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We derive two types of sets of higher-order conditions for bipartite entanglement in terms of continuous
variables. One corresponds to an extension of the well-known Duan inequalities from second to higher moments
describing a kind of higher-order Einstein-Podolsky-Rosen (EPR) correlations. Only the second type, however,
expressed by powers of the mode operators leads to tight conditions with a hierarchical structure. We start with
a minimization problem for the single-partite case and, using the results obtained, establish relevant inequalities
for higher-order moments satisfied by all bipartite separable states. We give an explicit example of a non-
Gaussian state that exhibits fourth-order but no second-order EPR correlations. Similarly, a certain fourth-order
condition cannot be violated by any Gaussian state and we present non-Gaussian states whose entanglement is
detected by that condition. Violations of all our conditions are provided, so they can all be used as entanglement
tests.
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I. INTRODUCTION

It is well known that for any advanced quantum infor-
mation processing task such as entanglement distillation or
ultimately universal quantum computation a non-Gaussian
element (either in the form of a resource state or an operator) is
needed. This could be, for instance, a Hamiltonian of at least
cubic order. From a mathematical point of view, however,
higher-order problems (i.e., of order higher than two) are
notoriously difficult to deal with, especially if we want to
get exact solutions or obtain precise estimations. Here we
start with the problem of finding the minimal value of the
simple quantity 〈x̂2n + p̂2n〉 for n � 1, where we use the
convention [x̂,p̂] = i. In other words, we are interested in a
kind of uncertainty relation for quantum mechanical position
x̂ and momentum p̂ operators, in particular, expressed in
terms of moments greater than two. The operators x̂ and p̂

may correspond to the Hermitian quadrature operators of an
optical mode. This problem was studied in Ref. [1], though
the approach there was rather naı̈ve (computing eigenvalues
by finding the roots of the characteristic equation gives very
imprecise results even for matrices of moderate size). We
improve and extend the results obtained there to apply them
to derive inequalities for higher-order moments of bipartite
separable states, which is the actual goal of the present work.

In the bipartite case, violation of the well-known Duan
criteria [2] in terms of second-order moments, 〈(x̂a ± x̂b)2 +
(p̂a ∓ p̂b)2〉 � 2, is sufficient for the inseparability of an
arbitrary two-mode state and even necessary for that of a two-
mode Gaussian state (in a standard form). The second-order
Duan conditions, originally derived through Cauchy-Schwarz
and Heisenberg uncertainty inequalities independent of partial
transposition, have been shown to be a special case of a
hierarchy of bipartite inseparability conditions (expressed
in terms of arbitrary moments of mode operators) that are
based on partial transposition [3–5]. Nonetheless, a nice and
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unique feature of the Duan inequalities is their resemblance
to EPR-type continuous-variable (CV) correlations, where a
perfect violation of the Duan conditions corresponds to an
infinitely squeezed Einstein-Podolsky-Rosen (EPR) state.

Here we consider the possibility of having similarly
intuitive, higher-order inseparability conditions for x̂ and p̂

(a kind of higher-order Duan/EPR criteria for the standard
quadrature operators) [6,7]. Note that in Ref. [6] the converse
situation of standard EPR correlations between higher-order
quadratures has been studied. In addition, we will find a set
of higher-order conditions in terms of the mode operators â,
â†, which allow for a more systematic procedure (while being
less directly accessible in an experiment). We demonstrate that
all bipartite Gaussian states, regardless of being inseparable
or not, satisfy our fourth-order separability condition which,
nevertheless, can be perfectly violated by non-Gaussian states.
This condition is thus an example of a truly higher-order
condition. We also make a similar conjecture about greater-
than-fourth-order conditions.

The paper is organized as follows. In Sec. II we study the
higher-order single-partite problem, show how to numerically
compute the minimal values of 〈x̂2n + p̂2n〉 for n > 1 and the
corresponding wave functions, and give a conjecture about the
form of these minimal solutions. In Sec. III we use the results
from the preceding section to obtain a higher-order analog
of a well-known bipartite separability condition. In Sec. IV
we present another approach to such conditions and give an
example of a true higher-order separability condition that can
be perfectly violated, while no Gaussian state violates it. We
give a strict proof only for the fourth-order condition and make
a conjecture for higher orders. A summary of all the results
obtained is given in the conclusion. Appendices contain the
technical details and computations.

II. SINGLE-PARTITE CASE

We are going to find the minimal value λ(2n)
min > 0 of

the quantity 〈x̂2n + p̂2n〉, n � 1, over all possible physical
quantum states �̂. In other words, we are going to establish the
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tight inequality of the form

〈x̂2n + p̂2n〉 � λ(2n)
min . (1)

Due to linearity of this quantity with respect to �̂ (with any �̂

being a convex combination of pure states |ψ〉), it is enough
to consider pure states only:

min
�̂

〈x̂2n + p̂2n〉 = min
|ψ〉

〈x̂2n + p̂2n〉. (2)

To find states that minimize this quantity we must solve the
eigenvalue equation

(x̂2n + p̂2n)|ψ〉 = λ|ψ〉, (3)

and find the normalizable solutions(s) corresponding to the
minimal eigenvalue λ(2n)

min for which normalizable solutions
exist. In terms of wave functions this equation reads as the
following ordinary differential equation of 2nth order:

x2nψ(x) + (−1)nψ (2n)(x) = λψ(x), (4)

with ψ (2n)(x) ≡ (∂2nψ/∂x2n)(x). To our best knowledge,
solutions of this equation are known only for n = 1. In this
case Eq. (4) becomes the Weber equation [8] after rescaling
the argument: ψ ′′ + (λ − x2)ψ = 0. The general solution of
this equation is given by

ψ(x) = c1D− 1−λ
2

(
√

2x) + c2D− 1+λ
2

(i
√

2x), (5)

where Dν(x) are parabolic cylinder functions [9] and c1,c2

are arbitrary complex numbers. For λ = 1 this expression
simplifies to

ψ(x) = c1e
−x2/2 + c′

2e
−x2/2 erfi(x). (6)

The only normalizable function of this form is c1e
−x2/2 and

after normalization it coincides with the wave function of the
vacuum state.

Note that if ψ(x) is a solution to Eq. (4) then its complex
conjugate ψ∗(x) is also a solution to that equation (since λ is
real) and thus the real part Re ψ(x) = (1/2)[ψ(x) + ψ∗(x)] is
a real solution of Eq. (4). We now prove a couple of general
facts about the solutions of that equation. First, we show that
any real normalizable solution of Eq. (4) satisfies the property

〈x̂2n〉 = 〈p̂2n〉 = λ

2
. (7)

In fact, if we multiply both sides of Eq. (4) by xψ ′(x) and
integrate over (−∞, + ∞), we get∫

x2n+1ψ(x)ψ ′(x) dx

+ (−1)n
∫

xψ ′(x)ψ (2n)(x) dx = −λ

2
. (8)

The first term on the left-hand side is easy to compute,∫
x2n+1ψ(x)ψ ′(x) dx

= −2n + 1

2

∫
x2nψ2(x) dx = −2n + 1

2
〈x̂2n〉. (9)

The second term requires more effort, but by induction one
can obtain the following expression for it:∫

xψ ′(x)ψ (2n)(x) dx = (−1)n
2n − 1

2

∫
ψ (n)2(x) dx

= (−1)n
2n − 1

2
〈p̂2n〉.

Substituting these expression into Eq. (8), we get

(2n + 1)〈x̂2n〉 − (2n − 1)〈p̂2n〉 = λ. (10)

On the other hand, if we multiply both sides of Eq. (4) by
ψ(x) and integrate, we get 〈x̂2n〉 + 〈p̂2n〉 = λ. From these two
equations we immediately obtain Eq. (7).

Next, we prove that the minimal value (2) is invariant under
translations in phase space; i.e., for any real numbers x0 and
p0 we have

min
�̂

〈x̂2n + p̂2n〉 = min
�̂

〈(x̂ − x0)2n + (p̂ − p0)2n〉. (11)

To prove this equation, we just show that for any state �̂ there
is another state �̂′ such that

〈(x̂ − x0)n〉 = 〈x̂n〉′, 〈(p̂ − p0)n〉 = 〈p̂n〉′, (12)

for all n � 1. In fact, let us take an arbitrary state �̂

and consider the new state �̂′ = D(α0)�̂D†(α0), where α0 =
−(x0 + ip0)/

√
2 and D(α) is the displacement operator, which

is for any complex number α defined by D(α) = eαâ†−α∗â .
This operator shifts the position and momentum operators
as

D†(α)x̂D(α) = x̂ +
√

2 Re α,

D†(α)p̂D(α) = p̂ +
√

2 Im α. (13)

Using these relations, we can write

〈x̂n〉′ = Tr[x̂nD(α0)�̂D†(α0)]

= Tr[D†(α0)x̂nD(α0)�̂] = 〈(x̂ − x0)n〉, (14)

so we get the first equality of Eq. (12). The second one
is obtained in the same way. We see that any number
of the form 〈(x̂ − x0)2n + (p̂ − p0)2n〉 is also of the form
〈x̂2n + p̂2n〉. Using the operator D†(α0) = D(−α0) instead of
D(α0), we can also conclude that the inverse statement is
true—any number of the form 〈x̂2n + p̂2n〉 is also of the form
〈(x̂ − x0)2n + (p̂ − p0)2n〉, and thus Eq. (11) holds.

