurrence of outcomes 0),
nonmaximally entangled states achieve better violation.

Until now, the derivation has assumed that there was
the same number of pairs (N ′) in each of the four setting
combinations. Experiments are not likely to obey this strict
constraint, but rather to produce a different number of pairs
for every combination. In general, this invalidates the Eberhard
inequality (4), as can be seen by considering the case where
the setting a1b1 is used more often than the others, which
will increase the n++(a1b1) contribution (see Refs. [32,43]).
A solution is to introduce conditional probabilities pAB(aibj )
for outcomes AB given settings aibj . As the original Eberhard
inequality holds when an equal number of trials is measured in
each setting combination, and since under freedom of choice
every setting is chosen independently from the source, the
same form of inequality holds for the conditional probabilities,

+ p++(a1b1) − p+−(a1b2) − p+0(a1b2)
− p−+(a2b1) − p0+(a2b1) − p++(a2b2) � 0. (5)

The logical bound of this inequality is 1, and the quantum
bound is (

√
2 − 1)/2 ≈ 0.207. One may drop the distinction

between outcomes ‘−’ and ‘0’ in the Eberhard inequality (4).
Blocking the extraordinary beam such that all ‘−’ events
become ‘0’ events, the normalized Eberhard inequality (5)
is reduced to a one-detector-per-side form with coincidences
and exclusive singles (i.e., detections on exactly one side),

J ≡ p++(a1b1) − p+0(a1b2) − p0+(a2b1) − p++(a2b2) � 0.

(6)
We can define the probabilities of singles (photon detections
in one particular output beam regardless of the outcome on the
other side),

pA
+(a1)b2 ≡ p++(a1b2) + p+0(a1b2), (7)

pB
+(b1)a2 ≡ p++(a2b1) + p0+(a2b1). (8)

Here, the singles probabilities were defined for a particular
distant setting, namely b2 and a2, respectively. However, due
to locality, no-signaling must be fulfilled:

pA
+(ai)b1 = pA

+(ai)b2 , (9)

pB
+(bj )a1 = pB

+(bj )a2 , (10)

for i,j ∈ {1,2}. Ignoring the conditioning on the distant setting
(due to locality) and dropping the index + everywhere,
inequality (6) becomes the CH inequality [5],

CH ≡ + p(a1b1) + p(a1b2) + p(a2b1)

− p(a2b2) − pA(a1) − pB(b1) � 0. (11)

Eberhard’s main contribution was to realize that nonmaximally
entangled states allow a violation of the CH or Eberhard
inequality for detection efficiencies as low as 2/3, which is
still the lowest known value for qubit systems. In contrast,
efficiency of 82.8 % is required for maximally entangled
states [44,45]. The use of the CH or Eberhard inequalities
and nonmaximally entangled states hence greatly eases the
detection efficiency requirements, one of the most challenging
aspects of photonic experiments. (We mention that there are
also forms of the CH or Eberhard inequality where all terms are
divided by the sum of singles probabilities or counts [32,46].)

The inequality (6), which we call the CH-E inequality, will
be used in the later sections, as it is the simplest known form,
with only four terms that all stem from mutually exclusive
setting combinations.

IV. SPACE-TIME ARRANGEMENT AND SETTING
PREDICTABILITY

For a photonic Bell test, consider the space-time diagram in
Fig. 1, where intervals of space-time events are denoted with
(nonitalic) bold letters. A photon pair is emitted by a source at
E. The photons travel a distance d in fibers (solid blue lines)
with refractive index n to Alice and Bob, where they pass
the setting devices, indicated by black rectangles. Geometric
deviations from a perfectly one-dimensional setup (black
dashed lines) and any other additional delays are represented
by τG. Alice’s and Bob’s measurement outcomes are restricted
to intervals A and B of duration τM . Outcome independence
requires spacelike separation of A and B. Setting independence
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FIG. 1. Space-time diagram of a photonic fiber-based Bell test.
E represents the emission of a photon pair, A and B are Alice’s and
Bob’s detection intervals, and a and b are their setting choice intervals.
Relevant light cones are indicated by dotted lines. Knowledge about
the distant setting that can be available at Bob’s (Alice’s) measure-
ment device is quantified by εA (εB). See main text for further details.

