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Dirac Hamiltonian and Reissner-Nordström metric: Coulomb interaction in curved space-time
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We investigate the spin-1/2 relativistic quantum dynamics in the curved space-time generated by a
central massive charged object (black hole). This necessitates a study of the coupling of a Dirac particle
to the Reissner-Nordström space-time geometry and the simultaneous covariant coupling to the central
electrostatic field. The relativistic Dirac Hamiltonian for the Reissner-Nordström geometry is derived. A
Foldy-Wouthuysen transformation reveals the presence of gravitational and electrogravitational spin-orbit
coupling terms which generalize the Fokker precession terms found for the Dirac-Schwarzschild Hamiltonian,
and other electrogravitational correction terms to the potential proportional to αnG, where α is the fine-structure
constant and G is the gravitational coupling constant. The particle-antiparticle symmetry found for the
Dirac-Schwarzschild geometry (and for other geometries which do not include electromagnetic interactions) is
shown to be explicitly broken due to the electrostatic coupling. The resulting spectrum of radially symmetric,
electrostatically bound systems (with gravitational corrections) is evaluated for example cases.
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I. INTRODUCTION

We continue a series of investigations [1–5] on the coupling
of Dirac particles to curved space-time backgrounds. Foun-
dations of the formalism date back to the time of Brill and
Wheeler [6], and Greiner, Soffel, Müller, and Boulware [7,8],
who established the formalism of the spin connection matrices.
Modern computer algebra [9] makes it possible to perform
independent evaluations of spin connection matrices for spe-
cific space-time geometries, and the formalism of the Foldy-
Wouthuysen transformation facilitates the identification of the
nonrelativistic limit, and leads to a consistent interpretation of
the nonrelativistic operators [10,11].

Recently, it has been recalled [1–5] that the Dirac equation
provides for an ideal tool to study gravitational interactions
of antiparticles. One should recall that the original surprising
prediction of the Dirac equation [12,13] was the existence of
positrons, which are the antiparticles of electrons. The Dirac
equation describes particles and their antiparticles simultane-
ously. The mass term in the Dirac equation is first and foremost
the inertial mass. However, when coupling the particle to
curved space-time and identifying the Hamiltonian, one can
establish a connection of the inertial mass to the gravitational
mass because the Foldy-Wouthuysen transformed Hamilto-
nian [2] contains the gravitational potential (plus relativistic
corrections, of course). On the basis of this consideration,
a symmetry relation was found in Ref. [1] and confirmed
in Ref. [2] which established that particles and antiparticles
behave identically in the presence of a gravitational field, i.e.,
both particles and antiparticles are attracted by gravity.

The symmetry relation from Refs. [1,2] holds for specific
classes of metrics. On the one hand, one can show that
the Reissner-Nordström metric (which describes a charged
gravitational center) belongs to a class of geometries, where
a priori particle-antiparticle symmetry should exist [1,2], and
both particles and antiparticles should be affected identically
by the metric. On the other hand, we know that the Dirac
equation can be used to describe charged spin-1/2 particles,
and that particle-antiparticle symmetry does not hold for
electromagnetic interactions [11]. By definition, antiparticles
carry the opposite electric charge. How can this apparent con-

tradiction be resolved? The answer is that the presence of the
explicit covariant coupling to the electrostatic field, not to the
gravitational field, breaks the particle-antiparticle symmetry.
It means that we must concern ourselves with the coupling of
the Dirac particle to the curved space-time, while at the same
time include the electrostatic interaction. The Dirac equation
becomes covariant with respect to two gauge groups, the U(1)
gauge group of quantum electrodynamics and the SO(1; 3)
group of local Lorentz transformations. The double-covariant
derivative entails the replacement i∂μ → i(∂μ − �μ) − q Aμ,
where �μ is the spin-connection matrix, q is the charge of the
particle, and Aμ is the vector potential [14]. The former co-
variance is ensured by the four-vector potential Aμ in the Dirac
equation, while the latter is described by the spin-connection
matrices �μ, both to be discussed in more detail below.

Bound systems featuring both electromagnetic as well as
gravitational corrections could be of interest for a number
of reasons, not only in the sense of tiny gravitational effects
which might be observable in bound systems [15], but also in
the context of micro black holes which have been proposed
as conceivable candidates for dark matter [16–18] and even
classes of novel phenomena at accelerators [19].

The article is organized as follows. In Sec. II, we transform
the Reissner-Nordström metric into isotropic coordinates, and
transform the electrostatic potential accordingly. These results
are then used in Sec. III A in the explicit derivation of the
Dirac-Reissner-Nordström Hamiltonian. We then apply the
Foldy–Wouthuysen transform to the resulting Hamiltonian in
Sec. III B. In Sec. IV, we evaluate the bound-state energies
of the transformed Hamiltonian, and consider example cases.
Finally, conclusions are drawn in Sec. V. Except where
otherwise stated, we use units such that c = � = ε0 = 1
throughout this paper.

II. REISSNER-NORDSTRÖM METRIC
AND ELECTROSTATIC POTENTIAL

A. Isotropic coordinates

In formulating the Dirac equation coupled to the Reissner-
Nordström metric we can in large part follow the same
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steps taken to formulate the gravitationally coupled Dirac
Hamiltonian [2]. This also provides the opportunity to check
our final result against results previously obtained, when the
charge of the gravitational center vanishes (Q → 0) and the
transformed Dirac-Reissner-Nordström Hamiltonian reduces
to the transformed Dirac-Schwarzschild Hamiltonian found in
Eq. (21) of Ref. [2]. We require that the metric be isotropic, in
order to ensure that the effective speed of light, expressed in
global coordinates, does not depend on the spatial direction of
the light ray at a given space-time point (note that the speed of
light is not constant when expressed in global coordinates, a
fact which in particular, allows for the existence of the Shapiro
time delay [20–23]). We follow ideas of Eddington [24]
and transform the Reissner-Nordström metric to isotropic
coordinates. The derivation of the Reissner-Nordström metric
is recalled in Appendix A, with the result

ds2 =
(

1 − rs

R + r2
Q

R2

)
dt2 −

(
1 − rs

R + r2
Q

R2

)−1

dR2

−R2 d�2, (1)

where rs = 2 GM/c2 is the Schwarzschild radius and r2
Q =

GQ2/(4πε0c
4) (we temporarily restore SI mksA units for

the conversions). In order to convert the Reissner-Nordström
metric into a spatially isotropic form, we use the transformation