We now present a method to obtain an analytical lower
bound on the quantity 〈x̂2n + p̂2n〉 for n = 2. We can expand
〈x̂4 + p̂4〉 in terms of the creation and annihilation operators
as follows:

〈x̂4 + p̂4〉 = 3
2 + 1

2 〈â4 + â†4〉 + 3〈â†2â2〉 + 6〈â†â〉. (15)

The fourth powers can be estimated as

|〈â4〉|2 � 〈â†2â2〉〈â2â†2〉
= 〈â†2â2〉(〈â†2â2〉 + 4〈â†â〉 + 2), (16)
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and thus 〈x̂4 + p̂4〉 satisfies the inequality

〈x̂4 + p̂4〉 � 3
2 + 3A + 6B −

√
A(A + 4B + 2), (17)

where A = 〈â†2â2〉 and B = 〈â†â〉. We demonstrate that

3A + 6B −
√

A(A + 4B + 2) � −(3 − 2
√

2) ≡ −δ (18)

for all A,B � 0. In fact, this inequality is equivalent to the
following one: 3A + 6B + δ �

√
A(A + 4B + 2). Since all

the parameters are nonnegative, we can take the square of both
sides of this inequality. Taking into account that 3δ − 1 =
−2

√
2δ, we arrive at an equivalent statement,

(2
√

2A − δ)2 + 36B2 + 32AB + 12Bδ � 0, (19)

which is obviously valid. The estimation given by Eq. (18)
is the best possible under the restriction A,B � 0: For A =
δ/2

√
2,B = 0 the inequality in Eq. (19) is tight. We have just

established the following result:

〈x̂4 + p̂4〉 � 3
2 − δ ≈ 1.32843. (20)

It is possible to extend this approach and apply it to obtain
estimations for higher-order combinations of moments, but
these inequalities are not tight for any n � 2; more precise
results can be obtained by numerical optimization.

For n > 1 the only way to work with Eq. (4) is numerics.
To solve this equation numerically we need a set of initial
conditions. Many initial conditions lead to nonnormalizable
solutions. Since the general solution is unknown, we need
some way to determine what initial conditions to set to obtain
a normalizable wave function.

One way to do this is to minimize 〈x̂2n + p̂2n〉 as a quadratic
form of the coefficients in the Fock basis expansion. To write
〈x̂2n + p̂2n〉 as a quadratic form we need to express the powers
of the position and momentum operators in terms of the
creation and annihilation operators. According to Ref. [10],
we have

(â + â†)2n =
2n∑

k=0

(2n)!

k!

� 2n−k
2 �∑

l=0

â†2n−k−2l âk

2l l!(2n − k − 2l)!
,

(â − â†)2n =
2n∑

k=0

(2n)!

k!

� 2n−k
2 �∑

l=0

(−1)k+l â†2n−k−2l âk

2l l!(2n − k − 2l)!
. (21)

From these relations we derive the following results:

x̂2 + p̂2 = 1 + 2â†â,

x̂4 + p̂4 = 3
2 + [3â†2â2 + 6â†â] + [

1
2 (â4 + â†4)

]
,

x̂6 + p̂6 = 15
4 + [

5â†3â3 + 45
2 â†2â2 + 45

2 â†â
]

+ [
3
2 (â†â5 + â†5â) + 15

4 (â4 + â†4)
]
. (22)

This list can be continued, but the expressions will become
more and more complicated. We see that the right-hand sides
of these relations contain terms of the form â†pâq with p − q

being a multiple of 4. It is easy to demonstrate that this
is true in general, for all n � 1. In fact, each term on the
right-hand side of Eq. (21) has the form â†2n−k−2l âk , so
the difference of powers is 2(n − k − l). On the other hand,
the coefficient in front of this term in x̂2n + p̂2n is proportional

to 1 + (−1)n+k+l and is nonzero only if n + k + l is even.
In such a case the difference n − k − l is also even and thus
the difference of powers 2(n − k − l) is a multiple of 4. So,
independently of n, only terms â†pâq with p − q being a
multiple of 4 are present in x̂2n + p̂2n.

The constants on the right-hand side of Eq. (22) correspond
to the values of the quantity on the left-hand side for the
vacuum state. Thus, note that only for n = 1 is the vacuum
state a minimum uncertainty state, whereas for n > 1 other,
especially non-Gaussian states have smaller uncertainties
compared to the vacuum. The uncertainty value for the
vacuum is easy to compute in general and it is given by the
following expression:

〈x̂2n + p̂2n〉0 = (2n)!

22n−1n!
. (23)

Below, by the matrix M2n of 〈x̂2n + p̂2n〉 we mean the matrix
of this quantity expressed in the Fock basis. As we will see,
for n > 1 this quantity can go below the value 〈x̂2n + p̂2n〉0.

The simplest quantity of this form, 〈x̂2 + p̂2〉, is already
diagonal in the Fock basis, the minimal eigenvalue being 1. The
matrices of 〈x̂2n + p̂2n〉 with n > 1 have a simple structure—if
n = 2m or n = 2m + 1 then the matrix of 〈x̂2n + p̂2n〉 has
2m + 1 diagonals, where m of them are below the main
diagonal and m of them are above. The distance between the
adjacent diagonals is 4. For example, the matrix M4 = (ai,j ) of
〈x̂4 + p̂4〉 has three diagonals and explicitly it reads as follows:

M4 = 3

2
1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
√

6 0 0 . . .

0 6 0 0 0
√

30 0 . . .

0 0 18 0 0 0
√

90 . . .

0 0 0 36 0 0 0 . . .√
6 0 0 0 60 0 0 . . .

0
√

30 0 0 0 90 0 . . .

0 0
√

90 0 0 0 126 . . .

. . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(24)

where 1 is the identity matrix and the nonzero elements are
given by the following equations:

ak,k = 3
2 + 3k(k + 1),

ak,k+4 = 1
2

√
(k + 1)(k + 2)(k + 3)(k + 4).

The matrix M6 has the same structure, but its nonzero elements
become

ak,k = 15
4 + 5k

(
k2 + 3

2k + 2
)
,

ak,k+4 = 3
2

(
k + 5

2

)√
(k + 1)(k + 2)(k + 3)(k + 4).

The matrices M8 and M10 have five diagonals, M12 and M14

have seven, and so on. The elements of these matrices can
be obtained with the help of Eq. (21). It can be now easily
seen that for n > 1 the quantity 〈x̂2n + p̂2n〉 goes below the
value for the vacuum state. In fact, for n > 1 there are at
least two additional diagonals which are 4 positions below
and above the main diagonal. The first element of the main
diagonal (with indices 00) is zero, and taking the state of the
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TABLE I. Minimal eigenvalue for the first few values of n.

2n 2 4 6 8 10 12

λ(2n)
min 1 1.3967 2.9530 8.2891 28.9741 121.2168

form |ψ〉 = N (|0〉 + c|4〉) we immediately see that for small
negative values of c the value of the quantity 〈x̂2n + p̂2n〉 is
smaller than the value given by Eq. (23).

The minimal eigenvalue λ(2n)
min of these matrices and the

corresponding eigenvectors (c0,c1, . . .) (coefficients in the
Fock basis) are easy to compute numerically. These values
for small n are given in Table I. Full details of the numerics
to perform this computation are given in Appendix A. The
eigenvalues are shown in Fig. 1 together with the quantity
〈x̂2n + p̂2n〉0 for the same n. The figure is in logarithmic
scale, where a linear dependence would mean an exponential
growth. According to this figure the minimal eigenvalues grow
faster than any linear function, so that the minimal value of
〈x̂2n + p̂2n〉 increases faster than exponentially.

The wave function

ψmin(x) =
+∞∑
k=0

ckψk(x) (25)

of the minimal state is shown in Fig. 2 for n = 1, . . . ,6, where
ψk(x) are the wave functions of the Fock states. It can be seen
that the functions for n > 1 are nearly indistinguishable and
rather close to the vacuum wave function (i.e., to the solution
for n = 1). The main difference between the wave function of
the vacuum state and the minimal wave functions for n > 1 is
that the latter take negative values.

It happens that the wave functions of the minimizing states
can be accurately (with relative error ≈ 1%) approximated by
the following expression:

ψa,b(x) = cJ0(ax2)e−bx2
, (26)

where J0 is the Bessel function, a and b are appropriately
chosen positive parameters and c is determined from the
normalization of ψa,b(x). For n = 1 this expression with a = 0
and b = 1/2 exactly reproduces the wave function of the

2n

x̂2n + p̂2n

vacuum
minimum

FIG. 1. Superexponential growth of the minimal eigenvalues
λ(n)

min. Note that the y axis is in log scale.

FIG. 2. The wave functions of the states minimizing the quantity
〈x̂2n + p̂2n〉 for a few values of n.

vacuum state. The normalization is explicitly given by

c = π3/4

2

4
√√

a2 + b2 + b

K
(√

a−√
2b

√√
a2+b2−b

2a

) , (27)

where K(k) is the complete elliptic integral of the first kind
defined by the following expression:

K(k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

. (28)

It is easy to verify the relations

0 <
a − √

2b
√√

a2 + b2 − b

2a
<

1

2
, (29)

which are valid for all positive a and b, and the relation

a −
√

2b

√√
a2 + b2 − b = a3

8b2
+ O(a4), (30)

valid for a fixed positive b, from which we derive that for
a = 0 and b = 1/2 we get c = π−1/4, as it must be for the
vacuum state. For n > 1 the expression (26) gives only an
approximation to the exact minimizing state. In Table II we
present the parameters a and b for the first few values of n.

To sum up, we have established a kind of higher-order
uncertainty relation, which, however, is less general than
the positivity of the density matrix. It generalizes known
uncertainty relations by incorporating moments greater than
two. Finally, at the end of this section, let us prove the following

TABLE II. Parameters a and b.

