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Experimental evaluation of nonclassical correlations between measurement outcomes and target
observable in a quantum measurement
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In general, it is difficult to evaluate measurement errors when the initial and final conditions of the measurement
make it impossible to identify the correct value of the target observable. Ozawa proposed a solution based on the
operator algebra of observables which has recently been used in experiments investigating the error-disturbance
trade-off of quantum measurements. Importantly, this solution makes surprisingly detailed statements about the
relations between measurement outcomes and the unknown target observable. In the present paper, we investigate
this relation by performing a sequence of two measurements on the polarization of a photon, so that the first
measurement commutes with the target observable and the second measurement is sensitive to a complementary
observable. While the initial measurement can be evaluated using classical statistics, the second measurement
introduces the effects of quantum correlations between the noncommuting physical properties. By varying the
resolution of the initial measurement, we can change the relative contribution of the nonclassical correlations and
identify their role in the evaluation of the quantum measurement. It is shown that the most striking deviation from
classical expectations is obtained at the transition between weak and strong measurements, where the competition
between different statistical effects results in measurement values well outside the range of possible eigenvalues.
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I. INTRODUCTION

Although the uncertainty principle is usually considered to
be a fundamental principle of quantum mechanics, its precise
theoretical formulation is not always clear. A breakthrough in
the investigation of measurement uncertainties was achieved
when Ozawa demonstrated in 2003 that the uncertainty trade-
off between measurement error and disturbance may be much
lower than the uncertainty trade-off between noncommuting
properties in a quantum state [1]. Recently, the definitions
of measurement uncertainties introduced by Ozawa have
been evaluated experimentally using two-level systems such
as neutron spins [2] and photon polarizations [3,4]. These
experimental tests have confirmed the lower uncertainty limits
predicted by Ozawa and resulted in the formulation and
confirmation of even tighter bounds [5–8]. However, there has
also been some controversy concerning the role of the initial
state in this definition of measurement uncertainties [9–11]. It
may therefore be useful to take a closer look at the definition
of measurement errors and their experimental evaluation.

In principle, it is natural to define the error of a measurement
as the statistical average of the squared difference between
the measurement outcome and the actual value of the target
observable. However, quantum theory makes it difficult to
assign a value to an observable when neither the initial state
nor the final measurement is represented by an eigenstate of
the observable. Nevertheless, the operator formalism defines
correlations between the measurement outcome and the opera-
tor Â that represents the target observable, and this correlation
between operators can be evaluated by weak measurements
[12] or by statistical reconstruction using variations of the
input state [13]. Essentially, the experimental evaluations of
Ozawa uncertainties is therefore based on an evaluation of
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nonclassical correlations between the measurement outcome
and the target observable in the initial quantum state |ψ〉.

In the following, we investigate the role of nonclas-
sical correlations in quantum measurements by applying
a sequential measurement to the polarization of a single
photon, such that the initial measurement commutes with
the target polarization, while the final measurement selects
a complementary polarization. In this scenario, the initial
measurement can be described by classical error statistics,
and the evaluation of the measurement errors corresponds
to conventional statistical methods. However, the final mea-
surement introduces nonclassical correlations that provide
additional information on the target observable. By varying the
strength of the initial measurement, we can control the balance
between classical and nonclassical effects in the correlations.
In addition, we obtain two separate measurement outcomes,
one of which refers directly to the target observable, and
another one which can relate only to the target observable
via correlations in the input state. Our measurement results
thus provide a detailed characterization of nonclassical effects
in the relation between measurement outcomes and target
observable. In particular, our results show that the initial
measurement outcome modifies the nonclassical correlations
between the final outcome and the target observable, which can
result in a counterintuitive assignment of measurement values,
where the initial measurement outcome and the estimates
values seem to be anticorrelated. Our results thus illustrate
that the combination of classical and nonclassical correlations
can be highly nontrivial and should be investigated in detail
to achieve a more complete understanding of the experimental
analysis of quantum systems.

The rest of the paper is organized as follows. In Sec. II, we
point out the role of nonclassical correlations in the definition
of measurement errors and discuss the experimental evaluation
using variations of the input state. In Sec. III, we derive the
evaluation procedure for two-level systems and discuss the
evaluation of the experimental data. In Sec. IV, we introduce
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the experimental setup and discuss the sequential measurement
of two noncommuting polarization components. In Sec. V,
we discuss the measurement results obtained at different
measurement strengths and analyze the role of nonclassical
correlations in the different measurement regimes. In Sec. VI,
we discuss the effects of nonclassical correlations on the
statistical error of the measurement. In Sec. VII, we conclude
the paper by summarizing the insights gained from our detailed
study of the nonclassical aspects of measurement statistics.

II. MEASUREMENT ERRORS AND
NONCLASSICAL CORRELATIONS

Measurement errors can be quantified by taking the average
of the squared difference between the measurement outcomes
Aout(m) and the target observable Â. As shown by Ozawa [1],
this definition of errors can be applied directly to the operator
statistics of quantum theory, even if the observable Â does not
commute with the measurement outcomes m. If the probability
of the measurement outcome m is represented by the positive
valued operator Êm, the measurement error for an input state
|ψ〉 is given by

ε2(A) =
∑

m

〈ψ |(Am − Â)Êm(Am − Â)|ψ〉

= 〈ψ |Â2|ψ〉 +
∑

m

A2
m〈ψ |Êm|ψ〉

−2
∑

m

Am Re[〈ψ |ÊmÂ|ψ〉]. (1)

The last term in Eq. (1) evaluates the correlation between the
target observable Â and the measurement outcome Am.