requires that Alice’s setting generation is confined to interval
a, spacelike separated from Bob’s outcome interval B, and
likewise b must be spacelike separated from A. Spacelike
separation of the setting generations within a and b from the
emission interval E closes the freedom-of-choice loophole.
(The relevant spacelike separations can only be achieved
by using at least three distinct locations. One measurement
device may be located at the source [18,19], but then the
corresponding setting generator needs to be placed at a
distance.) The time duration τS for a and b must be smaller than
τ1, and the time for setting generation as well as deployment
of the setting (duration τD) must be smaller than τ2:

τS < τ1 = (3 − n) d

c0
− (τG + τM ), (12)

τS + τD < τ2 = 2 d

c0
− τM. (13)

Here, c0 denotes the speed of light in vacuum.
Closing the locality and freedom-of-choice loopholes re-

quires generation of fast random numbers for the settings
(a,b), which must not be able to influence the respective distant
outcome (locality) or have a mutual interdependence with the
hidden variable λ (freedom of choice). It should be noted,
however, that the requirements for (a,b)-λ independence in a
Bell test differ in important ways from “randomness” as per
the usual definitions. For example, it is common to consider
as random a source of independent, identically distributed,
unbiased bits xi , described by the probabilities p(xi |xj 	=i) = 1

2 .
Using such sources to choose (a,b) does not by itself guarantee
independence from λ because λ could influence x in such a

way that x is predictable knowing λ, but fully unpredictable
absent this knowledge. In contrast, a source that is biased but
uninfluenced by λ, e.g., p(xi |λ) = 3

4 , is suitable for generating
the required independence, despite being far from random by
the usual definitions.

As concerns physical variables and setting choices, we use
the term “random” to mean independence from λ. Physically,
this independence can be compromised by an influence of λ

on x, by an influence of x on λ, or by a common influence. The
first two of these can be excluded by spacelike separation of the
setting generation from the creation of the hidden variables,
while the last one is excluded if λ and/or x is uninfluenced,
i.e., stochastic.

An entire Bell experiment, including the setting generation,
must be viewed within local realism, and quantum mechanics
must not be invoked. Candidate stochastic processes include
chaotic dynamics, human decision making [42], and cosmic
light sources [47]. Photonic devices use the reflection and
transmission at a beam splitter [48], or the emission or detec-
tion time [49], population [50], or phase [51,52] of a coherent
light source. It bears repeating that a local realist model must
contain some stochastic element if it is to be testable.

Any real implementation of a random-number generator
will to some extent be influenced by effects prior to the
generation, giving nonzero predictive power beyond the a
priori probability of guessing the eventual setting. We call
this the excess predictability. This opens the locality loophole
or freedom-of-choice loophole to some extent. In general, each
setting choice could have a different excess predictability in
every trial, such that in trial n the excess predictability takes
on values ε

(i)
A and ε

(i)
B with ε

(i)
A ,ε

(i)
B ∈ [0,1]. Below we model

two special cases: We either assume that in a small fraction
εA (εB) of experimental runs, Alice’s (Bob’s) setting choice is
perfectly communicable to the distant party Bob (Alice), or we
consider that in every trial, Bob (Alice) can predict the distant
setting with a small certainty εA (εB) better than the a priori
probability. Presumably, the physical situation could be any
mixture of these two models.

V. ADAPTATION OF THE CH-E INEQUALITY

To use the CH-E inequality, which employs conditional
probabilities, we need the concept of a trial. Without an exact
definition of what a trial is, it is unclear how to use normalized
counts or the concept of probabilities when employing the CH-
E inequality. Normalization with respect to the pair production
rate or measurement time for a given fixed setting [43,46]
will not be possible for a loophole-free Bell test because the
analysis technique for closing the memory loophole relies on
the concept of trials. Noting that the particular construction
and assumptions involved in a given test might refine the
operational definition of a trial in that test, we suggest that
the reader consider a trial most basically as a (locally defined)
measurement interval, for which each measurement party must
record exactly one outcome (possibly including “undetected”).