2n a b c

2 0 0.5 0.751126
4 0.345424 0.402533 0.731575
6 0.350766 0.399127 0.730834
8 0.334137 0.409370 0.733031
10 0.314942 0.420320 0.735346
12 0.297065 0.429728 0.737304
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relation for the minimal eigenvalues:

λ(4n)
min > 1

2

(
λ(2n)

min

)2
. (31)

In fact, due to the inequality 〈Â2〉 � 〈Â〉2 we have

λ(4n)
min = 〈x̂4n + p̂4n〉min � 〈x̂2n〉2

min + 〈p̂2n〉2
min

� 1
2 (〈x̂2n〉min + 〈p̂2n〉min)2 > 1

2

(
λ(2n)

min

)2
. (32)

Note that the subindex min here refers to the state correspond-
ing to the minimal value λ(4n)

min , and it is not the state that
minimizes the quantity 〈x̂2n + p̂2n〉, so, by definition of λ(2n)

min ,
we get the last step of these relations. Table I shows that in fact
the minimal values λ(2n)

min grow faster than is guaranteed by the
inequality (31). This inequality will be useful to demonstrate
that the higher-order separability conditions we construct in the
next section are not a trivial consequence of the lower-order
conditions.

III. BIPARTITE CASE

We start with a well-known result [2], which is valid for all
bipartite separable states,

〈(x̂a ± x̂b)2 + (p̂a ∓ p̂b)2〉 � 2. (33)

There are at least two possible ways to extend this inequality
to higher orders. We develop them in the subsections that
follow. The first one is easy to implement experimentally and
easy to violate, but it is not so easy to obtain the optimal
result. The main disadvantage of this approach is that it is not
a “true” hierarchy of conditions for higher-order moments,
since all of these conditions can be violated by Gaussian
states. Nevertheless, the higher-order inequalities we derive are
stronger than those based on only second-order moments. The
other approach leads to tight conditions, but these conditions
are more difficult to implement. On the other hand, these
conditions may be referred to as truly higher-order as they
cannot be violated by Gaussian states. We have confirmed this
by numerical simulation while we were able to strictly prove
this only in the simplest case of the fourth-order condition.
Note that an example of the converse situation, namely non-
Gaussian states whose entanglement cannot be detected via the
(standard) second-order conditions but only via fourth-order
conditions, was already given in Ref. [3]. Similarly, we will
give an explicit example of a non-Gaussian state that exhibits
fourth-order but no second-order EPR correlations.

A. Approach 1

The most obvious way to extend inequality (33) is to replace
second powers by higher numbers and try to establish an
inequality of the form

〈(x̂a ± x̂b)2n + (p̂a ∓ p̂b)2n〉 � ?, (34)

with a positive bound on the right-hand side.
Unfortunately, it is rather difficult to find the tight lower

bound of the left-hand side of this inequality over all separable
states. A suboptimal result can be obtained by noting that

〈(x̂a ± x̂b)2n + (p̂a ∓ p̂b)2n〉PT

= 〈(x̂a ± x̂b)2n + (p̂a ± p̂b)2n〉, (35)

where superscript PT stands for partial transposition, and
finding the minimal value of the quantities

〈(x̂a ± x̂b)2n + (p̂a ± p̂b)2n〉 (36)

over the set of all bipartite quantum states (representing a
physicality bound for all states with positive PT (PPT) with
regards to the original combination (34) and hence yielding
a necessary condition for all separable states). The difference
in the problem of minimizing over all quantum states and
the problem of minimizing over separable states is that the
former reduces to minimizing a quadratic form, which is
straightforward to do numerically, while the latter reads as
a minimization of a biquadratic form, for which no numerical
technique exists. The former value can be obtained with
the same approach that we used in the previous section for
single-partite quantities. As we will see below, this bipartite
minimal value has a simple relation to the single-partite one,
as in the previous section.

To find states that minimize the quantity (36) for some n

we have to solve the eigenvalue problem

(x ± y)2nψ(x,y) + (−1)n
(

∂

∂x
± ∂

∂y

)2n

ψ(x,y) = �ψ(x,y),

(37)

and find the minimal eigenvalue �. These equations look more
difficult than Eq. (4), but they can be easily reduced to that
equation. In fact, let us introduce the function ψ̃(u,v) via

ψ̃(u,v) = ψ

(
u + v√

2
, ± u − v√

2

)
, (38)

where the choice of the sign corresponds to the sign in Eq. (34).
This function is normalized and thus it is also a wave function.
The relation (38) is invertible,

ψ(x,y) = ψ̃

(
x ± y√

2
,
x ∓ y√

2

)
, (39)

from which we obtain the following equality:(
∂

∂x
± ∂

∂y

)2n

ψ(x,y) = 2n ∂2nψ̃

∂u2n
(u,v), (40)

where u = (x ± y)/
√

2 and v = (x ∓ y)/
√

2. Substituting this
into Eq. (37), we get an equation for ψ̃

u2nψ̃ + (−1)n
∂2nψ̃

∂u2n
= �

2n
ψ̃, (41)

which looks very similar to Eq. (4). Since the minimal
solution of that equation is unique, minimal solutions of Eq.
(41) are given by

�̃min(u,v) = ψmin(u)ϕ(v), (42)

where ψmin(u) is the minimal solution of Eq. (4), given by
Eq. (25), and ϕ(v) is an arbitrary normalized function. The
minimal solutions of Eq. (37) then become

�min(x,y) = ψmin

(
x ± y√

2

)
ϕ

(
x ∓ y√

2

)
. (43)

The bipartite minimal eigenvalue in both cases is just the
appropriately scaled single-partite minimal eigenvalue:

�(2n)
min = 2nλ(2n)

min . (44)
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TABLE III. Minimal eigenvalue for the first few values of n.

2n 2 4 6 8 10 12

�(2n)
min 2 5.5868 23.624 132.626 927.171 7757.88

The bipartite minimal eigenvalues can be numerically com-
puted independently with the same approach as for the single-
partite case, by minimizing the quantities defined by Eq. (36)
as quadratic forms with respect to the bipartite Fock basis.
The numerical results agree with the analytical relation (44).

We have established the following inequalities for all
bipartite separable states:

〈(x̂a ± x̂b)2n + (p̂a ∓ p̂b)2n〉 � �(2n)
min . (45)

From Eqs. (44) and (20) we have �(4)
min = 4λ(4)

min � 5.3137, so
that we have analytically established the inequality

〈(x̂a ± x̂b)4 + (p̂a ∓ p̂b)4〉 � 2(4
√

2 − 3) ≈ 5.3137 (46)

for all bipartite separable states. This inequality is not tight,
but this result is obtained analytically. A better estimation
(obtained numerically) can be taken from Table I and it reads
as

〈(x̂a ± x̂b)4 + (p̂a ∓ p̂b)4〉 � 5.5868. (47)

We see that the analytical result is rather close to the more
precise lower bound found numerically. But even this lower
bound, as well as Eq. (45) in general, is unlikely to be tight,
but nevertheless these inequalities represent some nontrivial
tests for higher-order moments. From Table I of the single-
partite minimal values and relation (44), we derive Table III
of the bipartite (not necessarily tight) lower bounds. Note that
the bounds in Table III are obtained with the help of partial
transposition. The true minimal values with regards to the
left-hand side of Eq. (34) may always be larger, but will never
be as large as the corresponding value for the vacuum state.

Here we should make an important observation: If we have a
lower bound of the form (45), then we can immediately obtain
the following lower bound for 〈(x̂a ± x̂b)4n + (p̂a ∓ p̂b)4n〉 in
the same way as we derived inequality (31) for the single-
partite case:

〈(x̂a ± x̂b)4n + (p̂a ∓ p̂b)4n〉
� 〈(x̂a ± x̂b)2n〉2 + 〈(p̂a ∓ p̂b)2n〉2

� 1
2 〈(x̂a ± x̂b)2n + (p̂a ∓ p̂b)2n〉2 � 1

2

(
�(2n)

min

)2
. (48)

This estimation can be most easily made provided that we
know only the relation in Eq. (45) without any additional
assumptions. The difference between the inequalities (1) and
(45) is that the former is a general property of physical
systems (provided that quantum mechanics gives an adequate
description of the physical world), while the latter is a property
of bipartite separable states; i.e., it is a condition that can be
tested against all quantum states. Those states that fail this
test are thus verified to be entangled. We conclude that for the
inequalities (45) to form a nontrivial hierarchy of conditions,
the minimal values �(2n)

min must satisfy the strict inequalities

�(4n)
min > 1

2

(
�(2n)

min

)2
. (49)

This is the main requirement for the minimal eigenvalues so
that no condition of the form (45) is a trivial consequence of
another one. The inequality (31) combined with the relation
(44) gives us exactly the desired result (49). From Table III
we see that the numbers �(2n)

min we obtained numerically grow
much faster than given by the main requirement, and thus the
inequalities (45) form a hierarchy of separability conditions
where indeed the power of each condition increases with its
order. Also note that we do not need any new “hardware”
to perform all the tests given by the hierarchy (45); the
same experimental setup developed for testing the simplest
inequality (33) can be used to check all the inequalities in
the hierarchy. This is one of the biggest advantages of this
hierarchy.

In Appendix B we show that the inequality (47) can be
strengthened by using higher-order uncertainties instead of
partial transposition:

〈(x̂a ± x̂b)4 + (p̂a ∓ p̂b)4〉 � 2λ(4)
min + 3 ≈ 5.7934. (50)

On the other hand, if we take the factorizable state of the form
|ψ〉a|0〉b then

〈(x̂a + x̂b)4 + (p̂a − p̂b)4〉
= 6 + 1

2 〈â4 + â†4 + 6â†2â2 + 24â†â〉.
The last term can be optimized and its minimal value is equal to
≈ −0.0728. In fact, even for the state |ψ〉a = N (|0〉a + c|4〉)
we can get the value of −0.0714 for a small negative value
of c. So, the true minimal value of 〈(x̂a + x̂b)4 + (p̂a − p̂b)4〉
is in the narrow interval between 5.7934 and 5.9272. Even
though we do not obtain the exact solution, from a practical
point of view one can say that it is the end of the story of the
quantity of the fourth order. Unfortunately, the method used
there cannot be easily applied to higher-order moments in a
systematic way as we have done with the PPT approach.