If the operator Â and all of the measurement operators
Êm commute with each other, the correlation in Eq. (1) can
be explained in terms of the joint measurement statistics of
the outcomes m and the eigenstate projections a, where the
eigenvalues of Êm determine the conditional probabilities
P (m|a) of obtaining the result m for an eigenstate input
of a. However, the situation is not so simple if Â and Êm

do not commute. In this case, an experimental evaluation of
the measurement error ε(A)2 requires the reconstruction of a
genuine quantum correlation represented by operator products.
Perhaps the most direct method of obtaining the appropriate
data is to vary the input state [13]. To obtain the correlation
between the measurement outcome m and the observable Â, it
is sufficient to use two superposition states as input,

|+〉 = 1√
1 + 2λ〈Â〉 + λ2〈Â2〉

(1 + λÂ)|ψ〉,

|−〉 = 1√
1 − 2λ〈Â〉 + λ2〈Â2〉

(1 − λÂ)|ψ〉, (2)

where the expectation values in the normalization factors refer
to the statistics of the original state |ψ〉. Note that lambda
is a completely arbitrary real number, which means that the
new input states can be quite different from the original state
|ψ〉. It is now possible to determine the correlation between
the measurement outcome and the target observable from
the weighted difference between the probabilities P (m|+)
and P (m|−) obtained with these two superposition states,

specifically,

Re[〈ψ |ÊmÂ|ψ〉] = 1

4λ
[(1 + 2λ〈Â〉 + λ2〈Â2〉)P (m|+)

−(1 − 2λ〈Â〉 + λ2〈Â2〉)P (m|−)]. (3)

For λ � 1, the two states correspond to the outputs of a
weak measurement with a two-level probe state [14]. The
variation of input states is therefore closely related to the
alternative method of evaluating measurement errors using
weak measurements [12].

Since the operator Êm represents the probability of the
outcome m and the operator Â represents the value of a
physical property, it is possible to express the correlation that
is evaluated in Eq. (3) as a conditional expectation value of
Â by dividing the expectation value of the product of Êm

and Â by the probability of m. As can be seen from Eq. (2),
this conditional average is also equal to the value of Am that
minimizes the error ε2(A). In terms of the error measure ε2(A),
the optimal estimate of Am for an outcome of m is therefore
given by

Aopt(m) = Re[〈ψ |ÊmÂ|ψ〉]
〈ψ |Êm|ψ〉 . (4)

As pointed out by Hall, this optimal estimate is equal to the
real part of the weak value conditioned by the post-selection
of the measurement outcome m [15]. In the present context,
these weak values provide a quantitative description of the
nonclassical correlation between a physical property Â and a
measurement outcome m represented by an operator Êm that
does not commute with Â.

If the nonclassical correlation in Eq. (1) is expressed using
the conditional average in Eq. (4), the result reads

ε2(A) = 〈Â2〉 −
∑

m

(Aopt(m))2P (m|ψ)

+
∑

m

[Am − Aopt(m)]2P (m|ψ). (5)

It is then obvious that the minimal error ε2
opt(A) is obtained

for Am = Aopt(m) and that this minimal error is given by the
difference between the original variance of Â in the quantum
state ψ and the variance of the conditional averages Aopt(m),

ε2
opt(A) = 〈Â2〉 −

∑

m

[Aopt(m)]2P (m|ψ). (6)

Importantly, all of the necessary information can be obtained
experimentally using the superposition input states |+〉 and
|−〉. As will be shown in the following, this means that for
two-level systems, the nonclassical correlations can actually
be derived from measurements performed on eigenstates of Â.

The most interesting aspect of the measurement errors
is their dependence on correlations between noncommuting
operators. To explore this dependence in more detail, it is
useful to consider a measurement outcome m = (m1,m2) that
is composed of two separate measurements performed in
sequence. Note that m in the discussion above can always
be replaced by such an array of outcomes, since none of
the preceding discussion depends on the classification scheme
used to distinguish the different outcomes. The only difference
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between a single-valued outcome and a multivalued outcome
is that we can separate the outcomes and the associated
measurement operators. The complete description of the
measurement is given by the operators Êm1,m2 . However, it
is also possible to consider only the initial measurement m1,
which is represented by the operator sum

Êm1 =
∑

m2

Êm1,m2 . (7)

Since the operators Êm1,m2 do not usually commute with each
other, the eigenstates of Êm1 can be completely different from
the eigenstates of Êm1,m2 . In the following, we consider a
sequential measurement, where the initial measurement is
sensitive only to the target observable Â and is therefore
represented by operators Êm1 that commute with Â. The
eigestates of Â are then eigenstates of Êm1 , and the eigenvalues
of Êm1 are equal to the conditional probabilities P (m1|a) of
obtaining the outcome m1 if the input is the eigenstate |a〉 of
Â. As will be discussed in the following, classical Bayesian
statistics apply to this case, and Aopt(m1) satisfies all of the
properties of a classical conditional average. Nevertheless,
it would be wrong to interpret this result in terms of
classical statistics, since the second measurement m2 results
in noncommutativity. As a result of this noncommutativity
between the final measurement and the target observable Â, the
more precise estimates Aopt(m1,m2) obtained by individually
optimizing the estimates for each joint outcome (m1,m2) can
result in values that are quite different from the intial estimates
Aopt(m1) and can even lie outside of the eigenvalue spectrum
of Â, distinguishing them from classical conditional averages.