Specifically, we have in mind a pulsed experiment, where
every pulse—which might or might not create a down-
conversion pair—belongs to exactly one trial. We will not
consider anything that happens between the trials. Fixed
measurement time windows synchronized with the laser pulses

032115-5



KOFLER, GIUSTINA, LARSSON, AND MITCHELL PHYSICAL REVIEW A 93, 032115 (2016)

are also suitable for closing the coincidence-time loophole for
the CH inequality [34].

Given that information about a setting will sometimes exist
in the backward light cone of the distant outcome event, it
is necessary to adapt the CH-E inequality. We now consider
two different mathematical models for the communication or
excess predictability of the setting values:

Scenario (i): Communication in some trials. Here, in a
fraction εA (εB) of the trials, Alice’s (Bob’s) setting is perfectly
known to Bob (Alice) via communication, while in the rest
of the trials the locality condition is perfectly fulfilled. For
simplicity, we assume that this fraction is the same for all
setting combinations. To be conservative, we shall not assume
that the “glitches” of too early settings happen statistically
independently on the two sides, but that they may avoid
happening in the same trials. We introduce the abbreviation

εAB ≡ min(εA + εB,1) (14)

for the (maximal possible) fraction where one setting is com-
municable to the distant outcome. Let us consider the subset SA

of trials in which Alice’s setting a is communicated to Bob’s
measurement device, while her measurement device has no
information about Bob’s setting b. It is conceivable that Alice’s
devices know when her setting is communicated. Then the
strategy is as follows: Alice’s measurement device “overrules”
whatever fate has been designated and outputs +. Bob also out-
puts +, unless a = a2 and b = b2, whereupon he outputs 0. For
the different setting combinations, their measurement results
therefore contribute to p++(a1b1), p++(a1b2), p++(a2b1), and
p+0(a2b2), and nothing else. The last three terms do not appear
in the CH-E inequality (6), and the first is beneficial for its
violation. The J value in the subset SA can therefore reach
the logical bound J = +1. Importantly, also, those events that
would have had fate 00 contributed to the violation.

Straightforwardly, the above arguments can be repeated
for the subset SB of trials where Bob’s setting can be
communicated but not Alice’s and for the subset SAB where
both can be communicated. This implies that local hidden
variables augmented with setting communication can attain
the CH-E value +1 in the total subset SεAB = SA ∪ SB ∪ SAB

whose size is bounded by the fraction εAB of all trials.
This means that for the entirety of all trials, such models
reach J = εAB. The CH-E inequality J � 0 must therefore
be rewritten with an adapted bound,

J � εAB. (15)

In other words, when physical (sub)luminal communication of
a setting to a distant outcome is possible in a fraction εAB of
trials, the collected results must violate inequality (15) with its
adapted bound to rule out a local realist explanation.

An important remark: The above strategy violates the
no-signaling condition (10). From subset SA, one has contri-
butions to the singles probability pB

+(b2)a1 but not to pB
+(b2)a2 .

This violation is a general feature of pure strategies with
communication. Mixed strategies can hide the communication
and obey no-signaling. When the entire setting information is
communicated, the predictions of every no-one-way-signaling
distribution can be simulated by local hidden variables [53].
The optimal no-signaling strategy is the simulation of a
Popescu and Rohrlich (PR) box [54], which works as follows:

For every trial, Alice and Bob share a random variable
r ∈ {+,0} with distribution p(r = +) = p(r = 0) = 1

2 . When
Alice transmits her setting a to Bob, she outputs A = r . Bob
also outputs B = r unless a = a2 and b = b2, in which case
he produces the opposite result (+ if r = 0, 0 if r = +). This
strategy obeys no-signaling and, within the subset SA, reaches
J = 1

2 . Note that for the CHSH inequality the logical and the
no-signaling bound are identical (equal to 4). This is not the
case for the CH-E inequality, where the logical bound is 1 and
the no-signaling bound is 1

2 .
While the bound εAB in (15) cannot be reached by

local hidden-variable models that are augmented by setting
communication and obey the no-signaling conditions, the
bound is conservative only by a factor of 2 (since, according
to the above, the bound for communication strategies obeying
no-signaling is εAB

2 ). Moreover, it has the advantage that one
need not additionally check the no-signaling conditions in
an experiment. Having quantified εAB, one can solely rely
on the inequality (15) itself. Also note that violation of the
no-signaling conditions within the subensemble SεAB could
be due to actual (sub)luminal signals and would not be in
contradiction with causality.