R = r

[(
1 + rs

4r

)2

− r2
Q

4r2

]
= r A(r). (2)

Under this transform, we find

dR =
[(

1 − rs

4r

)(
1 + rs

4r

)
+ r2

Q

4r2

]
dr = B(r) dr (3)

and

1 − rs

R + r2
Q

R2
=

[(
1 − rs

4r

)(
1 + rs

4r

) + r2
Q

4r2

]2

[(
1 + rs

4r

)2 − r2
Q

4r2

]2 = B(r)2

A(r)2
. (4)

The metric becomes

ds2 = B(r)2

A(r)2
dt2 − A(r)2

B(r)2
B(r)2dr2 − r2 A(r)2d�

= B(r)2

A(r)2
dt2 − A(r)2(dr2 + r2d�2), (5)

i.e.,

ds2 = w(r)2dt2 − v(r)2(dx2 + dy2 + dz2), (6a)

w(r) =
(
1 − rs

4r

)(
1 + rs

4r

) + r2
Q

4r2(
1 + rs

4r

)2 − r2
Q

4r2

, (6b)

v(r) =
(

1 + rs

4r

)2

− r2
Q

4r2
. (6c)

As in Refs. [2,4,5], we keep terms only to the first order in G.
Both rs and r2

Q are proportional to G; hence w(r) and v(r) are
approximated to

w(r) ≈ 1 − rs

2r
+ r2

Q

2r2
, v(r) ≈ 1 + rs

2r
− r2

Q

4r2
. (7)

In the limit Q → 0, we recover the w(r) and v(r) from the
Schwarzschild metric [see Eq. (14) of Ref. [2]].

B. Electrostatic potential

As shown in Appendix A, the nonzero elements of the field
strength tensor are

FtR = −FRt = Q

4π R2
. (8)

By definition [see Eq. (2.2.28) of Ref. [25]] the field strength
tensor is given as

Fμν = ∂μAν − ∂νAμ. (9)

We then find that the resulting equation is solved by

A0 = Q

4π R , �A = �0. (10)

Applying the isotropic transform [Eq. (2)] to our potential we
obtain

A0 = Q

4π r
[(

1 + rs
4r

)2 − r2
Q

4r2

] . (11)

Again, we are keeping terms only to the first order in G. Thus,
when expressed in terms of the isotropic radial coordinate r ,
we have

A0 = Q

4π r

(
1 − rs

2r
+ r2

Q

4r2

)
(12)

for the electrostatic potential.

III. DIRAC HAMILTONIAN FOR THE
REISSNER-NORDSTRÖM METRIC

A. Relativistic Hamiltonian

In order to derive the Dirac Hamiltonian for the Reissner-
Nordström metric, one uses the double-covariant coupling
prescription i∂μ → i(∂μ − �μ) − q Aμ, where �μ is the spin-
connection matrix and Aμ is the electrostatic potential, both
expressed in isotropic coordinates. Using the form given
in Eqs. (6a) and (7) for the Reissner-Nordström metric,
one readily evaluates the spin-connection matrices �μ using
general formulas and inserts Aμ from Eq. (12). The technical
details of the calculation can be found in Appendix B. The
Dirac-Reissner-Nordström Hamiltonian, to the first order in
G, is finally found as

HRN = 1

2

{
�α · �p,

(
1 − rs

r
+ 3r2

Q

4r2

)}

+ ZQ Zq α

r

(
1− rs

2r
+ r2

Q

4r2

)
+ β m

(
1 − rs

2r
+ r2

Q

2r2

)
,

(13)

where, in natural units, we have

q Q = 4π ZQ Zq α. (14)

ZQ and Zq are the nuclear charge numbers associated
with Q and q, respectively. For Q → 0 (which implies
ZQ → 0 and rQ → 0), we recover the Dirac-Schwarzschild
Hamiltonian [2].
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B. Foldy-Wouthuysen transformation

An exact Foldy-Wouthuysen transformation may be used in
the case of the free Dirac Hamiltonian [11]. More complicated
Hamiltonians require a perturbative approach, expanding in
terms of some perturbation parameter. Using an approach
similar to the steps taken in Eq. (3) of Ref. [1], we define the di-
mensionless variable ρ in terms of the fine structure constant as

ρ = r

a0
, a0 = �

αeff mc
, αeff = q Q

4π ε0 � c
= ZQ Zq α, (15)

where we have temporarily implemented SI mkSA units for
the sake of clarity (a0 is a generalized Bohr radius, while
αeff is an effective “fine-structure” constant, i.e., coupling
constant, for the bound system of charged black hole and test
particle). Then, in natural units,

r = 1

αeff m
ρ, �∇r = αeff m �∇ρ, (16a)

�p = −i αeff m �∇ρ. (16b)

We then use αeff as our expansion parameter in our calcula-
tion, keeping terms up to α4

eff , and to the first order in the gravi-
tational interaction (G), i.e., we keep all terms up to order α4

eff ,
and α4

eff G. For example, momentum operators contribute one
power of αeff , according to Eq. (16b). The parameter r2

Q, where

r2
Q = GQ2

4π
= GZ2

Qα, (17)

is counted as a single power of G, because Z2
Q may be large,

resulting in Z2
Qα being of order unity. Terms of second order

in the gravitational interaction (G2) are ignored. This is
consistent with the approximations made earlier in this article,
namely, in Eqs. (7) and (12).