III. EVALUATION OF TWO-LEVEL SYSTEMS

In a two-level system, all physical properties can be
expressed in terms of operators with eigenvalues of ±1. This
results in a significant simplification of the formalism. In par-
ticular, it is possible to define the input states |+〉 and |−〉 used
for the experimental evaluation of nonclassical correlations in
the measurement errors by setting λ = 1 in Eq. (2). They are
then defined by a projection onto eigenstates of Â, so that
|+〉 and |−〉 are independent of the original input state |ψ〉.
Moreover, it is possible to express the expectation value of Â

in Eq. (3) in terms of the probabilities P (+|ψ) and P (−|ψ)
obtained from precise measurements of Â, since the outcomes
+ and − correspond to eigenstates of the target observable Â

with eigenvalues of +1 and −1, respectively. Surprisingly, this
means that the nonclassical correlations between measurement
outcomes and target observables can be evaluated without
applying the measurement of m to the actual input state
|ψ〉, since only the measurement results for direct projective
measurements of Â enter into the experimental evaluation of
the nonclassical correlation. According to Eq. (3), the relation
for the two-level system with eigenvalues of Aa = ±1 and
λ = 1 is

Re[〈ψ |ÊmÂ|ψ〉] = P (m|+)P (+|ψ) − P (m|−)P (−|ψ).
(8)

Note that this looks like a fully projective measurement
sequence, where a measurement of Â is followed by a
measurement of m. However, such a projective measurement

of Â actually changes the probabilities of the final outcomes
m. It is therefore quite strange that the correlation between
an undetected observable Â and the measurement result m

obtained from an initial state ψ can be derived from a
sequential projective measurement, as if the measurement
disturbance of a projective measurement of Â had no effect
on the final probabilities of m.

The nonclassical features of the correlation in Eq. (8)
emerge when the conditional average is determined according
to Eq. (4):

Aopt(m) = P (m|+)P (+|ψ) − P (m|−)P (−|ψ)

P (m|ψ)
. (9)

Although this equation looks almost like a classical conditional
average, it is important to note that the probabilities are actually
obtained from two different measurements. As a result, the
denominator is not given by the sum of the probabilities in the
numerator. In fact, it is quite possible that P (m|ψ) is much
lower than the sum of P (m|+)P (+|ψ) and P (m|−)P (−|ψ),
so that the conditional average Aopt(m) is much larger than
+1 (or much lower than −1). In fact, we should expect such
anomalous enhancements of the conditional average, since
Eq. (4) shows that Aopt(m) is equal to the weak value of Â

conditioned by ψ and m.
It may seem confusing that the combination of statistical

results obtained in two perfectly normal experiments results in
the definition of a seemingly paradoxical conditional average.
However, this is precisely why quantum statistics have no
classical explanation. In fact, the present two-level paradox
is simply a reformulation of the violation of Leggett-Garg
inequalities [16–18], where it is shown that it is impossible
to explain the probabilities P (m|ψ), P (m|±), and P (±|ψ)
as marginal probabilities of the same positive valued joint
probability P (m, ± |ψ). Effectively, the evaluation of mea-
surement errors proposed by Ozawa [13] and applied in the first
experimental demonstration [2] is identical to the verification
of Leggett-Garg inequality violation by parallel measurements
proposed in Ref. [16] and applied in Ref. [17].

We can now look at the evaluation of the measurement
errors in more detail. Using the previous results to express
Eq. (1) in terms of experimental probabilities, the measurement
error is given by

ε2(A) = 1 +
∑

m

A2
mP (m|ψ)

−2
∑

m

Am[P (m|+)P (+|ψ) − P (m|−)P (−|ψ)].

(10)

Although this is already a great simplification, it is interesting
to note that the evaluation used in the first experimental
demonstration [2] is even more simple. This is because of
an additional assumption: if we allow only an assignment of
Am = ±1, so that m can be given by + or − and A2

m = 1:

ε2(A) = 2 − 2[P (+|+)P (+|ψ) + P (−|−)P (−|ψ)

−P (+|−)P (−|ψ) − P (−|+)P (+|ψ)]. (11)

In many cases, errors are symmetric, so that P (+|+) =
P (−|−) = 1 − Perror and P (+|−) = P (−|+) = Perror. If this
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assumption is used, the evaluation of measurement errors
is completely independent of the input state, since the
probabilities of A+ = +1 and of A− = −1 add up to one, and
the error is simply given by the error observed for eigenstate
inputs:

ε2(A) = 4Perror. (12)

Importantly, this result is just a special case where the
measurement error appears to be state independent because of
a specific choice of Am for the evaluation of the measurement.
In the following, we will consider a setup that explores the
optimization of Am and the role of the nonclassical correlations
between measurement outcomes and target observable using
the evaluation of experimental data developed above.