Scenario (ii): Excess predictability in all trials. In this
scenario, we assume that in every run, Alice’s and Bob’s
setting choices a and b are partially dependent on external
influences that are available also at the distant measurement
event. Formally, this corresponds to a violation of the locality
and freedom-of-choice assumptions. We can incorporate all of
these influences together with the properties λ of the photon
pair into a joint set μ of hidden variables. However, similar to
Ref. [55], we assume that in every run, the effect of μ cannot
alter the probability for a specific setting choice by more than
a certain number, quantified by parameters εA and εB in the
following way:

(1 − εA) p(a) � p(a|μ) � (1 + εA) p(a), (16)

(1 − εB) p(b) � p(b|μ) � (1 + εB) p(b). (17)

Using p(a,b|μ) = p(a|μ) p(b|μ), which is guaranteed as μ

carries all hidden properties, and abbreviating

ε± ≡ εA + εB ± εAεB, (18)

we obtain

(1 − ε−) p(a) p(b) � p(a,b|μ) � (1 + ε+) p(a) p(b). (19)

Zero excess predictability implies p(a,b) = p(a) p(b), while
the converse is not true. Note that the individual setting
probabilities p(a) and p(b) can have nonzero biases κA,κB ∈
(− 1

2 , 1
2 ),

p(a1) = 1
2 − κA, p(a2) = 1

2 + κA, (20)

p(b1) = 1
2 − κB, p(b2) = 1

2 + κB, (21)

which are neither at variance with the locality or freedom-of-
choice assumptions nor problematic in the derivation of the
CH-E inequality. The parameters εA and εB in (16) and (17)
hence quantify predictability beyond bias.

Recorded data allows us to estimate total probabilities
averaged over μ, that is, p(A,B,a,b) = E[p(A,B,a,b|μ)],
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with E denoting the expectation value, but does not im-
mediately allow us to estimate the conditional probabilities
pAB(ab) ≡ p(A,B|a,b). The latter are well-defined for each
individual value of μ, which is inaccessible to us. When
conditioned on μ, the conditional probabilities obey the CH-E
inequality (6):

+p(++|a1b1,μ) − p(+0|a1b2,μ)

−p(0+|a2b1,μ) − p(++|a2b2,μ) � 0. (22)

Using (19), we obtain

p(A,B,a,b|μ)

p(a) p(b) (1 + ε+)
� p(A,B,a,b|μ)

p(a,b|μ)
� p(A,B,a,b|μ)

p(a) p(b) (1 − ε−)
.

(23)

The inequalities (23) must also hold for expectation values:

p(A,B,a,b)

p(a)p(b)(1 + ε+)
� E[p(A,B|a,b,μ)] � p(A,B,a,b)

p(a)p(b)(1 − ε−)
,

(24)

where p(A,B|a,b,μ) = p(A,B,a,b|μ)
p(a,b|μ) . This allows us to arrive

at the following adapted form of the CH-E inequality:

Jε ≡ + p(++,a1b1)

p(a1) p(b1) (1 + ε+)
− p(+0,a1b2)

p(a1) p(b2) (1 − ε−)

− p(0+,a2b1)

p(a2) p(b1) (1 − ε−)
− p(++,a2b2)

p(a2) p(b2) (1 − ε−)
� 0.

(25)

The inequality holds because, due to (24), the left-hand side
is bounded by E[p(++|a1b1,μ) − p(+0|a1b2,μ) − p(0 +
|a2b1,μ) − p(++|a2b2,μ)], which, due to (22), is bounded
by 0.