In applying the Foldy-Wouthuysen transformation, we first
identify the odd part (in bispinor space) of the Hamiltonian
HRN

O = 1

2

{
�α · �p,

(
1 − rs

r
+ 3r2

Q

4r2

)}
. (18)

We now construct the Hermitian operator S and the unitary
transform U as

S = −i
β O
2m

, U = exp(i S). (19)

We can now apply the first iteration of the Foldy-Wouthuysen
transform using the approximation

H ′ = U HRN U+ = ei S HRN e−i S

= HRN + i[S,HRN] + i2

2!
[S,[S,HRN]] + · · · . (20)

We perform the transformation and calculate

H ′ = β

(
m + O2

2m
− O4

8m3

)
+ ZQ Zq α

r

(
1 − rs

2r
+ r2

Q

4r2

)

− 1

8m2

[
O,

[
O,

ZQ Zq α

r

]]
− β

m rs

2r
+ β

m r2
Q

2r2

+ β

16m

{
O,

{
O,

rs

r
− r2

Q

r2

}}
+ O′, (21)

where

O′ = − O3

3m2
+ β

2m

[
O,

ZQ Zq α

r

(
1 − rs

2r

)]

+ 1

4

{
O,

rs

r
− r2

Q

r2

}
− 1

96m2

{
O,

{
O,

{
O,

rs

r

}}}
. (22)

Notice that the leading-order terms in O are of order αeff while
the leading-order terms in O′ are of order α3

eff and α2
eff G.

In Eq. (21), we have several multicommutators involving O.
The implicit understanding is that terms of higher order than
α4

eff and α4
eff G generated by these multicommutators can be

neglected. Each iteration of the Foldy-Wouthuysen transform
eliminates terms up to the leading order of the odd part, but may
introduce higher order odd terms. In iterating the procedure
the odd terms are eventually eliminated up to a desired order.
Applying the transform to H ′ will give us the Hamiltonian
H ′′ with odd part O′′ ∼ α4

effG. One further iteration will fully
eliminate the odd terms up to order α4

eff and first order in G. For
an iteration to contribute to the even part of the Hamiltonian
the square of the odd part associated with that iteration must
be within the desired order. Because the leading terms in
O′2 are of order α5

effG and α6
eff , they can be ignored within

our approximations. Thus our Foldy-Wouthuysen transform
of the Dirac-Reissner-Nordström Hamiltonian requires three
iterations. The first of these determines the form of the even
part, while the final two serve to fully eliminate the odd part
(up to our desired order).

The threefold iterated Foldy-Wouthuysen transformation
then gives us

H
(FW)
RN = β

(
m + O2

2m
− O4

8m3

)
+ ZQ Zq α

r

(
1 − rs

2r
+ r2

Q

4r2

)
− 1

8m2

[
O,

[
O,

ZQ Zq α

r

]]
− β

m rs

2r
+ β

m r2
Q

2r2

+ β

16m

{
O,

{
O,

rs

r
− r2

Q

r2

}}
. (23)

Finally, we calculate all the terms involving the original odd
part O, giving the final result

H
(FW)
RN = β

(
m + �p 2

2m
− �p 4

8m3

)
+ ZQ Zq α

r

(
1 − rs

2r
+ r2

Q

4r2

)
− ZQ Zq α π

2m2
δ(3)(�r) − ZQ Zq α

4m2

�� · �L
r3

−β
m

2

(
rs

r
− r2

Q

r2

)
− β

3

8m

{
�p 2,

rs

r
− 2r2

Q

3r2

}

+β
3π rs

4m
δ(3)(�r) + β

3

8m

�� · �L
r2

(
rs

r
− 4r2

Q

3r2

)

+β
r2
Q

4mr4
− β

π r2
Q

m r
δ(3)(�r). (24)

A few remarks are in order. For a reference S state, the expec-
tation values of the operators { �p 2,1/r2},1/r4, and δ(3)(�r)/r

diverge. In this article, we shall explicitly exclude S states
from the analysis and concentrate on highly excited Rydberg
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states for which the expectation value of δ(3)(�r)/r vanishes [3].
The emergence of this operator is a consequence of the point
nucleus approximation inherent to the Coulomb potential,
which is manifest in the divergence of the scalar potential A0

given in Eq. (11) for r → 0. For a realistic nucleus (a realistic
central charged black hole), this divergence is cut off due to
the nuclear finite-size effect, and the operator δ(3)(�r)/r would
need to be replaced by a term proportional to Vn(r) �∇ 2Vn(r),
where Vn(r) is the nuclear potential including the finite-size
effect [26,27]. We now return to the analysis of the result given
in Eq. (24). For Q → 0 (ZQ → 0), we recover the Foldy-
Wouthuysen transformed Dirac-Schwarzschild Hamiltonian
found in Eq. (21) of Ref. [2]. Alternatively, we can rewrite
the transformed Hamiltonian as

H
(FW)
RN = H

(FW)
F + H ′

DC + H ′
DS, (25)

where H
(FW)
F is the free Hamiltonian,

H
(FW)
F = β

(
m + �p 2

2m
− �p 4

8m3

)
. (26)

H ′
DC is a gravitationally modified Dirac-Coulomb Hamiltonian

without the kinetic terms which are summarized in H
(FW)
F ,

H ′
DC = ZQ Zq α

r

(
1 − rs

2r
+ r2

Q

4r2

)
− ZQ Zq απ

2m2
δ(3)(�r)

− ZQ Zq α

4m2

�� · �L
r3

. (27)

Moreover, H ′
DS is an electromagnetically modified Dirac-

Schwarzschild Hamiltonian, again without the kinetic terms
which are found in H

(FW)
F ,

H ′
DS = −β

m

2

(
rs

r
− r2

Q

r2

)
− β

3

8m

{
�p 2,

rs

r
− 2r2

Q

3r2

}

+β
3π rs

4m
δ(3)(�r) + β

3

8m

�� · �L
r2

(
rs

r
− 4r2

Q

3r2

)