As explained in the previous section, all of these results
can be applied directly to a sequential measurement, where
the specific outcome m is given by an array of two separate
outcomes, (m1,m2). However, the assignment of Am = ±1
would reduce the number of different results to only two. In
the following, we will therefore focus on the more general
estimate Am1,m2 and its optimized values. Specifically, we
can use Eq. (9) directly to obtain experimental values for the
optimal estimates Aopt(m1) and Aopt(m1,m2) from the same
set of data obtained in sequential measurements of m1 and m2.

IV. SEQUENTIAL MEASUREMENT OF
PHOTON POLARIZATION

As mentioned in the previous section, the anomalous values
of the conditional averages Aopt(m) that also provide the
optimal assignments of measurement outcomes Am originate
from the same experimental statistics that are used to violate
Leggett-Garg inequalities. We are therefore particularly inter-
ested in the correlations between Bloch vector components
in the equatorial plane of the Bloch sphere. In the case of
photon polarization, these are the linear polarizations, where
the horizontal (H) and vertical (V) polarizations define one axis
and the diagonal polarizations corresponding to positive (P)
and negative (M) superposition of H and V define the
orthogonal axis. In terms of operators with eigenvalues of +1
and −1, these polarizations can be expressed by ŜHV and ŜPM .

If our target observable is Â = ŜPM , any measurement that
commutes with ŜPM can be explained in terms of classical
statistics. We therefore use a setup that implements a variable
strength measurement of diagonal polarization similar to
the one we previously used to study Leggett-Garg iequality
violations and weak measurements [18,19]. In the output,
we then perform a measurement of HV polarization, so that
the total measurement does not commute with the target
observable. By dividing the measurement into two parts, we
can vary the strength of the nonclassical effects and study
the transition between classical correlations and quantum
correlations in detail.

The experimental setup is shown in Fig. 1. As explained in
Ref. [19], a variable strength measurement is implemented by
separating the horizontal and vertical polarizations at a polar-
ization beam splitter (PBS), rotating the polarizations towards
each other using a half-wave plate (HWP) and interfering them
at a beam splitter (BS). Essentially, the polarization beam
splitter transfers a controllable fraction of the horizontal and

BS

HWP
angle

HWP

CW laser

PBS

polarizer

polarizer
path b1

path b2

ND

BS

Single photon
detector D2

Single photon
detector D3

Single photon
detector D1

HWP

GT

FIG. 1. Experimental setup of the sequential measurement of ŜPM

followed by the projective measurement of ŜHV . This interferometer
was realized by using a hybrid cube of a polarizing beam splitter
(PBS) and a beam splitter (BS), where the input beam is split by
the PBS part and the outputs interfere at the BS part of the cube.
The variable strength measurement of the positive (P) and negative
(M) superposition of horizontal (H) and vertical (V) polarizations
is realized by path interference between the H and the V polarized
component. The measurement strength of the PM measurement is
controlled by the angle θ of the half-wave plate (HWP) inside the
interferometer, which can be changed from zero for no measurement
to 22.5◦ for a fully projective measurement.

vertical polarization components to the paths inside a two-path
interferometer, so that the output ports of the interferometer
can distinguish between the P polarization and M polarization,
since the phase difference between the paths originates from
the phase differences between the horizontal and the vertical
polarization components in the input. The visibility of this
interference effect, and hence the strength of the measurement,
is controlled by the rotation angle of the HWP, where the angle
θ can be changed from zero for no measurement to 22.5◦
for a fully projective measurement. As shown in Fig. 1, the
interferomter is a Sagnac type, where the difference between
input and output beam splitter is implemented by using a
hybrid cube that acts as either a PBS or a BS, depending
on the part of the cube on which the beam is incident. Input
states were prepared using another HWP located just before
the hybrid cube and a weak coherent light emitted by a CW TiS
laser (λ = 830 nm). The output photon numbers in the output
paths b1 (measurement outcome P or m1 = +1) and in the
path b2 (measurement outcome M or m1 = −1) are counted
by using the single photon detectors D1 and D2, respectively.
Polarizers were inserted to realize the final measurement
of ŜHV , corrsponding to m2 = +1 for H polarization and
m2 = −1 for V polarization. The number of input photons in
the initial state was monitored with the single photon detector
D3 in order to compensate fluctuations of intensity in the
weak coherent light used as input. In the actual setup, we also
detected a systematic difference between the reflectivity and
the transmissivity of the final BS resulting in a slight change of
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FIG. 2. Experimental probabilities P (m1|a) of the PM measure-
ment obtained with P polarization (a = +1) as the initial state. The
solid lines indicate the theoretically expected result for VPM = 1 and
the broken line shows the theoretical expectation for VPM = 0.93.

the orientation of the measurement basis from the directions of
PM polarization. The cancellation of this systematic effect is
achieved by exchanging the roles of path b1 and path b2 using
the settings of the HWP, which effectively restores the proper
alignment of the polarization axes with the measurement [18].