We now show that the inequalities (45) can be perfectly
violated by the bipartite two-mode squeezed vacuum state.

Theorem 1. For the bipartite squeezed vacuum state defined
by

|0〉λ =
√

1 − |λ|2
+∞∑
n=0

λn|n,n〉, (51)

the following relations hold for any n � 1:

〈(x̂a ± x̂b)2n〉 = 〈(p̂a ∓ p̂b)2n〉 = (2n)!

2nn!

(
1 ± λ

1 ∓ λ

)n

. (52)

The squeezed vacuum state thus perfectly violates the in-
equalities (45) when λ → ∓1, respectively. Indeed, the two-
mode squeezed vacuum state becomes a simultaneous zero
eigenstate of x̂a ± x̂b and p̂a ∓ p̂b in the limit λ → ∓1.

Proof. The squeezed vacuum state can be more compactly
written in the following way:

|0〉λ =
√

1 − |λ|2eλâ†b̂† |0,0〉. (53)

The desired quantities are easy to compute with the help of the
generating functions

X±(t) = 〈et(x̂a±x̂b)〉 = et2/2〈eu∗â†
ev∗b̂†euâevb̂〉,

P±(t) = 〈et(p̂a±p̂b)〉 = et2/2〈eu′∗â†
ev′∗b̂†eu′âev′b̂〉, (54)
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where u = ±v = t/
√

2 and u′ = ±v′ = it/
√

2. Using the
representation of the squeezed state in the form (53), one can
compute the following quantity:

λ〈0|eu∗â†
ev∗b̂†euâevb̂|0〉λ

= (1 − λ2)〈0,0|eλâb̂eu∗â†
ev∗b̂†euâevb̂eλâ†b̂† |0,0〉. (55)

The product inside the brackets can be transformed with the
help of the Baker-Campbell-Hausdorff relation

eÂeB̂ = e[Â,B̂]eB̂eÂ, (56)

which is valid if the commutator [Â,B̂] commutes with both
Â and B̂, and the equality

eμâb̂eνâ†b̂† |0,0〉 = 1

1 − μν
exp

(
ν

1 − μν
â†b̂†

)
|0,0〉, (57)

which is derived in Ref. [11]. Applying Eq. (56) several times
with, for example, Â = â, B̂ = â†b̂†, [Â,B̂] = b̂†, and finally
using Eq. (57), we have

λ〈0|eu∗â†
ev∗b̂†euâevb̂|0〉λ

= exp

(
λ

1 − λ2
(uv + u∗v∗ + λ|u|2 + λ|v|2)

)
, (58)

from which we immediately obtain that

X±(t) = P∓(t) = exp

(
1 ± λ

1 ∓ λ

t2

2

)
. (59)

Expanding both sides in t and comparing the coefficients we
get the relations (52). �

There are states that satisfy the second-order condition,
but violate one of the higher-order conditions. We construct
a non-Gaussian state that violates the fourth-order condition.
The state is

|ψ〉 =
√

1 − ξ 2
+∞∑
n=0

(−ξ )n|2n,2n〉, (60)

for 0 < ξ < 1. A state of this form (with equal and even photon
numbers in each term) can be used, for instance, for optimal
cloning of quantum coherent states [12]. The state (60) is a
superposition of two Gaussian states (51) with λ = ±i

√
ξ :

|ψ〉 =
√

1 + ξ

2
(|0〉i√ξ + |0〉−i

√
ξ ). (61)

For this state we have

〈(x̂a + x̂b)2 + (p̂a − p̂b)2〉 = 2
1 + 3ξ 2

1 − ξ 2
> 2, (62)

so the usual second-order condition is not violated. For the
fourth-order condition, we obtain

〈(x̂a + x̂b)4 + (p̂a − p̂b)4〉 = 6
1 − 2ξ + 16ξ 2 − 6ξ 3 + 7ξ 4

(1 − ξ 2)2
.

(63)

For ξ ≈ 0.05744, the last expression is equal to ≈5.65837,
and thus the state (60) satisfies the second-order condition,
but violates the fourth-order condition (50) for a small range
of the parameter ξ . In other words, we may refer to the

state (60) with ξ ≈ 0.05744 as a higher-order, imperfect (non-
maximally-entangled) EPR state that exhibits fourth-order but
no second-order EPR correlations.

It is even possible to construct states that satisfy the
second-order condition but violate the weaker fourth-order
condition (47). One way to find such states is to consider the
quantity 〈ψ |(x̂a ± x̂b)4 + (p̂a ∓ p̂b)4|ψ〉 as a quadratic form
with respect to the coefficients of the pure bipartite state |ψ〉.
Considering truncated states, starting from some truncation
order, this quadratic form will have eigenvalues smaller than
�(4)

min. The eigenvectors corresponding to those eigenvalues that
are just slightly less than �(4)

min do not violate the second-order
condition (45) (the eigenstates with eigenvalues substantially
smaller than �(4)

min usually violate the second-order condition).
States constructed in this way have hundreds of nonzero
coefficients in the Fock basis, so we do not present them here.

The inequalities (45) can be used to demonstrate that some
of the minimal states (43) are entangled. In fact, let us compute
the left-hand side of the inequality (45) on a state of the form
(43). One can easily find that

〈(x̂a ± x̂b)2n + (p̂a ∓ p̂b)2n〉 = 2n

{〈
x̂2n

a

〉 + 〈
p̂2n

b

〉
,〈

x̂2n
b

〉 + 〈
p̂2n

a

〉
,

(64)

depending on the combinations of signs, where subscript a

means averaging over the state with wave function ψmin(u)
and subscript b means averaging over the state with wave
function ϕ(v). According to Eq. (7), we have

〈(x̂a ± x̂b)2n + (p̂a ∓ p̂b)2n = �(2n)
min

2
+ 2n

{〈
x̂2n

b

〉
,〈

p̂2n
b

〉
,

(65)

and thus the states (43) violate the inequalities (45) depending
on whether the state ϕ(v) exhibits higher-order squeezing, i.e.,
whether one of the quantities 〈x̂2n

b 〉 and 〈p̂2n
b 〉 is less than

λ(2n)
min /2.

We now prove that for the case of n > 1, all bipartite
minimal states are entangled, not only those states with a
higher-order squeezing component.

Theorem 2. Any pure state with a wave function of the form
(43) is entangled, provided that ψmin(x) is the single-partite
minimal solution of Eq. (4) with n > 1 and ϕ(y) is an arbitrary
wave function.

Proof. A bipartite pure state is separable only if it is
factorizable, so we must prove that there are no functions
f (x) and g(y) such that

ψmin

(
x ± y√

2

)
ϕ

(
x ∓ y√

2

)
= f (x)g(y). (66)

First note that this theorem is not valid for arbitrary functions
ψmin(x) and ϕ(y). In fact, if both ψmin(x) and ϕ(y) are wave
functions of the vacuum state,

ψmin(x) = 1
4
√

π
e−x2/2, ϕ(y) = 1

4
√

π
e−y2/2, (67)

then we have

ψmin

(
x ± y√

2

)
ϕ

(
x ∓ y√

2

)
= ψmin(x)ϕ(y). (68)

The only property of ψmin(x) that we need in order to establish
the theorem is that it takes on negative values, which is the

032114-7



E. SHCHUKIN AND P. VAN LOOCK PHYSICAL REVIEW A 93, 032114 (2016)

case for any n > 1 according to our numerical analysis, and
that ψmin(x) does not have too many zeros.

We consider only one combination of signs; the proof for
the other one is similar. Let us assume that the relation (66)
is valid for some functions f (x) and g(y). Then it is easy to
derive the following identity:

ψmin(x)ψmin(y)ϕ(x)ϕ(−y)

= ψmin(0)ϕ(0)ψmin(x + y)ϕ(x − y), (69)

which holds for all real numbers x and y. If ϕ(0) = 0, then we
must have ψmin(x)ψmin(y)ϕ(x)ϕ(−y) = 0 for all points x and
y. Since ψmin(x) has at most countably many zeros [we assume
that ψmin(x) behaves like the function (26) that accurately
approximates it] and ϕ(y) is normalized, there must be some
x0 such that both ψmin(x0) and ϕ(x0) are nonzero. Then we find
that ψmin(y)ϕ(−y) = 0 for all y, and thus the norm of ϕ(y) is
zero—a contradiction.

So, we have ϕ(0) �= 0 and since the global sign of ϕ is
unimportant, we can assume that ϕ(0) > 0. Setting y = −x in
Eq. (69) and taking into account the symmetry of ψmin(x), we
obtain

ψ2
min(x)ϕ2(x) = ψ2

min(0)ϕ(0)ϕ(2x), (70)

from which we conclude that we must have ϕ(x) � 0 for all x,
and so if ϕ(x) < 0 for some x then �min(x,y) is not separable.
If ϕ(x) � 0 for all x then let us take a number x1 such that
ψmin(x1) < 0. If we substitute x = y = x1/2 into Eq. (69), we
have

0 � ψ2
min(x1/2)ϕ(x1/2)ϕ(−x1/2)

= ψmin(0)ϕ2(0)ψmin(x1) < 0, (71)

which is again a contradiction, proving the theorem. �

B. Approach 2

We now present another approach, which is better for
getting the higher-order conditions, because in Approach 1
the second-order violations typically appear to come together
with higher-order violations. In this new approach we derive
conditions that can be violated only by non-Gaussian states.
The inequality (33) can also be written in the following
form:

〈(â† ± b̂)(â ± b̂†)〉 � 1. (72)

This form suggests another way to extend Eq. (33), by increas-
ing the powers of the annihilation and creation operators. We
first analyze the case of second powers (so the total product
will be fourth-order) and derive a state that perfectly violates
the resulting condition.