+β
r2
Q

4 m r4
− β

π r2
Q

m r
δ(3)(�r). (28)

Up to the electromagnetic modifications of the gravita-
tional terms in the Dirac-Schwarzschild Hamiltonian, and

up to the gravitational modifications of the Dirac-Coulomb
Hamiltonian, we thus have H ′

DC ≈ H
(FW)
DC − H

(FW)
F and H ′

DS ≈
H

(FW)
DS − H

(FW)
F , where H

(FW)
DC and H

(FW)
DS are given in Eqs. (30)

and (47) of Ref. [4]. The relativistic corrections found in
the transformed Reissner-Nordström Hamiltonian are approx-
imately equal to a sum of the corrections found for the
Dirac-Coulomb and the Dirac-Schwarzschild Hamiltonians,
with additional electrogravitational mixing terms (the latter
are proportional to the product of the gravitational coupling
constant, and a power of the fine-structure constant). Both
H

(FW)
F and H ′

DS exhibit particle-antiparticle symmetry (all
terms have a β prefactor), while H ′

DC changes sign under
particle-antiparticle interchange (no β prefactor).

IV. BOUND-STATE ENERGIES

It remains to evaluate and discuss the bound-state energies
in the potential described by Eq. (24), and to consider an
example case. First, we observe that the product ZQ Zq has to
be negative for the electrostatic interaction to be attractive and
bound states to exist. We thus define the coupling constants,

αeff = −ZQ Zq α > 0, (29a)

αG = GmM

�c
= GmM, (29b)

αQ = r2
Q

(
mc

�

)2

= Z2
Q e2 Gm2

4πε0�
2c2

= Z2
Q α Gm2, (29c)

where in the intermediate steps we temporarily restore full SI
mksA units. Following Ref. [3], it is advantageous to scale the
coordinate variable according to

�ρ = αeff m �r, �∇ ≡ �∇r = αeff m �∇ρ, (30)

where �ρ is the coordinate in “atomic units”; the “Bohr radius”
is (αeff m)−1.

From Eq. (24), we first extract the effective Hamiltonian
applicable to particle (as opposed to antiparticle) states [hence
denoted with a superscript (+)], and scale the expression
according to Eq. (30),

H
(+)
RN = m + α2

eff m

(
−1

2
�∇2

ρ − 1

ρ

)
+ α4

eff m

(
−1

8
�∇4

ρ + π

2
δ(3)( �ρ) + �σ · �L

4ρ3

)
− αG αeff m

ρ
+ αG α3

eff m

(
3

4

{
�∇2

ρ,
1

ρ

}
+ 3π

2
δ(3)( �ρ)

+ 3 �σ · �L
4ρ3

+ 1

ρ2

)
+ αQ α2

eff m

2ρ2
+ αQ α4

eff m

(
− 1

4ρ3
− 1

4

{
�∇2

ρ,
1

ρ2

}
− �σ · �L

2 ρ4
+ 1

4 ρ4
− π

8ρ
δ(3)( �ρ)

)
. (31)

Let us break down the matrix elements for the energy corrections in an unperturbed Dirac-Coulomb state with quantum numbers
n,�, and j according to the Hamiltonians in Eqs. (26), (27), and (28). An evaluation using formulas given in Ref. [28] leads to
the results

〈H (+)
F 〉 = m

{
1 + α2

eff

2n2
+ α4

eff

(
3

8n4
− 1

n3(2� + 1)

)}
, (32a)

〈H ′(+)
DC〉 = m

{
−α2

eff

n2
+ α4

eff

(
− δj,�−1/2

2n3�(2� + 1)
+ δj,�+1/2

2n3�(� + 1) (2� + 1)

)
+ 2αG α3

eff

n3 (2� + 1)
− αQ α4

eff

2 n3 � (� + 1) (2� + 1)

}
, (32b)
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〈H ′(+)
DS 〉 = m

{
αG

(
−αeff

n2
+ α3

eff

n2

[
δj,�−1/2

(
3

2n4
− 3 (4� + 1)

2n3�(2� + 1)

)
+ δj,�+1/2

(
3

2n4
− 3 (4� + 3)

2n3(� + 1)(2� + 1)

)])
+αQ

(
α2

eff

n3 (2� + 1)
+ α4

eff

[
δj,�−1/2

(
− 2�

n5(2� − 1) (2� + 1)
+ 4� + 1

n3 � (� + 1) (2� − 1) (2� + 1)

)
+ δj,�+1/2

(
− 2(� + 1)

n5(2� − 1) (2� + 1)
+ 4� + 3

n3 � (� + 1) (2� − 1) (2� + 1)

)])}
, (32c)

where the functional form is seen to depend on the relative orientation of orbital angular momentum and spin. Formulas become
more compact when expressed in terms of the Dirac angular quantum number � = (−1)�+j+1/2 (j + 1

2 ), which is defined as
the negative of the eigenvalue of the Dirac angular operator K = β ( �� · �L + 1), i.e., K ψ = −� ψ (see Ref. [29] for further
discussion). The results read as follows:

〈H (+)
F 〉 = m

{
1 + α2

eff

2n2
+ α4

eff

(
3

8n4
− �

|�| n3(2� + 1)

)}
, (33a)

〈H ′(+)
DC〉 = m

{
−α2

eff

n2
− α4

eff

2|�|n3 (2� + 1)
+ 2αG α3

eff �

|�| n3 (2� + 1)
− αQ α4

eff

2 |�| n3 (� + 1) (2� + 1)

}
, (33b)

〈H ′(+)
DS 〉 = m

{
αG

(
−αeff

n2
+ α3

eff

[
3

2n4
− 3 (4� + 1)

2|�| n3 (2� + 1)