The measurement has four outcomes m = (m1,m2) given
by the combinations of ŜPM eigenvalues (m1 = ±1) and ŜHV

eigenvalues (m2 = ±1). In the absence of experimental errors,
the measurement outcomes can be described by pure state
projections:

|+1,+1〉 = 1√
2

[cos(2θ )|H 〉 + sin(2θ )|V 〉],

|+1,−1〉 = 1√
2

[sin(2θ )|H 〉 + cos(2θ )|V 〉],

|−1,+1〉 = 1√
2

[cos(2θ )|H 〉 − sin(2θ )|V 〉],

|−1,−1〉 = 1√
2

[sin(2θ )|H 〉 − cos(2θ )|V 〉]. (13)

The actual measurement is limited by the visibility of
the interferometer, which was independently evaluated as
VPM = 0.93 at θ = 22.5◦. It is possible to characterize the
measurement error of the PM measurement by preparing
P-polarized and M-polarized input photons. If Am = +1 is
assigned to the m1 = +1 outcomes, and Am = −1 is assigned
to the m1 = −1 outcomes, this corresponds to a measurement
of the error probability Perror in Eq. (12):

Perror = P (m1 = −a|a) = 1

2
[1 − VPM sin(4θ )]. (14)

Figure 2 shows the experimental results obtained with our
setup. Note that this figure also provides all of the data needed
to determine the probabilities P (m1,m2|a) for the analysis of

the conditional averages Aopt(m) in the following section, since
P (m1,m2|a) = P (m1|a)/2.

For completeness, we have also evaluated the experimental
errors in the final measurement of HV polarization. We obtain
a visibility of VHV = 0.9976 for the corresponding eigenstate
inputs. With this set of data, we can fully characterize the
performance of the measurement setup, as shown in the
analysis of the following experimental results.

V. EXPERIMENTAL EVALUATION OF
NONCLASSICAL CORRELATIONS

To obtain nonclassical correlations between ŜPM and ŜHV ,
we chose an input state ψ with a linear polarization at 67.5◦,
halfway between the P polarization and the V polarization. For
this state, the initial expection value of the target observable is

〈ŜPM〉 = 1√
2
. (15)

We can now start the analysis of measurement errors by
considering only the outcome m1, in which case the mea-
surement operators Êm commute with the target observable
and the problem could also be analyzed using classical
statistics. Specifically, commutativity means that the prob-
ability P (m1|ψ) is unchanged if a projective measurement
of ŜPM is performed before the measurement of m1. It is
therefore possible to determine P (m1|ψ) from the conditional
probabilities P (m1|a) and P (a|ψ), which results in a classical
conditional average for Â = ŜPM given by

Aopt(m1) = P (m1|+)P (+|ψ) − P (m1|−)P (−|ψ)

P (m1|+)P (+|ψ) + P (m1|−)P (−|ψ)

= (1 − 2Perror)m1 + 〈ŜPM〉
m1 + (1 − 2Perror)〈ŜPM〉 m1. (16)

Equation (16) shows that the conditional averages are found
somewhere between the original expectation value of 〈ŜPM〉
for Perror = 1/2 and the measurement result m1 for Perror = 0.
In the experiment, the error probability is controlled by the
measurement strength θ as shown in Fig. 2. The corresponding
dependence of Aopt(m1) on θ is shown in Fig. 3.

It should be noted that the result does not change if it
is based on the joint probabilites P (m1,m2|ψ) shown in
Fig. 4, since the marginal probabilities P (m1|ψ) of this
joint probability distribution are equal to the sums of the
sequential measurement probabilities P (m1|a)P (a|ψ). This is
an important fact, since the actual value of a is fundamentally
inaccessible once the final measurement of m2 is performed,
regardless whether the data obtained from m2 are used or
not. Even though the correlation between ŜPM and m1 can be
explained using classical statistics, this possibility does not
imply that we can safely assign a physical reality a to the
observable. The distinction between classical and nonclassical
correlations is therefore more subtle than the choice of
measurement strategy.

Up to now, the analysis does not include any nonclassical
correlations, since the measurement is only sensitive to the
target observable 〈ŜPM〉. This situation changes if we include
the outcome m2 of the final HV measurement in the evaluation
of the experimental data. Importantly, we intend to use the
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FIG. 3. Conditional average Aopt(m1) of the PM polarization
ŜPM obtained after a measurement of m1 = +1 (P polarization)
or m1 = −1 (M polarization) at different measurement strengths θ .
At θ = 0, the measurement outcome is random (Perror = 1/2 and
the conditional average is simply given by the original expectation
value of the input state. As the likelihood of measurement errors
decreases, the conditional average approaches the value given by the
measurement outcome m1.

information gained from the outcome of the HV measurement
to update and improve our estimate of the PM polarization in
the input. For that purpose, we need to evaluate the nonclassical
correlations between 〈ŜPM〉 and 〈ŜHV 〉, which can be done
using the method developed in Sec. III. In addition to the

0
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0 5 10 15 20
[deg]