Theorem 3. For any bipartite separable state the following
inequalities are valid:

〈(â†2 ± b̂2)(â2 ± b̂†2)〉 �
{

2 for sep. states, (73a)
0 for all states. (73b) (73)

The inequality (73b) is always strict and tight; i.e., the left-hand
side can be arbitrarily close to zero (but never equal to zero).

Proof. We first prove the inequality (73a). For a partially
transposed state we have

〈(â†2 ± b̂2)(â2 ± b̂†2)〉PT

= 〈(â†2 ± b̂†2)(â2 ± b̂2) + 4b̂†b̂ + 2〉 � 2, (74)

and thus obtain the desired relation in the same way as we
derived the inequality (45). The lower bound is attained, for
example, for the bipartite two-mode vacuum state.

Now we prove that the left-hand side of the inequalities
(73) can never be equal to zero (for a physical state). It is
enough to prove this statement for pure states only. If for a
pure state |ψ〉 = ∑+∞

k,l=0 ck,l|k,l〉 the left-hand side of (73) is
zero then we must have (â2 ± b̂†2)|ψ〉 = 0. From this we get
the following relation between the coefficients of the state:√

(k + 1)(k + 2)ck+2,l = ∓
√

l(l − 1)ck,l−2, (75)

which holds for all k,l � 0. We immediately find that ck0 =
ck1 = 0 for all k � 2. The relation above can be rewritten as

ck+2,l+2 = ∓
√

(l + 1)(l + 2)

(k + 1)(k + 2)
ckl, (76)

for all k,l � 0. Applying it several times we obtain the equality

ck+2j,l+2j = (∓1)j
√

(l + 2j )!

(k + 2j )!

k!

l!
ckl, (77)

for all j � 0. Since the state |ψ〉 is normalized, at least one of
the coefficients ckl is nonzero, let us say, ck0l0 �= 0. If l0 � k0

then ck0+2j,l0+2j does not tend to zero as j → +∞, and thus∑+∞
j=0 |ck0+2j,l0+2j |2 cannot converge. So, we must have k0 >

l0. Then, using Eq. (77), we also have ck0−2,l0−2 �= 0 (provided
that k0 − 2,l0 − 2 � 0). Repeating the process of subtracting
2 from both indices several times, we either arrive at c10, or
ck0 or ck1 with k � 2. As we have already seen, in the latter
case we must have ck0 = ck1 = 0, so the only possibility is that
k0 = 2j0 + 1 and l0 = 2j0 for some j0 � 0. We conclude that
c10 �= 0 and from Eq. (77) we get

c2j+1,2j = (∓1)j
1√

2j + 1
c10, (78)

for all j � 0. Then the following series must converge:

+∞∑
j=0

|c2j+1,2j |2 = |c10|2
+∞∑
j=0

1

2j + 1
, (79)

which, however, is well known to diverge. We have finally ar-
rived at a contradiction: from the assumption (â2 ± b̂†2)|ψ〉 =
0 we find that all coefficients ckl must be equal to zero, which
contradicts the normalization of |ψ〉.

To show that the left-hand side of the inequalities (73) can
become arbitrarily small, consider the following state:

∣∣ψ (2)
ξ

〉 =
√

ξ

atanh ξ

+∞∑
k=0

ξk

√
2k + 1

|2k + 1,2k〉. (80)

This state is defined for |ξ | < 1 (see Fig. 3). For ξ = 0 it is just
the factorizable state |1,0〉. It is straightforward to compute the
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x

y
−5

5 −5

5
0.27

ψ
(2)
0 (x, y) ≡ ψ|1,0 (x, y)

ξ = −0.97 ξ = −0.90 ξ = −0.70 ξ = −0.50 ξ = −0.30 ξ = −0.10

ξ = +0.10 ξ = +0.30 ξ = +0.50 ξ = +0.70 ξ = +0.90 ξ = +0.97

FIG. 3. The wave function ψ
(2)
ξ (x,y) of the state (80) for different values of ξ . The scale of each axis is shown on the right.

quantity in question on the state (80). We have

〈(â†2 ± b̂2)(â2 ± b̂†2)〉 = 2ξ

(1 ∓ ξ )2 atanh ξ
. (81)

We see that 〈(â†2 ± b̂2)(â2 ± b̂†2)〉 → 0 when ξ → ∓1 and
thus, for ξ sufficiently close to ±1, the left-hand side of Eq. (73)
can be made arbitrarily close to zero. Note that the inequality
〈(â†2 + b̂2)(â2 + b̂†2)〉 < 2 holds true for all −1 < ξ < 0 and
〈(â†2 − b̂2)(â2 − b̂†2)〉 < 2 holds true for 0 < ξ < 1. �

The wave function of the state (80) can be found explicitly.
Even though this state looks a bit similar to the two-mode
squeezed vacuum state (51), it is actually non-Gaussian. The
exact form of its wave function and the full details of the
derivation are given in Appendix C. Another state that perfectly
violates inequality (73) is presented in Appendix D.

Since the inequalities (73) are based on the commutator
properties of the creation and annihilation operators, arbitrary
unitary transformations â → Û †âÛ , b̂ → V̂ †b̂V̂ preserve
these inequalities. As a special case, we can write the
same inequalities (73) for �â and �b̂ instead of â and b̂

(where �Â = Â − 〈Â〉). Moreover, as we show now, these
inequalities can never be violated by bipartite Gaussian states.

Theorem 4. All bipartite separable states and all bipartite
(including inseparable) Gaussian states satisfy the following
inequality:

〈[(�â)†2 ± (�b̂)2][(�â)2 ± (�b̂)†2]〉 � 2. (82)

The left-hand side of this inequality can be arbitrarily close to
zero.

The state (80) violates the inequality (82) since for this state
we have 〈�â〉 = 〈�b̂〉 = 0. There are also simpler states that
violate this inequality. In fact, for the state (60) we have

〈(â†2 + b̂2)(â2 + b̂†2)〉 = 2 − 4
ξ (1 − ξ )

(1 + ξ )2
< 2, (83)

so this superposition of two two-mode squeezed vacuum states
violates the inequality (82). But for the two-mode squeezed
vacuum itself we have

〈(â†2 + b̂2)(â2 + b̂†2)〉 = 2 + 4
|λ|2(1 + Re λ)

(1 − |λ|2)2
> 2, (84)

and thus no violation, as expected according to Theorem 4.
The minimum of the right-hand side of Eq. (83) is attained
at ξ = 1/3 and is equal to 3/2. The state (80) gives a
much stronger violation, but the state (60) is much easier
to implement experimentally (for example, with the help
of dispersive light-matter interactions, resources of Gaussian
two-mode squeezed states, and two-qubit atomic Bell pairs).

Theorem 4, which we prove in Appendix D, can be
generalized for arbitrary orders, though it is more difficult to
establish similar results analytically. Below we formulate the
general theorem and give an example of a state that violates the
corresponding separability condition. It seems that a stronger
statement (a full analog of the preceding theorem) is valid, but
we are not able to present a strict mathematical proof of it.

Theorem 5. For any bipartite separable state and for any
positive integer n the following inequalities are valid:

〈(â†n ± b̂n)(ân ± b̂†n)〉 �
{
n! for sep.states, (85a)
0 for all states. (85b) (85)

There are states which violate the inequality (85a) at least by
a factor of 4.

Proof. Consider the following state:

∣∣ψ (n)
ξ

〉 = Nn(ξ )
+∞∑
k=0

ξk√∏n−1
j=1(nk + j )

|nk + n − 1,nk〉.

We choose the normalization such that Nn(ξ ) > 0. Note that
for the case n = 2 this definition coincides with Eq. (80). The
normalization factor is determined from the relation

N2
n (ξ )

+∞∑
k=0

ξ 2k∏n−1
j=1(nk + j )

= 1. (86)

Since n � 3, the series in this expression converges for |ξ | � 1,
so the state now is defined for the end points ξ = ±1 of the
interval of definition. From the relation above it follows that
Nn = Nn(+1) = Nn(−1) is a well-defined number.

Computing the left-hand side of Eq. (85) for the state |ψ (n)
ξ 〉,

we obtain

〈(â†n ± b̂n)(ân ± b̂†n)〉 = N2
n (ξ )

n

(1 ∓ ξ )2
. (87)

When ξ → ∓1, this quantity tends to

lim
ξ→∓1

〈(â†n ± b̂n)(ân ± b̂†n)〉 = N2
n

n

4
. (88)

From the definition (86) we have the following inequality for
the norm:

N2
n =

(
1

(n − 1)!
+ · · ·

)−1

< (n − 1)!. (89)

Using this inequality we can estimate the limiting values of
the left-hand side of Eq. (85),

N2
n

n

4
<

n!

4
. (90)
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This shows that in the limit ξ → ±1 the state |ψ (n)
ξ 〉 violates

the inequality (85a) at least by a factor of 4. �
Our conjecture is that the inequality (85a) cannot be

violated by Gaussian states (including all inseparable ones)
and the inequality (85b) is tight. We verified this by numerical
computations, but we could not find rigorous proofs. Con-
cerning experimental realizability of the quantities involved
in conditions (85), these can be measured with the technique
proposed in [13].