It is important to note that the adaptation in scenario (i)
is “absolute,” while the one in scenario (ii) is “fractional.”
The adapted bound violation from a given measured J can
withstand a larger value of ε± in scenario (ii) than εAB in
scenario (i).

We conclude that the concrete adapted form of the CH-E
inequality depends on the physical scenario of how setting
choices are communicable to or predictable at the remote side.

VI. STATISTICAL SIGNIFICANCE AND RUN TIME

In published experimental tests of Bell’s inequality, it is
common to report a violation as the number of standard
deviations separating the measured value from the local realist
bound, assuming Poissonian statistics. This quantifies the
chance that a value consistent with local realism is still in
agreement with the experimental data. In fact, we are interested
in a different question: What is the chance that the violation
observed in the experiment could have been produced under
local realism? Moreover, to close the memory loophole, we
may no longer assume that the trials are i.i.d. Employing the
concept of hypothesis testing, for instance using the Hoeffding
inequality [56], one can put a bound on the probability that
local realism produced the data in a given experiment, even
when allowing memory.

Based on the works [40,57], we present a statistical analysis
with the following three key features, all of which are essential
for a photonic Bell state with current technology:

(1) We allow for a bias in the setting choices.
(2) We take into account a communication or excess

predictability (beyond bias) of the setting choices, using
adapted versions of the CH-E inequality.

(3) We apply Doob’s theorem to get rid of noncontributing
trials and reduce the experimental run time to an acceptable
level.

While all points are well understood individually, point 3
becomes nontrivial when combined with 1 and 2.

A supermartingale is a stochastic process for which, at any
time in the sequence, the expectation value of the next value
in the sequence does not exceed the expectation value of the
current value in the sequence, given knowledge of all of the
measurements in the history of the process. (One can think of it
as a random walk with memory and strictly nonpositive drift.)

We consider an experiment with N trials. In each trial
n = 1, . . . ,N , a measurement involves choosing a pair of
settings and recording an outcome for each party, leading
to an experimental value �(n) for that trial, according to
the inequality. Consider the random process Z�: Z(0) =
0,Z(1), . . . ,Z(N) with Z(l) = ∑l

n=1�
(n), whose increments

�(n) fall within range r�. Then, Hoeffding’s inequality

p(Z(N) − E[Z(N)] � c
√

N ) � e
− 2

r2
�

c2

(26)

bounds the probability that after N trials, Z(N) can exceed
the value E[Z(N)] + c

√
N , where c is a positive number and

E[Z(N)] is the expectation value of Z(N). Inequality (26) holds
for i.i.d. trials but also (in the weaker case) when Z(N) is a
supermartingale, i.e., E[Z(l+1)|Z(1), . . . ,Z(l)] � Z(l) for all l

or, equivalently, E[�(n)|�(1), . . . ,�(n−1)] � 0 for all n.
We will examine separately the case where local realism

(LR) holds fully, the case where local realism fails in the way
described in scenario (i) in Sec. V, and the case where it fails
in the way described in scenario (ii) in Sec. V. We call the
latter two situations “ε local realism” (εLR).

Under local realism. Consider the random process ZJ :
Z

(0)
J = 0,Z

(1)
J , . . . ,Z

(N)
J with Z

(l)
J = ∑l

n=1J
(n), where the mea-

sured value (i.e., the increment of the process) in run n is
denoted by J (n). We abbreviate pij ≡ p(ai) p(bj ) which, under
freedom of choice, equals p(aibj ), i.e., the probability that
Alice chooses setting ai and Bob chooses bj . Due to the
setting biases, these four values need not be 1

4 . Furthermore,
we label with XAB

ij those trials where Alice chooses setting
ai and observes outcome A ∈ {+,0}, and Bob chooses bj and
observes outcome B ∈ {+,0}. The increments J (n) are defined
as

J (n) ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+ 1
p11

for X++
11

− 1
p12

for X+0
12

− 1
p21

for X0+
21

− 1
p22

for X++
22

0 else.