FIG. 4. Probabilities P (m1,m2|ψ) for the outcomes of the
sequential measurement of m1 (PM polarization) and m2 (HV
polarization) on an input state polarized at 67.5◦, halfway between P

and V .
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FIG. 5. Conditional averages Aopt(m1,m2) as a function of mea-
surement strength θ . The solid curve represents the theoretical
prediction for a measurement without experimental imperfections,
the broken line was calculated for an interferomter visibility of
VPM = 0.93.

known probabilities P (a|ψ) and P (m1,m2|a), we now need
to include the measurement outcomes P (m1,m2|ψ) which
provide the essential information on the nonclassical corre-
lations. The experimental results for P (m1,m2|ψ) obtained at
variable measurement strengths θ are shown in Fig. 4. The
question is how the final result m2 changes our estimate of
ŜPM . According to Eq. (9), we can find the answer by dividing
the difference between the probabilities of a measurement
sequence of a followed by (m1,m2) by the probabilities
obtained by directly measuring (m1,m2):

Aopt(m1,m2) = P (m1,m2|+)P (+|ψ) − P (m1,m2|−)P (−|ψ)

P (m1,m2|ψ)

= m1(1 − 2Perror) + 〈ŜPM〉
4P (m1,m2|ψ)

. (17)

Note that the simplification of this relation is possible because
the result m2 of the HV measurement is completely random
when the input states are eigenstates of PM polarization, so
that P (m1,m2|±) = P (m1|±)/2. Thus the m2 dependence
of the conditonal average only appears in the denominator.
Specifically, the difference in the probability of finding H
polarization (m2 = +1) or V polarization (m2 = −1) in the
final measurement translates directly into a difference in the
conditional probabilities, where a lower probability of m2

enhances the estimated value Aopt(m1,m2).
Figure 5 shows the dependence of the conditional averages

of ŜPM on the measurement strength θ . Significantly, the
low probabilities of finding H polarization (m2 = +1) result
in estimates of Aopt(m1,m2) that lie outside of the range
of eigenvalues. The difference between Aopt(+1, + 1) and
Aopt(+1, − 1) corresponds to the contribution of the nonclas-
sical correlation between ŜPM and m2, whereas the difference
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between Aopt(+1, − 1) and Aopt(−1, − 1) corresponds to the
contribution of the correlation between ŜPM and m1, which
is closely related to the classical correlation that determines
the behavior of Aopt(m1) in Fig. 3. As the measurement
strength increases, the correlation between ŜPM and m2

drops towards zero and the correlation between ŜPM and
m1 increases, approaching the ideal identification of the
measurement outcome m1 with the eigenvalue of ŜPM . For
intermediate measurement strengths, it is important to consider
the correlations between the measurement outcomes as well,
indicating that the nonclassical correlations associated with
m2 are modified by the results of m1 and vice versa. The
adjustment of measurement strength is therefore a powerful
tool for the analysis of masurement statistics that may give
us important new insights into the way that classical and
nonclassical correlations complement each other.

The conditional average Aopt(m1,m2) is obtained from the
correlations between ŜPM and the two measurement results
m1 and m2 that originate from the statistics of the initial
state ψ . Specifically, the estimate is obtained by updating
the initial statistics of ψ based on the outcomes m1 and
m2, where the measurement strength controls the relative
statistical weights of the information obtained from m1 and
m2. At a maximal measurement strength of θ = 22.5◦, the PM
measurement completely randomizes the HV polarization, so
that the conditional average Aopt(m1,m2) is independent of
m2 and the estimation procedure is based on the classical
correlations between m1 and ŜPM . As the measurement
strength is weakend, a small contribution of nonclassical
correlations emerges as the conditional averages for m2 = +1
and for m2 = −1 split, with the estimates for the more likely
m2 outcomes dropping towards zero and the estimates for
the less likely m2 outcomes diverging to values greater than
+1 for m1 = +1 and more negative than −1 for m1 = −1.
Even small contributions of nonclassical correlations therefore
result in estimates that cannot be reproduced by classical
statistics. Due to experimental imperfections, the anomalous
values of Aopt(+1, + 1) > 1 are easier to observe than the
anomalous values of Aopt(−1, + 1) < −1. Specifically, the
small probabilities of the result (−1, + 1) are significantly
enlarged by the noise background associated with limited
visibilities. As the measurement strength drops, the initial
bias in favor of P polarization in the input state ψ begins
to outweigh the effect of the measurement result of m1 = −1
that would indicate M polarization. Of particular interest is the
crossing point around θ = 12.3◦, where the initial information
provided by ψ and the measurement information m1 become
equivalent and the estimate is Aopt(−1,m2) = 0 for both
m2 = +1 and m2 = −1. For measurement strengths below
this crossing point, the initial bias provided by the initial
state towards P polarization clearly dominates the estimate,
resulting in positive values of Aopt(−1,m2). Significantly,
the increase of the estimate with reduction in measurement
strength is much faster for m2 = +1 than for m2 = −1, since
the lower probability of the outcome m2 = +1 effectively
enhances the statistical weight of the information. For θ ≈ 11◦,
this enhancement of the estimate even results in a crossing
between Aopt(−1, + 1) and Aopt(+1, + 1), so that the value
estimated for an outcome of m1 = −1 actually exceeds the