IV. CONCLUSION

Considering the well-known Duan separability condition
in terms of second moments of quadrature operators, we
presented a generalization of such conditions to higher orders
in two different ways. One is expressed in terms of higher-
order correlations between bipartite quadrature operators,
which is very intuitive, resembling EPR-type correlations
for higher orders, and which is rather convenient for the
use in experiments. In fact, we proposed an experimentally
feasible, non-Gaussian state that exhibits such fourth-order
EPR correlations, while not showing any second-order EPR
correlations. The other method, described by creation and
annihilation operators and their higher-order combinations,
leads to truly higher-order conditions, but it is more difficult to
test experimentally. The resulting criteria in this case represent
a true hierarchy, where certain higher-order inseparability
conditions cannot be fulfilled by any entangled Gaussian states.
Nonetheless, entangled non-Gaussian states exist that satisfy
such conditions. Our approach can open new directions in the
study of higher-order entanglement phenomena.

APPENDIX A: COMPUTATION OF EIGENVALUES

The minimal value of 〈x̂2n + p̂2n〉 is computed numerically
as the minimal eigenvalue of the truncated matrix M2n. This
eigenvalue quickly stabilizes as the order N of truncation
grows, so the truncated matrix even for small values of
N ≈ 102 gives a very precise result. But since the solutions for
n > 1 are nearly indistinguishable, it makes sense to compute
the eigenvalues and, more importantly, the corresponding
eigenvectors as precisely as possible.

To do it, the eigenvalues and eigenvectors are computed
with Intel Math Kernel Library [14] in two steps. First, the
truncated matrices M2n are treated as dense matrices and their
minimal eigenvalues are computed with the routine SYEVX.
The order of truncation N ≈ 103 is typically used for this
step. From the structure of the matrices M2n, discussed in the
main part of this work, it follows that these matrices are sparse

and their nonzero elements constitute a small fraction of the
total size of the matrices. This can be illustrated by Eq. (24), for
example. For such matrices using a sparse solver is much more
space efficient then using the standard dense solver. We use
the sparse eigensolver DFEAST_SCSREV, which is based on the
FEAST algorithm proposed in Ref. [15]. The results obtained
in the previous step with dense matrices are used as initial
conditions for this sparse solver.

The use of the dense solver is straightforward. The sparse
solver is slightly more tricky to use because it requires more
efforts to prepare the matrices in the format required by
this solver. Nevertheless, these extra efforts pay off since
the order of truncation can be increased to N ≈ 106 on the
same hardware. Unfortunately, further increase of N leads to
unstable behavior of the solver—the solution starts to depend
on the number of cores used for the computation, so one needs
an independent way to verify the results. One way to do it is to
use these results to set the initial conditions ψ(0), ψ ′(0), . . . ,
for the ODE (4), solve it and compare the two solutions.

Having the eigenvectors (c0,c1, . . .), we can compute
the corresponding wave function (25) with the help of the
recurrence relation

ψk+1(x) =
√

2

k + 1
xψk(x) −

√
k

k + 1
ψk−1(x) (A1)

with the initial condition

ψ0(x) = 1
4
√

π
e−x2/2, ψ1(x) =

√
2

4
√

π
xe−x2/2. (A2)

In this way we can compute ψ(0) and get the first initial
condition for Eq. (4). To compute the derivatives note that

ψ ′(x) =
+∞∑
k=0

c′
kψk(x), (A3)

where the new coefficients c′
k are given by

c′
k = 1√

2
(
√

k + 1ck+1 −
√

kck−1). (A4)

This means that the derivatives ψ ′(0), ψ ′′(0), and so on can
be computed by the same routine used to compute the wave
function itself, provided that this routine is given the new
coefficients as input. The results of these computations are
presented in Table IV. Note that our results agree (and greatly
extend) those of Ref. [1].

TABLE IV. The minimal eigenvalues and the corresponding values for the derivatives.

n λ(n)
min ψ(0) ψ ′′(0) ψ (4)(0) ψ (6)(0) ψ (8)(0) ψ (10)(0)

1 1 0.75112554
2 1.39672823 0.73253810 −0.59978918
3 2.95304540 0.73255327 −0.60402445 1.10905904
4 8.28911703 0.73460748 −0.61951231 1.22274755 −2.94050192
5 28.97408955 0.73662780 −0.63430030 1.32592056 −3.61002601 9.96484721
6 121.21680669 0.73832570 −0.64684279 1.41413494 −4.19672348 13.62188458 −40.89217482
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APPENDIX B: ALTERNATE APPROACH BASED
ON HIGHER-ORDER UNCERTAINTIES

A function f (x) is referred to as convex if

f (tx1 + (1 − t)x2) � tf (x1) + (1 − t)f (x2) (B1)

for all x1, x2 and all 0 � t � 1. If the reverse inequality is
valid,

f (tx1 + (1 − t)x2) � tf (x1) + (1 − t)f (x2) (B2)

for all x1, x2 and all 0 � t � 1, then the function f is referred
to as concave. The parameter x does not necessarily have to
be a number; it can be a quantum state (and whatever else
for what convex combinations are defined). In particular, a
linear function is both convex and concave. If, for a given
convex function f of multipartite quantum state, we establish
the inequality

f (�̂) � fmax (B3)

for all factorizable states, then, due to inequality (B1), we
automatically obtain that this inequality is valid for all
separable states. If for a concave function we establish the
inequality

f (�̂) � fmin (B4)

for all factorizable states, then, due to inequality (B2), this
inequality is automatically valid for all separable states. The
inequalities of the form (B3) are more typical for finite-
dimensional quantum systems, where the quantities under
study are bounded from above (like Bell inequalities). The in-
equalities of the form (B4) are more natural in the continuous-
variable case, where the quantities can be arbitrarily large
but bounded from below (like the uncertainty relation). In
both cases it is not necessary to explicitly keep track of all
factorizable components of a separable state, since if the
quantity in question has some convexity property then it is
enough to consider only factorizable states, which greatly
simplifies the notation.

Since 〈Â〉�̂ is a linear function of �̂ it is both linear and
concave, so it is enough to consider factorizable states only.
Using the transformation �̂ → D(α)�̂D†(α) we can assume
that 〈x̂a〉 = 〈x̂b〉 = 0, see Eqs. (13) and (14). For a factorizable
state we then have

〈(x̂a + x̂b)4 + (p̂a − p̂b)4〉 = 〈
x̂4

a + p̂4
a

〉 + 〈
x̂4

b + p̂4
b

〉
+ 6

〈
x̂2

a

〉〈
x̂2

b

〉 + 6
〈
p̂2

a

〉〈
p̂2

b

〉
. (B5)

The right-hand side of these equalities can be easily estimated
as

〈(x̂a + x̂b)4 + (p̂a − p̂b)4〉

� 2λ(4)
min + 12

√〈
x̂2

a

〉〈
p̂2

a

〉〈
x̂2

b

〉〈
p̂2

b

〉
� 2λ(4)

min + 3 = 5.7934 > �(4)
min = 5.5868, (B6)

and thus the inequality 〈(x̂a + x̂b)4 + (p̂a − p̂b)4〉 � 5.5868 is
valid for all bipartite separable states. We see that in the case
of 2n = 4 this approach gives slightly better estimation than
the method based on partial transposition.

This approach can be extended for higher orders, but for
2n > 4 it will give worse results. For example, for 2n = 6 we

have

〈(x̂a + x̂b)6 + (p̂a − p̂b)6〉
= 〈

x̂6
a + p̂6

a + x̂6
b + p̂6

b

〉 + 15
(〈

x̂2
a

〉〈
x̂4

b

〉 + 〈
x̂4

a

〉〈
x̂2

b

〉
+ 〈

p̂2
a

〉〈
p̂4

b

〉 + 〈
p̂4

a

〉〈
p̂2

b

〉) + 20
(〈
x̂3

a

〉〈
x̂3

b

〉 − 〈
p̂3

a

〉〈
p̂3

b

〉)
. (B7)

The moments of third order can be estimated as |〈x̂3〉| �√
〈x̂2〉〈x̂4〉, and we can write

〈(x̂a + x̂b)6 + (p̂a − p̂b)6〉
�

〈
x̂6

a + p̂6
a + x̂6

b + p̂6
b

〉 + 15
(〈
x̂2

a

〉〈
x̂4

b

〉
+ 〈

x̂4
a

〉〈
x̂2

b

〉 + 〈
p̂2

a

〉〈
p̂4

b

〉 + 〈
p̂4

a

〉〈
p̂2

b

〉)
− 20

(√〈
x̂2

a

〉〈
x̂4

a

〉〈
x̂2

b

〉〈
x̂4

b

〉 + √〈
p̂2

a

〉〈
p̂4

a

〉〈
p̂2

b

〉〈
p̂4

b

〉)
. (B8)

We can combine the terms on the right-hand side in such a
way to get full squares so that we have

rhs of Eq. (B8) = 〈
x̂6

a + p̂6
a

〉 + 〈
x̂6

b + p̂6
b

〉 + 5
(〈
x̂2

a

〉〈
x̂4

b

〉
+ 〈

x̂4
a

〉〈
x̂2

b

〉 + 〈
p̂2

a

〉〈
p̂4

b

〉 + 〈
p̂4

a

〉〈
p̂2

b

〉)
+ 10

(√〈
x̂2

a

〉〈
x̂4

b

〉 − √〈
x̂4

a

〉〈
x̂2

b

〉)2

+ 10
(√〈

p̂2
a

〉〈
p̂4

b

〉 − √〈
p̂4

a

〉〈
p̂2

b

〉)2
. (B9)

If we ignore the squares and apply the inequality a + b �
2
√

ab twice, we obtain

〈(x̂a + x̂b)6 + (p̂a − p̂b)6〉
� 2λ(3)

min + 10
(√〈

x̂2
a

〉〈
p̂2

a

〉〈
x̂4

b

〉〈
p̂4

b

〉 + √〈
x̂4

a

〉〈
p̂4

a

〉〈
x̂2

b

〉〈
p̂2

b

〉)
.

