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Influence of birefringence in the instability spectra of oppositely directed coupler
with negative index material channel
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A theoretical investigation on the influence of birefringence in the modulational instability (MI) spectra of
an oppositely directed coupler (ODC) with a negative index material (NIM) channel is presented. We study the
effect of birefringence on MI in linear and circular birefringent ODCs for both normal and anomalous dispersion
regimes. It is found that besides the instability band due to nonlinear positive index material (PIM) and negative
index material (NIM) channels, new symmetric instability regions are observed as a result of birefringent effects.
Also defocusing nonlinearity suppresses the NIM band in the normal dispersion regime, but in the anomalous
dispersion regime the defocusing nonlinearity enhances the gain of the NIM band. In contrast to the case of
linear birefringence, in terms of MI gain from circular birefringence, only two birefringent bands dominate: the
inherently PIM and NIM bands. This preponderance is attributed to the fact that the cross-phase modulation
effect for the case of circular birefringence is stronger, thus allowing a better coupling between the beams, which
results in the enhancement of the gain. Therefore, the manipulation of MI and solitons in an ODC is better
performed when the birefringence is circular rather than linear. Here we report how to generate and manipulate
MI and solitons in birefringent ODCs with a particular emphasis on a NIM channel.
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I. INTRODUCTION

Modulation instability (MI) is a fundamental and ubiquitous
process that appears in most nonlinear systems [1–4]. During
this process, small perturbations upon a uniform intensity
beam grow exponentially due to the interplay between nonlin-
earity and dispersion or diffraction. As a result, a continuous
wave often breaks up into trains of ultrashort solitons like
pulses [5]. MI is closely related to the Fermi-Pasta-Ulam
recurrence effect and to the existence of both bright and dark
solitons. MI was first theoretically predicted by Hasegawa [6]
in 1984 and later experimentally verified by Tai et al. in 1986
[7]. This nonlinear instability process has been observed in a
large variety of subfields of physics, such as fluid dynamics
[8], plasma [9–11], Bose-Einstein condensates [12,13], and
nonlinear optics [14–17].

Recently, the propagation of electromagnetic waves
through an oppositely directed coupler (ODC) with a negative
index material (NIM) channel has attracted wide spread
interest [18–20]. This coupler preserves the path of light
propagation, but the direction of input and output fields are
exactly opposite in nature, hence it is called an oppositely
directed coupler [18]. The electromagnetic wave entering in
one channel of the coupler leaves through the other channel in
the opposite direction, which closely resembles a distributed
mirror [21]. The NIM channel possesses an effective feedback
mechanism due to the opposite directionality of the phase
velocity and the energy flow. Through this effective feedback
mechanism, the ODC admits gap soliton formation and
possesses bistable properties [18].

The MI formulation in the context of an ODC, is connected
with the coupled nonlinear Schrödinger equation (NLSE),
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which describes the propagation of electromagnetic waves
in a couplerlike system. Depending on the power of the
intense beam, by incorporating the various physical effects, the
NLSE can be extended to study various physical phenomena.
Recently, there has been growing interest in the study of MI
in ODCs [20,22–26]. A crucial factor in the dynamics of MI
in an ODC is the ratio of forward- to backward-propagating
wave power. In Ref. [22], the author reported the impact
of the forward- to backward-propagating power ratio and
observed threshold conditions for the existence of MI in
ODCs. MI in ODCs in the context of saturable nonlinear
response and quintic nonlinearity was discussed in Refs. [23]
and [24], respectively. It has been reported that both saturable
nonlinearity and quintic nonlinearity significantly effect the
MI spectrum and can be used to control the generation of
MI bands. The effects of self-steepening (SS) and intrapulse
Raman scattering (IRS) were studied in Ref. [20], and it has
been found that SS and IRS generate new instability bands and
extend the domain of the instability region.

All previous studies of MI in an ODC [20,22–24] ignored
the birefringence effect caused by copropagation of the two
polarized modes. The real single-mode fibers are not truly
single modal but rather bimodal due to the presence of
birefringence. The coupler structure considered in this paper
is shown schematically in Fig. 1. There are a good number
of studies devoted to the study of various nonlinear effects
associated with the birefringent fibers. For instance, the
dynamics of dark solitons in birefringent fibers was discussed
by Akhmediev et al. [27], the polarization dynamics of
birefringent fibers was reported in Ref. [28], and the generation
of ultrashort pulses using birefringent fibers was discussed in
Ref. [29], to mention a few. The study of MI in birefringent
fibers deserves special attention, as it results in the generation
of unconventional MI bands [30–33]. A comprehensive study
of MI with the effect of stimulated Raman scattering in
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FIG. 1. Schematic diagram of a two core oppositely directed
coupler.