(27)

The probability for a trial XAB
ij is given by the probability

pij that the setting combination aibj is chosen, multiplied
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mi mi+1 mi+2 mi+3 mi+4

s

FIG. 2. Illustration of the dilution scheme. The circles represent the experimental trials n = 1, . . . ,N , where white and black fillings
correspond to the values K (n) = −εAB and K (n) 	= −εAB, respectively. The concentrated process has “stopping times” mi , which encompass all
black trials as well as all those, including white, which are preceded by a streak of s subsequent occurrences of white trials.

with the conditional probability to observe the outcomes A

and B given this setting choice: p(XAB
ij ) = pij pAB(ai,bj ).

The definition (27) thus assures that the expectation value of
J (n) is precisely given by J from (6) and hence, under local
realism, is bounded by zero. (Note that, unlike J , the process
ZJ scales with N unboundedly.) Even allowing memory,
the expected value of every increment is still bounded by
zero: E[J (n)|J (1), . . . ,J (n−1)] � 0, making the process ZJ a
supermartingale. The increments fall within the range

rJ = 1

p11
+ max

(
1

p12
,

1

p21
,

1

p22

)
, (28)

which is close to 8 for small biases. The Hoeffding inequality
for ZJ reads

pLR
(
Z

(N)
J � c

√
N

)
� e

− 2
r2
J

c2

. (29)

Scenario (i). Communication in some trials. Now we con-
sider the case of εLR in scenario (i) of Sec. V, i.e., the adapted
inequality (15). If LR fails altogether, the expectation value of
J (n) can reach 1. If LR fails only due to rare communication
events and if we assume these failures are independent of the
history of the experiment, then the expectation value of J (n)

can reach εAB. This means that under εLR, ZJ is no longer a
supermartingale. We define the process ZK with increments

K (n) ≡ J (n) − εAB. (30)

Due to E[K (n)|K (1), . . . ,K (n−1)] � 0, the process ZK is a
supermartingale also in scenario (i), εLR. The trial values
K (n) still have range rJ . The Hoeffding inequality then reads

pεLR
(
Z

(N)
K � c

√
N

)
� e

− 2
r2
J

c2

, (31)

where, using Eq. (30), one can replace Z
(N)
K by Z

(N)
J − N εAB.

If we denote by R the frequency of trials and by J the
experimentally expected value, then, assuming small bias,
the condition Z

(N)
J � N εAB + c

√
N in (31) is likely to be

reached after a run time of c2

R (J−εAB)2 . In a photonic Bell
experiment with total collection efficiency η ≈ 75 % [31,32],
one down-conversion pair in 103 pulses, and reasonable state
visibility and rate of dark and background counts, the CH-E
value would be of the order of J ∼ 10−6. (The low probability
for a pair production dominates, but the state and measurement
angles used at this detection efficiency also contribute to
the smallness of this number.) Assuming a pulse rate of
R ≈ 1 MHz, εAB ≈ 10−7, and rJ ≈ 8, particle-physics “gold
standard” significance of p ∼ 10−6 (i.e., c ≈ 20) would only
be reached after a run time of approximately 16 years, which
exceeds the typical PhD student project duration.

Fortunately, however, this result can be improved using
Doob’s optional stopping theorem. Following Ref. [40], we

first estimate the fraction of all trials n for which the J (n) value
is nonzero:

f = 	{n : J (n) 	= 0}
N

. (32)

By inspection of (4), these are the trials X++
11 ,X+0

12 ,X0+
21 ,X++

22 .
All other combinations of settings and outcomes do not
contribute to the CH-E value, i.e., have J (n) = 0 and hence
K (n) = −εAB. With the experimental parameters from above,
we estimate that the fraction of contributing trials is f ≈
2 × 10−5.

With Doob’s optional stopping theorem, it is possible to
increase the statistical significance of a given data set by look-
ing at a “concentrated process.” If ZJ were a supermartingale,
which it is only in LR and not in scenario (i) εLR, then the
procedure would be rather straightforward as one could simply
skip all noncontributing trials with J (n) = 0. Our case is more
complicated, as those noncontributing trials have (negative)
value K (n) = −εAB and hence do in fact contribute to ZK .