])
+αQ

[
α2

eff �

|�| n3 (2� + 1)
+ α4

eff

(
− 2�2

|�| n5 (2� − 1) (2� + 1)
+ � (4� + 1)

|�| n3 (� + 1) (2� − 1) (2� + 1)

)]}
. (33c)

An important check consists in the verification of the Dirac-Coulomb energy, which is obtained as the sum of the α4
eff term

from 〈H (+)
F 〉 and the α4

eff term from 〈H ′(+)
DC〉,

〈H (+)
F 〉|α4

eff
+ 〈H ′(+)

DC〉|α4
eff

=
(

3

8n4
− �

|�| n3(2� + 1)

)
−

(
1

2|�| n3 (2� + 1)

)
= 3

8n4
− 1

2|�|n3
. (34)

The latter result is in agreement with the literature [see, e.g., Eq. (2.87) of Ref. [30]]. The relativistic corrections to the
Dirac-Schwarzschild energy are obtained as a sum of the α4

eff coefficient of 〈HF 〉 and the αG α3
eff term from 〈H ′

DS〉,

〈H (+)
F 〉|α4

eff
+ 〈H ′(+)

DS 〉|αG α3
eff

=
(

3

8n4
− �

|�| n3(2� + 1)

)
+

(
3

2n4
− 3 (4� + 1)

2|�| n3 (2� + 1)

)
= 15

8n4
− 14� + 3

2|�| n3 (2� + 1)
. (35)

[We note that in the absence of the electrostatic potential, we would scale the radial variable differently, namely, �r = αGm �ρ,
leading to the sum of coefficients in the final α4

G term as indicated in Eqs. (3a), (3b), and (12) of Ref. [3].] The final result given
in Eq. (35) is just the Dirac-Schwarzschild formula [Eq. (12) of Ref. [3]].

For Rydberg states with a vanishing probability density at the origin (see Figs. 1 and 2), the influence of the black hole at the
center can be described by a small (complex rather than real) energy correction (see Sec. IV of Ref. [3]). We have performed
the scaling of the radial variable according to Eq. (30), implicitly assuming that the electrostatic interaction corresponding to
the coupling constant αeff dominates over the gravitational terms (coupling constant αG); or, otherwise, we would have had to
perform the initial scaling to the “Bohr radius” of the system differently, as indicated above. One might think that, for the original
expansion in powers of αeff and αG to be valid, αeff should not be too small in comparison to αG, or else, before encountering
any gravitational effect, we should first include higher-order terms in the αeff expansion. Fortunately, the bound-state theory of
atoms permits us to sum all the relativistic corrections due to the electrostatic central potential into a convenient all-order (in
αeff) formula, which reads as

ERN = m

{
f (n,�) + αG

[
−αeff

n2
+ α3

eff

(
3

2n4
− 8� + 3

2|�| n3 (2� + 1)

)]
+αQ

[
α2

eff
�

|�| n3 (2� + 1)
+ α4

eff

(
− 2�2

|�| n5 (2� − 1) (2� + 1)
+ 3

2|�| n3 (� + 1) (2� − 1)

)]}
,

f (n,�) =
⎛⎝1 + α2

eff

(n − |�| +
√

�2 − α2
eff)

2

⎞⎠−1/2

= 1 − α2
eff

2n2
+ α4

eff

(
3

8n4
− 1

2|�|n3

)
+ O

(
α6

eff

)
. (36)

Here, f (n,�) is the dimensionless Dirac energy [29].
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FIG. 1. Scatter plot of the probability density of finding a bound
particle (electron) in a state of n = 12,� = 9, and m = |�| = 9 in the
field of a charged heavy black hole with mass 10−12 times the mass
of the earth, and charge number ZQ = 10. The points are distributed
randomly, with the number of scattered points in a reference volume
being proportional to the probability of finding the bound electron
in the volume. The two radial minima of the probability density are
clearly visible. The gravitational center is depicted as a black dot. For
reference, the classical trajectory at 〈ρ〉 = ∫

ρ |ψ( �ρ)|2 d3r = 171 is
also shown. Note that the scaled radial coordinate �ρ given in Eq. (30)
is dimensionless, as reflected in the labeling of the axes.

We now consider a numerical example. Because ZQ and Zq

are the nuclear charge numbers associated with the atoms, we
have ZQ = +10 and Zq = −1 for an orbiting electron around
a positively charged small black hole. Following Ref. [3], we
thus consider a charged black hole with a mass M equal to
10−13 times the mass of the earth,

M = 10−13M⊕ = 5.9742×1011 kg, (37)

FIG. 2. Plot of the probability density |ψ( �ρ)|2 for a bound
electron in a state with quantum numbers n = 12,� = 9, and m = 9,
in the field of the same charged black hole as given in Fig. 1. The
quantum numbers are n = 12,� = 9, and m = |�| = 9, and the polar
angle is θ = 90◦, i.e., the plot pertains to the (ρx,ρy) plane, with the
dimensionless vector-valued variable �ρ being defined in Eq. (30).

and assume that m = me (electron mass). In the numerical
calculations, we thus use the following coupling constants:

αeff = 10 α = 7.297 352×10−2, (38a)

αG = 1.148 884×10−3, (38b)

αQ = 1.278 353×10−45. (38c)

Here, in order to ensure the reproducibility of the results
given below, we assume all decimal places given assumed to be
exact, even if the Newton’s gravitational constant is currently
known only to one part in 104 (see Table XL of Ref. [31]). We
consider two atomic states with quantum numbers,

n1 = 12, �1 = 9, j1 = 19
2 , �1 = −10, (39a)

n2 = 12, �2 = 9, j2 = 17
2 , �2 = 9. (39b)

The energy formula (36) evaluates to

E1 = m

⎡⎢⎣
⎛⎝1 + α2

eff

(2 +
√

100 − α2
eff)

2

⎞⎠−1/2

− αG αeff

144

− 59αG α3
eff

1 313 280
+ αQ α2

eff

32 832
+ αQ α4

eff

3 878 280

⎤⎦, (40)

which translates into SI mksA units as follows (the coefficient
term which generates the contribution is given separately as a
subscript of each item):