birefringent fibers was reported by Millot et al. [30]. The
enhancement of transmission capacity of an optical fiber as
a result orthogonal polarizations was described in Ref. [34].
Recently, many interesting results have been reported in the
context of polarization or vector MI [35–37]. For instance,
polarization MI in a Manakov fiber system was discussed in
Ref. [35]. In Refs. [36,37], Baronio et al. demonstrated the
origin of rogue waves from baseband MI. Thus, considering
the physical importance of birefringence, we derive a nonlinear
propagation model for birefringent ODCs and investigate the
effect of birefringence on the instability spectra of an ODC
with a NIM channel.

The paper is organized as follows. In Sec. II, the theoretical
model of the problem and linear stability analysis leading to
the dispersion relation are presented. In Sec. III investigations
of MI in a birefringent ODC with a NIM channel are carried
out in detail, followed by conclusions in Sec. IV.

II. THEORETICAL MODEL

Let us consider the single-mode waveguides,
whose electric field �E(ω) can be represented as

[38,39]

Ex = E (1)
x (z,t)F (x)

1 (x,y)ei(β1xz−ω0t) + E (2)
x (z,t)

×F
(x)
2 (x,y)ei(β2xz−ω0t) + c.c., (1a)

Ey = E (1)
y (z,t)F (y)

1 (x,y)ei(β1yz−ω0t) + E (2)
y (z,t)

×F
(y)
2 (x,y)ei(β2yz−ω0t) + c.c., (1b)

where βax and βay are the propagation constants for the ath
(a = 1,2) waveguide. Radial distribution of the electric field
in the waveguide is defined by the mode functions F

(x)
1 (x,y)

and F
(x)
2 (x,y) for the x component of the electrical field, and

F
(y)
1 (x,y) and F

(y)
2 (x,y) for the y component.

The wave equation can be written as

∇2 �E(ω) + k2
0 ε̂(ω,x,y) · �E(ω) = 0. (2)

Here, k0 = ω0/c is the wave number of the carrier wave
in a vacuum. If the waveguides are manufactured from
metamaterials, then the equation can be modified as

∇2 �E(ω) + k2
0 ε̂(ω,x,y)μ̂(ω,x,y) · �E(ω) = 0. (3)

Now we take the strong ansatz, the dielectric tensor ε̂ is a
diagonal one ε̂ = diag(εx,εy,εz). Thus the wave equation splits
into two scalar equations

∇2Ex(ω) + k2
0εx(ω,x,y)Ex(ω) = 0,

∇2Ey(ω) + k2
0εy(ω,x,y)Ey(ω) = 0.

Operator ∇2 is ∂2/∂z2 + ∇2
⊥. By using the slowly varying

approximation, we can write

(
2iβ1x

∂E (1)
x

∂z
− β2

1xE (1)
x

)
eiβ1xzF

(x)
1 +

(
2iβ2x

∂E (2)
x

∂z
− β2

2xE (2)
x

)
eiβ2xzF

(x)
2

+ E (1)
x eiβ1xz∇2

⊥F
(x)
1 + E (2)

x eiβ2xz∇2
⊥F

(x)
2 + k2

0εx

(
E (1)

x eiβ1xzF
(x)
1 + E (2)

x eiβ2xzF
(x)
2

) = 0. (4a)

(
2iβ1y

∂E (1)
y

∂z
− β2

1xyE (1)
y

)
eiβ1yzF

(y)
1 +

(
2iβ2y

∂E (2)
y

∂z
− β2

2yE (2)
y

)
eiβ2yzF

(y)
2

+ E (1)
y eiβ1yz∇2

⊥F
(y)
1 + E (2)

y eiβ2yz∇2
⊥F

(y)
2 + k2

0εy

(
E (1)

y eiβ1yzF
(y)
1 + E (2)

y eiβ2yzF
(y)
2

) = 0. (4b)

The mode functions F
(x)
1 , F

(x)
2 , F

(y)
1 , and F

(y)
2 are defined

by

∇2
⊥F (α)

a + (
k2

0ε
(a)
α − β2

aα

)
F (α)

a = 0, (5)

where a = 1,2 and α = x,y. Using these equations one can
modify the wave equations. The equation for the electric field
in the first waveguide Ex leads to

2iβ1x

∂E (1)
x

∂z
eiβ1xzF

(x)
1 + 2iβ2x

∂E (2)
x

∂z
eiβ2xzF

(x)
2 + k2

0

(
εx − ε(1)

x

)
× E (1)

x eiβ1xzF
(x)
1 + k2

0

(
εx − ε(2)

x

)
E (2)

x eiβ1xzF
(x)
2 = 0.