(B10)

To move further, we need a higher-order analog of the
Heisenberg uncertainty relation. This relation has been derived
in Ref. [16] and reads as

〈x̂2n〉〈p̂2n〉 �
(

(2n)!

22nn!

)2

, (B11)

where the number on the right-hand side is the value of the
left-hand side at vacuum. This leads to the estimation

〈(x̂a + x̂b)6 + (p̂a − p̂b)6〉

� 2λ(3)
min + 10

(√
1
4

9
16 +

√
1
4

9
16

)
= 2λ(3)

min + 30
4 = 13.406, (B12)

which is weaker then the bound obtained with PPT. The
conclusion, one cannot simply estimate this quantity term
by term. There are several sources of loosing information;
we replace each term (more precisely, each group of terms)
with simpler terms, then we estimate them individually. The
replacement may not be tight, and individual estimation of
terms is definitely not tight since different terms take the
minimum at different states.
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APPENDIX C: THE WAVE FUNCTION OF THE STATE (80)

Theorem 6. The wave function of the state (80) is given by
the following expressions:

ψ
(2)
ξ (x,y) = 1

2

exp
(

y2−x2

2

)
√

2 atanh ξ

×
[

erf

(
y + x

√
ξ√

1 − ξ

)
− erf

(
y − x

√
ξ√

1 − ξ

)]
(C1)

if 0 � ξ < 1 and

ψ
(2)
ξ (x,y) = exp

(
y2−x2

2

)
√−2 atanh ξ

Im

[
erf

(
y + i

√−ξx√
1 − ξ

)]
(C2)

if −1 < ξ � 0.
Proof. Note that if we let ξ be negative in Eq. (C1) we get

Eq. (C2) with uncertainty in sign (since there are two complex
square roots of a negative number which differ in sign), so
Eq. (C2) gives the correct expression in the case of negative ξ .
From the definition (80) we have

ψ
(2)
ξ (x,y) =

√
ξ

2π atanh ξ
Sξ (x,y)e− x2+y2

2 , (C3)

where Sξ (x,y) is given by the following series:

Sξ (x,y) =
+∞∑
k=0

ξk

22k(2k + 1)!
H2k+1(x)H2k(y). (C4)

We first derive the expression for this series for 0 � ξ < 1. To
do it, let us take the partial derivative with respect to x. We get

∂Sξ

∂x
= 2

+∞∑
k=0

ξk

22k(2k)!
H2k(x)H2k(y) = s(η) + s(−η), (C5)

where η = √
ξ , and s(η) is defined via

s(η) =
+∞∑
k=0

ηk

2kk!
Hk(x)Hk(y)

= 1√
1 − η2

exp

(
2xyη − (x2 + y2)η2

1 − η2

)
. (C6)

We thus obtain the following expression for the partial
derivative:

∂Sξ

∂x
= 2√

1 − ξ
cosh

(
2xy

√
ξ

1 − ξ

)
exp

(
− (x2 + y2)ξ

1 − ξ

)
.

Integrating both sides of this relation and taking into account
that Sξ (0,y) = 0 we arrive at an expression for the series
Sξ (x,y):

Sξ (x,y) =
√

π

ξ

ey2

2

[
erf

(
y + x

√
ξ√

1 − ξ

)
− erf

(
y − x

√
ξ√

1 − ξ

)]
.

Combining it with Eq. (C3), we get the wave function given
by Eq. (C1).

In the case of negative ξ the relation (C5) is valid provided
that η = i

√−ξ . We have the following expression for the

partial derivative:

∂Sξ

∂x
= 2√

1 − ξ
cos

(
2xy

√−ξ

1 − ξ

)
exp

(
− (x2 + y2)ξ

1 − ξ

)
.

Integrating and taking into account that Sξ (0,y) = 0, we obtain

Sξ (x,y) =
√

−π

ξ
ey2

Im

[
erf

(
y + i

√−ξx√
1 − ξ

)]
, (C7)

which leads to the wave function (C2).
For ξ = 0 the wave functions (C1) and (C2) must be the

wave function of the state |1,0〉. Direct substitution ξ = 0 into
those expressions results in the indeterminate form 0/0, so
more careful analysis is needed to determine the value of the
functions (C1) and (C2) at ξ = 0 and demonstrate that it is
exactly the wave function of the state |1,0〉. We show that
this is true in the limit ξ → 0. We first consider the case of ξ

approaching zero from above. We have

erf

(
y ± x

√
ξ√

1 − ξ

)
= erf(y) − 2e−y2

√
π

(
y − y ± x

√
ξ√

1 − ξ

)
+ O(ξ ),

which follows from the relations

erf′(y) = 2√
π

e−y2
, y − y ± x

√
ξ√

1 − ξ
= O(

√
ξ ), (C8)

and the Taylor expansion of the error function at y. Subtracting
one from the other, we get

erf

(
y + x

√
ξ√

1 − ξ

)
− erf

(
y − x

√
ξ√

1 − ξ

)

= 4√
π

e−y2 x
√

ξ√
1 − ξ

+ O(ξ ). (C9)

Substituting this to Eq. (C1) and taking the limit ξ → 0 we

get
√

2/πxe− x2+y2

2 , i.e., the wave function of the state |1,0〉.
The case of ξ approaching zero from below can be considered
analogously. �

APPENDIX D: ANOTHER NON-GAUSSIAN STATE

Here we present another state that maximally violates the
inequality (73). It reads as follows:

∣∣ψ ′(2)
ξ

〉 =
√

−2ξ 2

ln(1 − ξ 2)

+∞∑
k=0

ξk

√
2k + 2

|2k + 2,2k + 1〉, (D1)

where |ξ | < 1. For ξ = 0 it is just the factorizable state |2,1〉.
The left-hand side of Eq. (73) for this state is given by

〈(â†2 ± b̂2)(â2 ± b̂†2)〉 = − 4ξ 2(2 ∓ ξ )

ln(1 − ξ 2)(1 ∓ ξ )2
, (D2)

and we see that 〈(â†2 ± b̂2)(â2 ± b̂†2)〉 → 0 when ξ → ∓1.
We prove now that the wave function of the state (D1) is

given by

ψ
′(2)
ξ (x,y) = exp

(
y2−x2

2

)
2
√

− ln(1 − ξ 2)

[
2 erf(y) + erf

(−y + √
ξx√

1 − ξ

)

− erf

(
y + √

ξx√
1 − ξ

)]
(D3)
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x

y
−5

5 −5

5
0.27

ψ
(2)
0 (x, y) ≡ ψ|2,1 (x, y)

ξ = −0.97 ξ = −0.90 ξ = −0.70 ξ = −0.50 ξ = −0.30 ξ = −0.10

ξ = +0.10 ξ = +0.30 ξ = +0.50 ξ = +0.70 ξ = +0.90 ξ = +0.97

FIG. 4. The wave function ψ
′(2)
ξ (x,y) of the state (D1) for different values of ξ . The scale of each axis is shown on the right.

for 0 < ξ < 1, and by

ψ
′(2)
ξ (x,y) = exp

(
y2−x2

2

)
√

− ln(1 − ξ 2)

×
(

Re

[
erf

(
i
√−ξx + y√

1 − ξ

)]
− erf(y)

)
(D4)

for −1 < ξ < 0 (see Fig. 4). For ξ = 0 we get the wave
function of the state |2,1〉, i.e.,

ψ
′(2)
0 (x,y) = 1√

π
(2x2 − 1)ye− x2+y2

2 . (D5)

From the definition (D1) we have

ψ
′(2)
ξ (x,y) =

√
−2ξ 2

2π ln(1 − ξ 2)
Sξ (x,y)e− x2+y2

2 , (D6)

where Sξ (x,y) is given by the following series:

Sξ (x,y) =
+∞∑
k=0

ξk

22k+1(2k + 2)!
H2k+2(x)H2k+1(y). (D7)

A compact expression for this series can be obtained with the
same trick that we used before—by taking the partial derivative
with respect to x. We have

∂Sξ

∂x
= 2

+∞∑
k=0

ξk

22k+1(2k + 1)!
H2k+1(x)H2k+1(y). (D8)

We first consider the case of 0 < ξ < 1. We can write

η
∂Sξ

∂x
= 2

+∞∑
k=0

(η/2)2k+1

(2k + 1)!
H2k+1(x)H2k+1(y)

= s(η) − s(−η), (D9)

where η = √
ξ and s(η) is given by Eq. (C6). We get the

following explicit expression for the partial derivative:

∂Sξ

∂x
= 2e

− ξ

1−ξ
(x2+y2)

√
ξ (1 − ξ )

sinh

(
2xy

√
ξ

1 − ξ

)
. (D10)

Integrating, we get

S(x,y) − S(0,y) =
√

π

2ξ

[
2 erf

(
y√

1 − ξ

)
+ erf

(−y +√
ξx√

1 − ξ

)

− erf

(
y + √

ξx√
1 − ξ

)]
. (D11)

In contrast with the previous case, Sξ (0,y) is not zero, so we
must compute it separately. We have

Sξ (0,y) = −
+∞∑
k=0

(−ξ )k

22k+1(k + 1)!
H2k+1(y)

= −1

2

+∞∑
k=0

t k

(k + 1)!
H2k+1(y) ≡ −1

2
f (t,y), (D12)

where t = −ξ/4. To obtain a compact expression for f (t,y) we
use the same approach; we first compute the partial derivative

∂

∂t
[tf (t,y)] =

+∞∑
k=0

t k

k!
H2k+1(y). (D13)

According to Ref. [17], the series on the right-hand side is

+∞∑
k=0

t k

k!
H2k+1(y) = 2y

(1 + 4t)3/2
exp

(
4x2t

1 + 4t

)
. (D14)

We thus have [taking into account that tf (t,y) = 0 for t = 0]

tf (t,y) = −
√

π

2
ey2

[
erf

(
y√

1 + 4t

)
− erf(y)

]
. (D15)

Substituting this expression into Eq. (D12), we get

Sξ (0,y) =
√

π

−ξ
ey2

[
erf

(
y√

1 − ξ

)
− erf(y)

]
, (D16)

and from Eq. (D11) we obtain

Sξ (x,y) =
√

π

2ξ

[
2 erf(y) + erf

(−y + √
ξx√

1 − ξ

)

− erf

(
y + √

ξx√
1 − ξ

)]
. (D17)

We finally arrive at the expression (D3) for the wave function.
The case of −1 < ξ < 0 can be considered analogously.