We propose the following solution to this problem (see
Fig. 2): Let us consider the aggregated value Z

(m)
K = ∑m

n=1K
(n)

at M specific “stopping times” m ∈ {m1,m2, . . . ,mM}, namely
those where (a) K (m) 	= −εAB or (b) K (m) = −εAB when
preceded by a “streak” of s contiguous occurrences of
K (n=m−s,...,m−1) = −εAB. Every stop starts a fresh streak. Let
us abbreviate 1

w
= max( 1

p12
, 1
p21

, 1
p22

). This choice of m ensures,
without looking into the future, that the increment from any
Z

(mi )
K to Z

(mi+1)
K is between − 1

w
− (s + 1)εAB (which one gets

for mi+1 = mi + s + 1 when there is a streak of s occurrences
of K (n=mi+1,...,mi+1−1) = −εAB and then a final K (n=mi+1) =
− 1

w
− εAB) and 1

p11
− εAB (which one gets for mi+1 = mi + 1,

and K (n=mi+1) = 1
p11

− εAB). This implies that the concentrated

process Z
(m1)
K ,Z

(m2)
K , . . . ,Z

(mM )
K is a supermartingale with range

rJ,s = rJ + s εAB. (33)

The Hoeffding inequality (31) is now altered in two ways. First,
the range increases from rJ to rJ,s . Second, in the concentrated
process, “time is now running faster” [40], which means that
N gets replaced by the concentrated process length M , which
is the number of stopping times above. Hence,

pεLR,M

(
Z

(mM )
K � c

√
M

)
� e

− 2
r2
J,s

c2

. (34)

Note that with s = 0, one recovers the original process, i.e.,
rJ,s=0 = rJ and M = N , and thus inequality (31). Using
Eq. (30), Z

(mM )
K can be replaced by Z

(mM )
J − mM εAB. When

most of the trials are noncontributing, one can choose s such
that M � N while mM ≈ N .

Now we focus our attention again to an estimation of the
experimental run time. For our purposes, it is not necessary to
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find the optimal value for s, which will in general depend on f

and εAB. We will see the remarkable power of Doob’s theorem
already by choosing s = 
ε−1

AB� which, for small biases and
small εAB, leads to range rJ,s ≈ 9. Because of f � εAB, it
(almost) never happens that there are full streaks of 
ε−1

AB� + 1
subsequent occurrences of noncontributing J (n) trials. Hence
we can take M ≈ f N , meaning that the concentrated process
stops at (almost) exactly the contributing trials. The condition
in (34) is likely to be reached after a run time of c2 f

R (J−εAB)2 . To

obtain the same statistical significance as before (p ∼ 10−6),
we now need to increase c ≈ 20 by a factor of rJ,s

rJ
≈ 9

8 to c ≈
22.5. In total, Doob’s theorem leads to a remarkable reduction
of the run time by a factor of 92

82 f from 16 years to 3 hours,
right into the range of experimental feasibility. (We note that
although the specific experimental values in a future optical
Bell test may differ substantially from our estimates, it is very
likely that within the near future, the application of Doob’s
theorem as just outlined is essential to achieve good statistical
significance within a feasible run time.)

Scenario (ii). Excess predictability in all trials. We now
consider the case of εLR in scenario (ii) of Sec. V, i.e., the
adapted inequality (25). This situation is simpler than scenario
(i). We can define the increments of a process ZJε

as

J (n)
ε ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+ 1
p11(1+ε+) for X++

11

− 1
p12(1−ε− ) for X+0

12

− 1
p21(1−ε− ) for X0+

21

− 1
p22(1−ε− ) for X++

22

0 else,

(35)

with pij ≡ p(ai) p(bj ), which need not equal p(aibj ). This
process has the range

rJε
= 1

p11(1 + ε+ )
+ max

(
1

p12
,

1

p21
,

1

p22

)
1

1 − ε−
, (36)

which, for small biases and small ε± , is close to 8. Even
allowing memory, the expectation value of J (n) is precisely
given by Jε from (25), making the process ZJε

a super-
martingale. Doob’s theorem can be applied right away and all
noncontributing trials can be discarded. With M contributing
trials, the Hoeffding inequality reads

pεLR,M

(
Z

(N)
Jε

� c
√

M
)