The functions F
(x)
1 and F

(y)
1 are localized in the first

waveguide, and the functions F
(x)
2 and F

(y)
2 are localized in

the second waveguide. Thus, we can assume the following
approximation:

〈F1,α|F2,β〉 =
∫

F
(α)
1 (x,y)F (β)

2 (x,y)dx dy = 0.

Let

〈Fa,α|Fa,α〉 =
∫

F (α)
a (x,y)F (α)

a (x,y)dx dy = 1.

These assumptions allow us to get two equations:

2iβ1x

∂E (1)
x

∂z
+ k2

0〈F1,x|(εx − ε(1)
x

)|F1,x〉E (1)
x

+ k2
0〈F1,x|(εx − ε(2)

x

)|F2,x〉E (2)
x eiz(β2x−β1x ) = 0, (6a)
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2iβ2x

∂E (2)
x

∂z
+ k2

0〈F2,x|(εx − ε(2)
x

)|F2,x〉E (2)
x

+ k2
0〈F2,x|(εx − ε(1)

x

)|F1,x〉E (1)
x e−iz(β2x−β1x ) = 0. (6b)

In the integral 〈F1,x|(εx − ε(1)
x )|F1,x〉 the difference εx −

ε(1)
x is localized in the region of the second waveguide, but

F
(x)2
1 is localized in the region of first waveguide. Thus this

integral approximately is zero. Under the near-zero mismatch
conditions, the coupling constants can be defined as

κα = k2
0〈F2,α|(εα − ε(2)

α

)|F1,α〉
2β1α

≈ k2
0〈F1,α|(εα − ε(1)

α

)|F2,α〉
2β2α

.

Finally, the equations for E (a)
α take the form

i
∂E (1)

α

∂z
+ καE (2)

α eiz(β2α−β1α ) = 0, (7a)

i
∂E (2)

α

∂z
+ καE (1)

α e−iz(β2α−β1α ) = 0. (7b)

According to [38,39] we introduce the birefringence pa-
rameters

βax = β + �βa, βay = β − �βa, a = 1,2.

Hence,

β2x − β1x = �β + δβ, β2y − β1y = �β − δβ,

where �β = β − β1 and δβ = �β − �β1.
It is suitable to introduce new envelopes Ax , Ay , Bx , and

By :

E (1)
x = Axe

iz(�β+δβ)/2, E (2)
x = Bxe

−iz(�β+δβ)/2,

E (1)
y = Aye

iz(�β−δβ)/2, E (2)
y = Bye

−iz(�β−δβ)/2.

In terms of these envelopes the system of Eqs. (7a) and (7b)
can be rewritten as

i
∂Ax

∂z
− �β + δβ

2
Ax + κxBx = 0, (8a)

i
∂Ay

∂z
+ �β − δβ

2
Ay + κyBy = 0, (8b)

i
∂Bx

∂z
+ �β + δβ

2
Bx + κxAx = 0, (8c)

i
∂By

∂z
− �β − δβ

2
By + κyAy = 0. (8d)

If we consider the electromagnetic pulse propagation
in these equations the following substitution needs to be
incorporated:

∂

∂z
→ σ

∂

∂z
+ 1

vaα

∂

∂t
.

Here, σ = ±1. The substitution of the nonlinear polarization
can be done by standard approach as follows. Then the

propagation of the light wave in a birefringent ODC with a
NIM channel can be described by the following four coupled
nonlinear Schrödinger equations (CNLSEs):

iσ1
∂Ax

∂z
+ i

1

v1x

∂Ax

∂t
− �β + δβ

2
Ax + k12xBx

+ γ1x(|Ax |2 + ρ|Ay |2)Ax = 0, (9a)

iσ1
∂Ay

∂z
+ i

1

v1y

∂Ay

∂t
+ �β − δβ

2
Ay + k12yBy

+ γ1y(|Ay |2 + ρ|Ax |2)Ay = 0, (9b)

iσ2
∂Bx

∂z
+ i

1

v2x

∂Bx

∂t
+ �β + δβ

2
Bx + k21xAx

+ γ2x(|Bx |2 + ρ|By |2)Bx = 0, (9c)

iσ2
∂By

∂z
+ i

1

v2y

∂By

∂t
− �β − δβ

2
By + k21yAy

+γ2y(|By |2 + ρ|Bx |2)By = 0, (9d)

where σ1 and σ2 indicate the sign of refractive index in channel
one (C1) and channel two (C2), respectively. We consider
that C1 is made of positive index material (PIM) and C2 by
NIM, hence σ1 = 1 and σ2 = −1; Aj and Bj (j = x,y) are the
normalized complex amplitude of the modes in PIM and NIM
channels, respectively; γij and vij are the normalized nonlinear
coefficients and absolute value of group velocities for C1
and C2, respectively. k12j and k21j are coupling coefficients,
and ρ is the relative cross phase modulation coefficient.
We assume the following forms of steady-state solutions for
Eq. (9):