We also need to show that for ξ → 0 the wave functions
given by the expressions (D3) and (D4) become the wave
function (D5). We have

erf

(−y + √
ξx√

1 − ξ

)
= − erf(y) + 2√

π
e−y2

�1y

+ 1

2!

4√
π

ye−y2
(�1y)2 + O(ξ 3/2),

(D18)
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where

�1y =
√

ξx − (1 − √
1 − ξ )y√

1 − ξ
. (D19)

The relation (D18) is valid since

erf′(z) = 2√
π

e−z2
, erf′′(z) = − 4√

π
ze−z2

, (D20)

and �1y = O(ξ 1/2). Similarly, we can write

erf

(
y + √

ξx√
1 − ξ

)
= erf(y) + 2√

π
e−y2

�2y

− 1

2!

4√
π

ye−y2
(�2y)2 + O(ξ 3/2),

(D21)

where

�2y =
√

ξx + (1 − √
1 − ξ )y√

1 − ξ
. (D22)

Substituting these expressions into Eq. (D3) and taking into
account that √

− ln(1 − ξ 2) ∼ ξ, ξ → +0, (D23)

we get that when ξ → +0, Eq. (D3) goes to Eq. (D5). The case
of ξ → −0 can be considered in the same way. This concludes
the proof.

APPENDIX E: PROOF OF THEOREM 4

The state defined in Eq. (80) can also be used here, since for
this state 〈â〉 = 〈b̂〉 = 0, so it remains to be proven only that all
bipartite Gaussian states satisfy the inequality (82). Remember
that the characteristic function of a bipartite quantum state with
density operator �̂ is defined by χ (t) = 〈ei(t,X̂)〉, where t =
(t1,t2,t3,t4) and X̂ = (x̂a,x̂b,p̂a,p̂b). A state is called Gaussian
if its characteristic function is Gaussian, i.e., if it can be written
in the following form:

χ (t) = e−(1/2)tT�t+imTt, (E1)

where � = (σij )4
i,j=1 is a real symmetric 4 × 4 matrix and

m = (m1,m2,m3,m4) is a real 4-vector. There is no restriction
on the vector m, but to have the characteristic function of
a quantum state, the matrix � (the second-order moment
covariance matrix) must satisfy the condition [18],

�̃ =

⎛
⎜⎜⎝

σ11 σ12 σ13 + i
2 σ14

σ12 σ22 σ23 σ24 + i
2

σ13 − i
2 σ23 σ33 σ34

σ14 σ24 − i
2 σ34 σ44

⎞
⎟⎟⎠ � 0.

(E2)
For any two-mode Gaussian state, this condition is necessary
and sufficient for physicality of the state. Due to the equality

〈eit1x̂a eit2x̂b eit3p̂a eit4p̂b 〉 = e− i
2 (t1t3+t2t4)χ (t) ≡ χ̃ (t),

we can compute the moments 〈x̂n
a x̂m

b p̂k
ap̂

l
b〉 as follows:

〈
x̂n

a x̂m
b p̂k

ap̂
l
b

〉 = (−i)n+m+k+l ∂n+m+k+l χ̃ (t)

∂tn1 tm2 t k3 t l4

∣∣∣∣
t=0

. (E3)

From this we immediately obtain that m = (〈r̂j 〉)4
j=1 and

� = 1
2 [〈(�r̂j )(�r̂k) + (�r̂k)(�r̂j )〉]4

j,k=1, (E4)

where (r̂1,r̂2,r̂3,r̂4) = (x̂a,x̂b,p̂a,p̂b). We see that proving the
inequality (82) for the states with the characteristic function
(E1) is the same as proving the inequality (73a), 〈(â†2 ±
b̂2)(â2 ± b̂†2)〉 � 2, for the states with the characteristic
function

χ (t) = e−(1/2)tT�t. (E5)

From now on we assume that m = 0 and we have to prove the
inequality (73a) for all Gaussian states with the characteristic
function of the form (E5). In fact, we are going to prove a more
strict inequality

〈â†2â2 + b̂2b̂†2〉 − 2|〈â2b̂2〉| � 2 (E6)

for all states of the form (E5). Note that this inequality is
invariant with respect to the transformation â → âe−iϕa , b̂ →
b̂e−iϕb . Since âe−iϕ = Û †(ϕ)âÛ (ϕ), where Û (ϕ) = e−iϕn̂ is
the phase rotation operator, the invariance of the inequality
(E6) with respect to this transformation means that the left-
hand side of this inequality is the same for the original state �̂

and a transformed state �̂′ = [Ûa(ϕa) ⊗ Ûb(ϕb)]�̂(Û †
a (ϕa) ⊗

Û
†
b (ϕb)) for arbitrary phases ϕa and ϕb. We can use the

freedom in choosing these phases to simplify the matrix �.
The transformed state �̂′ is of the form (E5) with the matrix
�′. For this matrix we have

σ ′
11 = σ11 + σ33

2
+ σ ′′, σ ′

33 = σ11 + σ33

2
− σ ′′, (E7)

where σ ′′ reads as

σ ′′ = σ11 − σ33

2
cos(2ϕa) + σ13 sin(2ϕa). (E8)

The expressions for σ ′
22 and σ ′

44 are transformed in a similar
way. From this we see that we can always choose ϕa and ϕb

such that σ ′
11 = σ ′

33 and σ ′
22 = σ ′

44. So, we can assume from the
beginning that the matrix � has the property σ11 = σ33 = σ1

and σ22 = σ44 = σ2. In this case we have

〈â†2â2〉 = 2σ 2
1 − 2σ1 + σ 2

13 + 1
2 ,

〈b̂2b̂†2〉 = 2σ 2
2 + 2σ2 + σ 2

24 + 1
2 ,

|〈â2b̂2〉|2 = 1
4

[
((σ12 − σ34)2 + (σ14 + σ23)2)2

− 4σ13σ24[(σ12 − σ34)2

− (σ14 + σ23)2] + 4σ 2
13σ

2
24

]
.

When we substitute these quantities into the inequality (E6)
we will get an inequality for the sigmas, which must also
be derivable from the physicality condition expressed by the
inequality (E2) (where, as we have assumed, σ11 = σ33 = σ1

and σ22 = σ44 = σ2). Let us define

A = 2σ 2
1 − 2σ1 + 2σ 2

2 + 2σ2 − 1, (E9)

u = σ12 − σ34, and v = σ14 + σ23; then we have to prove that(
A + σ 2

13 + σ 2
24

)2

� (u2 + v2)2 − 4σ13σ24(u2 − v2) + 4σ 2
13σ

2
24. (E10)
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If we manage to prove that A � u2 + v2, then we will prove the
inequality (E10). In fact, in this case we have A2 � (u2 + v2)2

and

2
(
σ 2

13 + σ 2
24

)
A � 4|σ13σ24|(u2 + v2)

� −4σ13σ24(u2 − v2). (E11)

Moreover, (σ 2
13 + σ 2

24)2 � 4σ 2
13σ

2
24 independently of A and

thus Eq. (E10) follows.
In order to prove that A � u2 + v2 note that for any matrix

P the matrix P †�̃P is also positive, as well as the matrix
� = �̃ + P †�̃P . If we take

P =

⎛
⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞
⎟⎠, (E12)

we find that the following matrix is positive:

� =

⎛
⎜⎝

2σ1 u i v

u 2σ2 v i

−i v 2σ2 −u

v −i −u 2σ2

⎞
⎟⎠ � 0. (E13)

From the third-order minor obtained by canceling the fourth
row and the fourth column we get the inequality 4σ 2

1 σ2 �

σ1(u2 + v2) + σ2. From the third-order minor obtained by
canceling the third row and the third column we get a
similar inequality, 4σ1σ

2
2 � σ2(u2 + v2) + σ1. From these two

inequalities we obtain(
4σ 2

1 − 1
)(

4σ 2
2 − 1

)
� (u2 + v2)2. (E14)

Since (4σ1σ2 − 1)2 − (4σ 2
1 − 1)(4σ 2

2 − 1) = 4(σ1 − σ2)2 �
0, we have (4σ1σ2 − 1)2 � (u2 + v2)2. Due to the inequalities
σ1 � 1/2 and σ2 � 1/2 we obtain

4σ1σ2 − 1 � u2 + v2. (E15)

From the non-negativity of the determinant det M̃ we get

(u2 + v2 − 4σ1σ2 + 1)2 − 4(σ1 − σ2)2 � 0. (E16)

Due to the inequality (E15), the inequality (E16) is equivalent
to 4σ1σ2 − 1 − u2 − v2 � 2|σ1 − σ2|, so we have 4σ1σ2 −
2|σ1 − σ2| − 1 � u2 + v2. If we prove that A � 4σ1σ2 −
2|σ1 − σ2| − 1, we are done. After equivalent transformations
this inequality becomes

(σ1 − σ2)2 + |σ1 − σ2| − (σ1 − σ2) � 0, (E17)

which is obviously valid.
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