E1 = me c2 + (−9.44855|Dirac-Coulomb − 0.29751|αG αeff

− 1.02491 × 10−5|αG α3
eff

+ 1.05951 × 10−46|αQ α2
eff

+ 4.77631 × 10−51|αQ α4
eff

)
eV. (41)

It becomes clear that the backaction effect of the space-time
curvature induced by the charged particle, parametrized by αQ,
only is a small effect in our example case, but still constitutes a
conceptually interesting correction. The energy of the second
bound state considered for our example calculation is

E2 = m

⎡⎢⎣
⎛⎝1 + α2

eff

(3 +
√

81 − α2
eff)

2

⎞⎠−1/2

− αG αeff

144

− 43αG α3
eff

787 968
+ αQ α2

eff

32 832
+ 23 αQ α4

eff

66 977 280

⎤⎥⎦. (42)

Here, the breakdown of contributions is as follows:

E2 = me c2 + (−9.44860|Dirac-Coulomb − 0.29751|αG αeff

− 1.24495 × 10−5|αG α3
eff

+ 1.05951 × 10−46|αQ α2
eff

+ 6.36110 × 10−51|αQ α4
eff

)
eV. (43)

The first terms on the right-hand sides of Eqs. (41) and (43)
contain the electron rest mass. An expansion of the energies
given in Eqs. (40) and (42) in powers of αeff reveals that they
differ only by the fine structure (i.e., at order α4

eff for terms free
of αG and αQ).
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V. CONCLUSIONS

In this paper, we find the nonrelativistic limit of the Dirac
equation coupled to a statically charged gravitational center.
To carry out this calculation we first have to derive the Dirac-
Reissner-Nordström Hamiltonian. The derivation requires that
we first transform the metric, and consequently the potential,
into isotropic coordinates, and then couple the Dirac equation
to both the curved space-time and the electrostatic potential
(see Sec. II A and Appendix A). The derivation of the
Reissner-Nordström metric in isotropic coordinates could be
of interest in a wider context. Starting from generalized Dirac
Hamiltonian, we find the nonrelativistic limit by applying the
Foldy-Wouthuysen program (Secs. II B and III). We carry out
the transformation keeping terms up to the fourth order in
αeff , where αeff = −ZQ Zq α is an effective coupling constant
for the bound system [see Eq. (15)]. Furthermore, we keep
terms of first order in the gravitational constant G, i.e., first
order in the effective coupling constants αG and αQ defined in
Eqs. (29b) and (29c).

The Foldy-Wouthuysen transformation of the Dirac-
Reissner-Nordström Hamiltonian is carried out in Sec. III (see
also Appendix B), and the structure of the resulting bound-state
spectrum is analyzed in Sec. IV. The final result for the Foldy-
Wouthuysen transformed Hamiltonian is given in Eq. (24); it
contains a number of familiar terms. As should be expected,
when we remove the charge of the gravitational center (αeff =
αQ = 0, but αG = 0) we recover the nonrelativistic limit of
Dirac-Schwarzschild Hamiltonian [2,3]. Additionally, if we
were to neglect the gravitational terms (αG = αQ = 0), the
nonrelativistic limit of the Dirac-Coulomb Hamiltonian is
recovered. We also find additional terms which are due to
the presence of the center charge which curves space-time,
as manifest in the differences of the Schwarzschild and
the Reissner-Nordström metric. After the Foldy-Wouthuysen
transformation, one recognizes these terms as mixing terms,
proportional to the product of a gravitational coupling (αG

or αQ) and a power of the effective electromagnetic coupling
constant αeff .

The result for the Dirac-Reissner-Nordström Hamiltonian
given in Eq. (24) can naturally be written as the sum of
three contributions, a free Hamiltonian HF (with relativistic
corrections), a modified Dirac-Coulomb Hamiltonian H ′

DC,
and a modified Dirac-Schwarzschild gravitational potential
term H ′

DS [see Eqs. (27) and (28)]. There are perturbations
to the Coulomb potential due to the curvature of space-time,
resulting from both the mass and the charge of the gravitational
center, i.e., proportional to both rs as well as r2

Q [see Eq. (27)].
The leading gravitational term (proportional to rs) and the
leading electrogravitational mixing term (proportional to r2

Q)
enter with opposite sign in both H ′

DC and H ′
DS. H ′

DC breaks the
particle-antiparticle symmetry, while H ′

DS conserves it. The
electric field corresponding to the Coulomb potential leads
to a nonvanishing energy-momentum tensor, which modifies
the space-time curvature around the charged black hole, hence
the differences of the Schwarzschild and Reissner-Nordström
metrics. In turn, the metric enters the formulation of the
generalized Dirac Hamiltonian, which naturally contains terms
due to the modified space-time curvature, i.e., proportional to
r2
Q. These higher-order (in αeff) correction terms for bound

states resulting from these terms are clearly identified after a
Foldy–Wouthuysen transformation.

The gravitational corrections to a Coulomb bound system,
which are derived here using a rigorous approach, are of
interest for a number of reasons. Space-time noncommutativity
is a concept inspired by string theory (see Ref. [32]), which
could be of relevance in the unification of gravity with the other
fundamental interactions. As shown in Ref. [15], space-time
noncommutativity may ultimately induce certain shifts of
energy levels in atomic systems which may be detectable
in the future. Here, the leading fully relativistic gravitational
corrections are derived using a rigorous approach which does
not require space-time quantization. Second, micro black holes
have been proposed in various contexts of physics, including
candidates for dark matter [16–18] and even classes of novel
phenomena at accelerators [19]. For charged micro black
holes, a quantum mechanical description requires the use of
the Reissner-Nordström metric.
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APPENDIX A: REISSNER-NORDSTRÖM METRIC

The derivation of the Reissner-Nordström metric, which
describes the curvature of space-time due to a charged
gravitational center, is generally left as an exercise in textbooks
(problem 6.3 in [25], for example). It is also possible to find
unpublished works which detail the derivation [33]. Here we
briefly outline the derivation, and the assumptions made.