value estimated for an outcome of m1 = +1 at measurement
strengths of θ < 11◦. This counterintuitive difference between
the outcome of the PM measurement and the estimated value of
PM polarization appears due to the effects of the measurement
outcome m1 on the quantum correlations between m2 and
the target observable ŜHV in the initial state. Specifically, low
probability outcomes always enhance the correlations between
measurement results and target observable. Therefore, the
low probability outcome m1 = −1 enhances the correlation
between m2 = +1 and ŜHV , which favors the P polarization.
On the other hand, the much higher probability of m1 =
+1 does not result in a comparative enhancement of this
correlation, so that the estimated value Aopt(+1, + 1) for an
outcome of m1 = +1 is actually lower than the estimated value
Aopt(−1, + 1) for an outcome of m1 = −1. These nonclassical
aspects of correlations between measurement results and target
observable highlight the importance of the relation between
the two measurement outcomes: it is impossible to isolate the
measurement result m1 from the context established by both
ψ and m2. Since the estimated values Aopt(m1,m2) correspond
to weak values, this observation may also provide a practical
example of the relation between weak values and contextuality
[20]. The present analysis evaluates Â in a measurement
context (m1,m2), where the partial specification of the context
by m1 is fully compatible with the context of precise measure-
ments of Â represented by eigenstate projections. However,
the subsequent measurement of m2 modifies this context,
making the sequence (m1,m2) incompatible with eigenstate
projections. The dependence of the value of Aopt(m1,m2) on
the second outcome m2 thus provides a practical example of
how the physical meaning of a measurement result changes
when the context is specified further.

In the limit of zero measurement strength (θ = 0), the
estimated values depend only on m2, with the unlikely
measurement outcome of m2 = +1 resulting in an anomalous
weak value of Aopt(m1, + 1) = √

2 + 1 and the likely outcome
of m2 = −1 resulting in a weak value estimate of Aopt(m1, −
1) = √

2 − 1. Since these estimates are based only on the
outcomes of precise measurements of HV polarization, they
provide a direct illustration of the nonclassical correlation
between ŜPM and ŜHV in ψ . Due to the specific choice
of initial state, Aopt(m1, + 1) is larger than Aopt(m1, − 1),
which means that the detection of H polarization makes P
polarization more likely, while the detection of V polarization
increases the likelihood of M polarization. If we disregard
for a moment that the estimated values for m2 = +1 lie
outside the range of possible eigenvalues, we can give a
fairly intuitive characterization of this nonclassical correlation.
Clearly, the lowest likelihood is assigned to the combination
of H polarization and M polarization, which are the least likely
polarization results obtained in separate measurements of HV
polarization and PM polarization for the input state ψ . We
can therefore summarize the result by observing that quan-
tum correlations between Bloch vector components strongly
suppress the joint contributions of the least likely results, to
the point where the correlation can exceed positive probabil-
ity boundaries, corresponding to an implicit assignment of
negative values to the combination of the two least likely
outcomes [18].
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The results presented in this section clearly show that the
final HV measurement provides additional information about
the target observable Â = ŜPM . We can therefore expect that
the measurement error will be reduced significantly if we use
Am1,m2 = Aopt(m1,m2) as measurement result assigned to the
joint outcome (m1,m2). In the final section of our discussion,
we will therefore take a look at the measurement errors
obtained at different measurement strengths θ and identify the
amount of PM information obtained from the measurement of
HV polarization.

VI. EVALUATION OF MEASUREMENT ERRORS

According to Eq. (6), the measurement errors for optimized
measurement outcomes Am = Aopt(m) can be evaluated di-
rectly by subtracting the statistical fluctuations of Am from the
initial fluctuations of the target observable Â in the initial
state ψ . We can therefore use the results of the previous
sections to obtain the measurement errors ε2(A) for the
measurement outcomes m1 and for the combined measurement
outcomes (m1,m2). The results are shown in Fig. 6, together
with the measurement error given by Eq. (12), which is
obtained by assigning values of Am1 = ±1 to the measurement
outcomes m1.

Not surprisingly, the suboptimal assignment of eigenvalues
to the measurement outcomes results in much avoidable extra
noise. In fact, the error for this assignment exceeds the
uncertainty of �A2 = 0.5 for the initial state ψ at measure-
ment strengths of θ < 13.5◦, indicating that one can obtain
a better estimate of PM polarization from the expectation
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FIG. 6. Measurement errors for different measurement strategies.
The highest errors are obtained by assigning eigenvalues of Am1 = ±1
to the outcomes m1 of the PM measurement. Optimization of the
estimate based on m1 results in an error that decreases with increasing
measurement strength. By basing the estimate on the combined
outcomes (m1,m2), it is possible to achieve errors close to zero for
low measurement strength θ , since the undisturbed HV measurement
provides maximal information on the PM polarization through the
nonclassical correlations between ŜPM and ŜHV in the initial state ψ .

value of the input state. This never happens in the case of
the errors εopt associated with the optimal estimates of the
target observable, since the optimized estimates based on the
conditional averages for the different measurement outcomes
include the information of the initial state. In the case of the
classical estimate Aopt(m1) obtained from the variable strength
PM measurement, the measurement error drops gradually from
the variance of the initial state at θ = 0 to a residual error
caused by the limited visibility VPM at θ = 22.5◦. By including
the information of the final HV measurement, the estimate can
be improved to Aopt(m1,m2), resulting in a reduction of the
error that is particularly significant when the measurement
strength approaches θ = 0.