� e
− 2

r2
Jε

c2

. (37)

If the bound (19) fails sometimes, say with probability qf ,
then the algebraic bound of Jε , which is 1

1−ε−
, can be reached

in these trials. The above formulas have to be adapted in the
following way, using the logic from scenario (i): A process
ZKε

is defined such that Z
(N)
Kε

= Z
(N)
Jε

− N
qf

1−ε−
with range

rKε
+ s

qf

1−ε−
, using streak length s.

We note that εA,εB—and thereby εAB in scenario (i),
Eq. (14), and ε± in scenario (ii), Eq. (18)—as well as the setting
probabilities pij must be estimated in some way, presumably
from experimental characterization of the setting choice gener-
ation process. To preserve the statistical conclusions, the used
values of εA, εB, and p11 should be conservative overestimates,
while p12,p21,p22 should be conservative underestimates.
Estimates of this kind, including p values for εA,εB, have

recently been reported for phase-diffusion random-number
generators [52,58]. The p value for εA,εB can be taken into
account by including the failure probability qf into the process
counting procedure, explained in the previous paragraph. In
general, then, an experiment can thus lead to two p values:
one for the process value and one for the pij estimates. These
p values can be used in a single test, for example, using
the Bonferroni method: to reach significance α, perform two
separate hypothesis tests of the two hypotheses (bounded pij

and local realism) with significance α/2.
For random-number generators with small bias [52,58],

it might be more efficient to quantify with εA,εB the excess
predictability beyond probability 1

2 , despite the presence of the
bias. Expression (16) then becomes 1

2 (1 − εA) � p(a|μ) �
1
2 (1 + εA), and similar for Bob. This has the advantage that
it suffices to estimate εA,εB—which in this definition now
include both bias itself and excess predictability beyond bias—
and their failure probability qf , so that estimates of the pij

are not required. The expressions (35)–(37) still hold, with
all four pij = 1

4 ; in this case, an experiment leads to only
one p value (for the process value). This procedure was used
in Ref. [20].

We finally remark that the Hoeffding bounds used above
are not optimal and better bounds are known [57], and
that there are elegant methods of testing local realism even
without assuming any specific form of a Bell inequality. They
use the Kullback-Leibler divergence [59], which measures
the mathematical difference of the probability distribution
obtained from experimental data and that of any given local
realist model. We refer the reader to Refs. [35,60–63].

VII. CONCLUSION

A Bell test claiming violation of the CH or Eberhard
inequality bound by some few standard deviations could suffer
from an incomplete consideration of the task at hand. Even
disregarding world views such as superdeterminism that are
inaccessible to the scientific method, it is possible to enforce
spacelike separation only up to a limit due to imperfections
in even state-of-the-art setting generators. In turn, to truly
violate local realism in photonic Bell tests, it is necessary
to modify the CH-Eberhard inequality based on the known
imperfections of the setting generator in use. We showed
how to derive such modifications in two different physical
scenarios. Moreover, in the statistical analysis, we applied
Doob’s optional stopping theorem which dramatically reduces
the run time for reasonable experimental parameters.
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[45] J.-Å. Larsson, Phys. Rev. A 57, R3145(R) (1998).
[46] A. Khrennikov, S. Ramelow, R. Ursin, B. Wittmann, J. Kofler,

and I. Basieva, Phys. Scr. T163, 014019 (2014).
[47] J. Gallicchio, A. S. Friedman, and D. I. Kaiser, Phys. Rev. Lett.

112, 110405 (2014).
[48] T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and Anton

Zeilinger, Rev. Sci. Instrum. 71, 1675 (2000).
[49] M. Fürst, H. Weier, S. Nauerth, D. G. Marangon, C. Kurtsiefer,

and H. Weinfurter, Opt. Express 18, 13029 (2010).
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