We are interested in a spherically symmetric, statically
charged, stationary black hole. Such a black hole will result in
a static, spherically symmetric space-time. From Eq. (6.1.5)
of [25] we know that the metric of such a space-time is of the
form

ds2 = f (R) dt2 − h(R) dR2 − R2 d�, (A1)

d� = dθ2 + sin2 θ dϕ2, (A2)

where we have adjusted from the “East-coast” convention used
in [25] to the “West-coast” convention we use in this paper.
To derive the Reissner-Nordström metric we use the Einstein
field equation

Rμν − 1
2gμνR = 8πGTμν, (A3)

which is equivalent to

Rμν = 8πG
(
Tμν − 1

2gμνT
)
, (A4)

where Rμν is the Ricci tensor and Tμν is the electromagnetic
stress-energy tensor. Using the “West-coast” convention, the
electromagnetic stress-energy tensor is

Tμν = −(
FμλFν

λ − 1
4gμνF

κλFκλ

)
. (A5)

Notice that this equation has the opposite sign as compared
to the stress-energy tensor in the East-coast convention
[see Eq. (5.22) of [34]]. With this definition it is trivial to
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show that T = Tμ
μ = 0, and Eq. (A4) becomes

Rμν = 8πGTμν. (A6)

We now need to calculate for the components of the Ricci
tensor and the components of the electromagnetic stress-
energy tensor. By definition, the Ricci tensor is

Rμν = Rλ
μλν = ∂λ�

λ
μν − ∂ν�

λ
μλ + �λ

σλ�
σ
μν − �λ

σν�
σ
μλ, (A7)

where �λ
μν is the Christoffel symbol. The nonzero components

of the Ricci tensor are then found to be

Rtt = f ′

Rh
− f

′ 2

4 f h
− f ′ h′

4 h2
+ f ′′

2 h
, (A8a)

RRR = f
′ 2

4 f 2
+ h′

Rh
+ f ′ h′

4 f h
− f ′′

2 f
, (A8b)

Rθθ = 1− 1

h
− R f ′

2 f h
+Rh′

2 h2
, Rφφ = Rθθ sin2 θ, (A8c)

where the prime indicates differentiation with respect to R.
We now consider the electromagnetic stress-energy tensor.

As we are considering a static spherically symmetric electric
field (without currents or magnetic fields), the only nonzero
components of the field strength tensor are

FtR = −FRt = E(R). (A9)

The electric field outside of a uniformly charged sphere is
given as

E(R) = Q

4π R2
. (A10)

Using Eq. (A5) we can now calculate the components of
the electromagnetic stress-energy tensor. The nonzero com-
ponents are

Ttt = 1

h

Q2

32π2 R4
, (A11a)

TRR = − 1

f

Q2

32π2 R4
, (A11b)

Tθθ = 1

f h

Q2

32π2 R2
, Tφφ = Tθθ sin2 θ. (A11c)

Notice that f −1Ttt + h−1TRR = 0; therefore,

1

f
Rtt + 1

h
RRR = 1

r f h2
(f h)′ = 0, (A12)

from which we conclude that

f = Kh−1, (A13)

where K is a constant. As was done in Sec. 6.1 of [25], we
can gauge away K by rescaling the time coordinate as dt →√

Kdt . Thus h = f −1, and Eqs. (A8c) and (A11c) become

Rθθ = 1 − ∂R(R f ), Tθθ = Q2

32π2 R2
, (A14)

respectively. Applying these equations to Eq. (A6) we find

1 − ∂R(R f ) = r2
Q

R2
, r2

Q = GQ2

4π
. (A15)

This equation is solved by

f = 1 + C

R + r2
Q

R2
. (A16)

If we set Q = 0 then we should recover the Schwarzschild
metric. Thus C = −rs = 2GM , and the Reissner-Nordström
metric is found to be

ds2 =
(

1 − rs

R + r2
Q

R2

)
dt2 −

(
1 − rs

R + r2
Q

R2

)−1

dR2

−R2d�2. (A17)

The simplified approach to the derivation of the metric taken
here makes extensive use of the known solution for the
Schwarzschild geometry and leads to a streamlined derivation.

APPENDIX B: DERIVATION OF THE HAMILTONIAN

Here we follow the notation utilized in Refs. [2,5]. The
flat-space-time Dirac gamma matrices are denoted with a tilde
(γ̃ ) while the curved-space-time Dirac gamma matrices are
written with an overline (γ ). The notation for the curved-
space-time matrices is inspired by the covariant structure of
their anticommutator, expressed in Eq. (B4), and the tensor
(“vector”) structure is denoted by the overline. By contrast,
from the point of view of general relativity, the flat-space
matrices can be regarded as “modified” γ matrices, hence
the tilde. The flat-space matrices are used in the Dirac
representation,

γ̃ 0 =
(
12×2 0

0 −12×2

)
, γ̃ 1 =

(
0 σ 1

−σ 1 0

)
, (B1a)

γ̃ 2 =
(

0 σ 2

−σ 2 0

)
, γ̃ 3 =

(
0 σ 3

−σ 3 0

)
, (B1b)

γ̃ 5 = i γ̃ 0 γ̃ 1 γ̃ 2 γ̃ 3 =
(

0 12×2

12×2 0

)
, (B1c)

where the σ i are the (2 × 2) Pauli matrices [11].
As in Appendix C of Ref. [5] we draw inspiration from