The most interesting experimental result might be the
error obtained for the optimal estimate Aopt(m1,m2), which
summarizes all of the available information in the estimates
shown in Fig. 5. Theoretically, the error of this estimate would
be zero if the measurements could be performed without any
experimental imperfections, as indicated by the red solid line
in Fig. 6. The actual results are close to zero error in the
limit of low measurement strength. In this limit, the high
visibility of the final HV measurement for m2 dominate
the estimate, with a much lower impact of the less reliable
PM measurement for m1. The errors then start to rise as
the experimental values of Aopt(−1, + 1) in Fig. 5 reach
their maximal values near θ = 8◦. The value of the error
continues to rise beyond the maximum of Aopt(−1, + 1) and
reaches its maximal value near the θ = 12.3◦ crossing point
where Aopt(−1, + 1) = Aopt(−1, − 1) = 0. At this point, the
estimate is particularly sensitive to measurement noise, since
the extremely low probabilities of an outcome of (−1, + 1)
are strongly affected by experimental noise backgrounds.
For measurement strengths greater than this crossing point
(θ > 12.3◦), the error of Aopt(m1,m2) is not much lower than
the error of Aopt(m1), indicating that the final measurement
result m2 provides only very little additional measurement
information on ŜPM . This appears to be a result of the
experimental noise in the PM measurement, which limits
the error to ε2 = 0.12 at a maximal measurement strength
of θ = 22.5◦.

In summary, the analysis of the measurement errors shows
that the nonclassical correlation between m2 and ŜPM used
to obtain the estimate Aopt(m1,m2) in the limit of weak
measurement interactions results in much lower errors than
the use of the classical correlations between m1 and ŜPM that
dominate in the strong measurement regime. This is a result
of the fact that the errors in the limit of weak measurement are
dominated by the HV visibility of the setup, while the errors
in the strong measurement regime mostly originate from the
PM visibility, which happens to be much lower than the HV
visibility in the present setup. Our setup is therefore ideally
suited to illustrate the importance of nonclassical correlations
in the evaluation of measurement errors when the initial state
is taken into account. The optimal estimate Aopt(m1,m2) is
obtained by considering the specific relation between the mea-
surement outcomes and the target observable in the specific
input state, which may result in counterintuitive assignments
of values to the different measurement outcomes. In the present
case, the lowest errors are obtained as a consequence of this
counterintuitive assignment, since the experimental setup is
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particularly robust against experimental imperfections in the
regime of low measurement strength which is most sensitive
to the effects of nonclassical correlations. Our results thus
provide a particularly clear experimental demonstration of the
reduction of measurement errors by nonclassical correlations
between measurement result and target observable in the initial
quantum state.

VII. CONCLUSIONS

We have investigated the nonclassical correlations between
the outcomes of a quantum measurement and the target
observable of the measurement by studying the statistics of
measurement errors in a sequential measurement. In the initial
measurement, the measurement operator commutes with the
target observable and the measurement outcome m1 relates
directly to the target observable, while the final measurement
of a complementary observable introduces the effect of non-
classical correlations between the outcome m2 and the target
observable. To evaluate the errors, we applied the operator
formalism introduced by Ozawa and show that the evaluation
of two-level statistics can be performed by combining the
measurement statistics of the input state ψ with the statistics
obtained from eigenstate inputs of the target observable. By
combining the statistics of separate measurements according
to the rules obtained from the operator formalism, it is possible
to identify the optimal estimate of the target observable using
only the available experimental data. Due to the specific
combination of the statistical results, this estimate can exceed
the limits of classical statistics by obtaining values that lie
outside the range of possible eigenvalues. Typically, the least
likely outcomes are associated with extreme values of the
target observable. In the present experiment, we find extremely
high estimates of the target observable when the strength of
the initial measurement is weak and the measurement result

is dominated by the nonclassical correlations between the
target observable and the complementary observable detected
in the final measurement. In this limit, the initial measurement
outcome that refers directly to the target observable mainly
enhances or reduces the effects of the nonclassical corre-
lations, which results in the counterintuitive anticorrelation
between the actual measurement result and the associated
estimate of the target observable for a final outcome of
m2 = +1.

Our discussion provides a more detailed insight into the
experimental analysis of measurent errors that has recently
been used to evaluate the uncertainty limits of quantum
measurements derived by Ozawa [1–5,7,8]. It is important
to note that the estimation procedure associated with this kind
of error analysis also reveals important details of the non-
classical statistics originating from the correlations between
physical properties in the initial state. In the present work,
we have taken a closer look at the experimental analysis of
measurement errors and clarified its nonclassical features. The
results show that some of the effects involved in the optimal
evaluation of the experimental data are rather counterintuitive
and exhibit features that exceed the possibilities of classical
statistics in significant ways. For a complete understanding of
measurement statistics in quantum mechanics, it is therefore
necessary to explore the effects of nonclassical correlations in
more detail, and the present study may be a helpful starting
point for a deeper understanding of the role such correlations
can play in various measurement contexts.
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