Ref. [35] and use the capital Latin indices A,B,C, . . . =
0,1,2,3 to denote the local Lorentz frame (“anholonomic
basis”) and I,J,K, . . . = 1,2,3 for spatial coordinates in the
anholonomic basis. The Greek indices μ,ν,λ, . . . = 0,1,2,3
denote the global coordinates, while the lower case Latin
indices i,j,k, . . . = 1,2,3 are used for the global spatial coor-
dinates. As in Refs. [2,5] we use the West-coast convention for
the flat-space-time metric, denoted as g̃AB = ηAB = ηAB =
diag(1,−1,−1,−1). The curved-space-time metric is denoted
using gμν = gμν , without the need for an overline, as η denotes
the flat-space-time metric. From Eq. (6) we know that the
curved-space-time metric is

gμν = diag(w2, − v2, − v2, − v2), (B2a)

gμν = diag(w−2, − v−2, − v−2, − v−2). (B2b)

This metric has the same structure as the isotropic
Schwarzschild metric in the Eddington reparametrization [see
Ref. [24] and Eq. (8) of Ref. [2], as well as Eqs. (C6)
and (C7) of Ref. [5]]. However, the functions w = w(r) and
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v = v(r) are different for the Reissner-Nordström geometry.
The curved-space-time Dirac gamma matrices can be ex-
pressed in terms of the flat-space-time Dirac gamma matrices
as

γ μ(x) = e
μ

A(x)γ̃ A, γ μ(x) = eA
μ (x)γ̃A, (B3)

where e
μ

A(x) are the vierbein coefficients. By definition, the
curved-space-time Dirac gamma matrices must satisfy the
condition

{γ μ(x),γ ν(x)} = 2gμν, (B4)

from which we find

gμν = 1
2 {γ μ(x),γ ν(x)} = eA

μ (x) eB
μ (x) ηAB, (B5a)

gμν = 1
2 {γ μ(x),γ ν(x)} = e

μ

A(x) e
μ

B(x) ηAB. (B5b)

The vierbein coefficients that satisfy these equations are

e0
μ = δ0

μ w, eI
μ = δI

μ v, (B6a)

e
μ

0 = δ
μ

0

1

w
, e

μ

I = δ
μ

I

1

v
. (B6b)

Here δ
μ

A and δA
μ denote the Kronecker delta.

As is well known, when formulating the Dirac equation in
curved-space-time, one replaces the γ̃ A → γ μ and ∂A → ∇μ

(see Refs. [1,2,4,5,36–40]), where

∇μ = ∂μ − �μ, (B7)

�μ = i

4
ωAB

μ σAB, σAB = i

2
[γ̃A,γ̃B], (B8)

ωAB
ν = eA

μ∇ν eμB = eA
μ∂ν eμB + eA

μ�
μ
νλ eλB. (B9)

For absolute clarity, we emphasize that the covariant derivative
∇ in Eq. (B7) acts on a spinor, while the ∇ in Eq. (B9)
is the holonomic covariant derivative acting on a vector,
defined as ∇νA

μ = ∂νA
μ + �

μ
νλA

λ. Furthermore, �μ is the
affine spin-connection matrix, while �

μ
νλ are the Christoffel

symbols and ωAB
ν are the Ricci rotation coefficients. This trans-

formation ensures that the curved-space-time Dirac equation is
invariant under a Lorentz transformation. When coupling the
electrostatic potential to the Dirac equation in flat-space-time
one replaces i∂B → i∂B − q AB , where q is the charge of
the particle [11]. This is easily generalized to curved-space-
time as i∇μ → i∇μ − q Aμ. Thus the Dirac equation in curved
space-time, coupled to an electrostatic potential, is

(γ μ(i∇μ − q Aμ) − m)ψ = 0. (B10)

We know that the only nonzero term of the electrostatic
potential is A0 [Eq. (12)]; thus we can somewhat simplify

the Dirac equation to

(iγ μ∂μ − iγ μ�μ − γ 0q A0 − m)ψ = 0. (B11)

Multiplying by γ 0 on the left, and rearranging the equation we
obtain

i(γ 0)2∂0ψ = (−i γ 0γ i∂i + i γ 0γ μ�μ + (γ 0)2q A0 + γ 0m)ψ.

(B12)
We now utilize our vierbein, along with an explicit calculation
of the affine spin-connection matrix to find

γ 0 = 1

w
γ̃ 0, (γ 0)2 = 1

w2
, γ 0γ i = 1

vw
γ̃ i, (B13a)

γ 0γ μ�μ = − �α · �∇ w

2vw2
− �α · �∇ v

v2w
. (B13b)

The form of these results are in full agreement with
Refs. [2,5], the only differences coming from the definitions
of the functions w and v. Here �α = γ̃ 0 �̃γ . Applying the results
found in Eq. (B13) to Eq. (B12) and multiplying by w2 on the
left we find i ∂t ψ = H ψ , where

H = w

v
�α · �p + �α · [ �p,w]

2v
+ w

v

�α · [ �p,v]

v
+ q A0 + β m w,

(B14)

and β = γ̃ 0. As done in [2], we rescale the spatial coordinates
according to ψ ′ = v3/2ψ , and H ′ = v3/2H v−3/2, to find the
Hermitian Hamiltonian

H ′ = 1

2

{
�α · �p,

w

v

}
+ q A0 + β m w. (B15)

Finally we use our approximations from Eq. (7) to find

w

v
≈ 1 − rs

r
+ 3r2

Q

4r2
, (B16)

and apply them, along with Eq. (12) to the Hamiltonian to find
the Dirac-Reissner-Nordström Hamiltonian, to the first order
in G, as

HRN = 1

2

{
�α · �p,

(
1 − rs

r
+ 3r2

Q

4r2

)}

+ ZQ Zq α

r

(
1 − rs

2r
+ r2

Q

4r2

)

+β m

(
1 − rs

2r
+ r2

Q

2r2

)
, (B17)

where we use q Q = 4π ZQ Zq α. Here, ZQ is the nuclear
charge number of the central gravitational object (charge Q),
while Zq is the nuclear charge number associated with the test
charge q, and α is the fine-structure constant.
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