Ax = u1x exp(iq1z), (10a)

Ay = u1y exp(iq2z), (10b)

Bx = u2x exp(iq1z), (10c)

By = u2y exp(iq2z), (10d)

where qi is the propagation constant corresponding to the
different polarization components and uij is the constant
amplitude. We use linear stability analysis to study MI
in an ODC based on Eq. (9). The basic idea of linear
stability analysis is to perturb a continuous-wave solution
and then analyze whether the perturbation grows or decays
with propagation. The linear stability of the steady state can
be examined by perturbing the solutions of the following
form:

a1x = [u1x + α1x(z,t)] exp(iq1z), (11a)

a1y = [u1y + α1y(z,t)] exp(iq2z), (11b)

a2x = [u2x + α2x(z,t)] exp(iq1z), (11c)

a2y = [u2y + α2y(z,t)] exp(iq2z). (11d)
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Substituting Eq. (11) into Eq. (9) and linearizing, one can
obtain

i
∂α1x

∂z
+ i

1

v1x

∂α1x

∂t
+ κ12xα2x − κ12xfxα1x

+R1x[α1x + α∗
1x] + Q1xy[α1y + α∗

1y] = 0, (12a)

i
∂α1y

∂z
+ i

1

v1y

∂α1y

∂t
+ κ12yα2y − κ12xfyα1y

+R1y[α1y + α∗
1y] + Q1xy[α1x + α∗

1x] = 0, (12b)

−i
∂α2x

∂z
+ i

1

v2x

∂α2x

∂t
+ κ21xα1x − κ21xfxα2x

+R2x[α2x + α∗
2x] + Q2xy[α2y + α∗

2y] = 0, (12c)

−i
∂α2y

∂z
+ i

1

v2y

∂α2y

∂t
+ κ21yα1y − κ21xfyα2y

+R2y[α2y + α∗
2y] + Q2xy[α2x + α∗

2x] = 0, (12d)

where fx = u2x

u1x
, fy = u2y

u1y
, f1 = u1x

u1y
, f2 = u2x

u2y
, the total power

p = u2
1x + u2

2x + u2
1y + u2

2y , and

R1x = p

1 + f 2
x + (

1
f1

)2 + (
fx

f2

)2 γ1x,

R1y = p

1 + f 2
1 + f 2

y + f 2
x f 2

1

γ1y,

R2x = p

1 + 1
f 2

x
+ 1

f 2
2

+ 1
f 2

y f 2
2

γ2x,

R2y = p

1 + (
f1

fy

)2 + 1
f 2

y
+ f 2

2

γ2x,

Q1xy = p

f1
[
1 + f 2

x + (
1
f1

)2 + (
fx

f2

)2]γ1x ρ,

Q2xy = p

f2
[
1 + (

1
f2

)2 + (
1
fx

)2 + 1
(f2fy )2

]γ2x ρ.

To solve the above set of four linear differential equations, we
assume a plane-wave ansatz of the form

αj (z,t) = cj exp[i(Kz − t)] + dj exp[−i(Kz − t)],
(13)

where K and  are the wave vector and frequency of
perturbation. Substituting Eq. (13) in Eq. (12), we obtain a set
of eight linearly coupled equations satisfied by cj and dj . This
set has nontrivial solutions only when the 8 × 8 determinant
formed by the coefficient matrix vanishes as given below:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18

ε21 ε22 ε23 ε24 ε25 ε26 ε27 ε28

ε31 ε32 ε33 ε34 ε35 ε36 ε37 ε38

ε41 ε42 ε43 ε44 ε45 ε46 ε47 ε48

ε51 ε52 ε53 ε54 ε55 ε56 ε57 ε58

ε61 ε62 ε63 ε64 ε65 ε66 ε67 ε68

ε71 ε72 ε73 ε74 ε75 ε76 ε77 ε78

ε81 ε82 ε83 ε84 ε85 ε86 ε87 ε88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

c3

c4

d1

d2

d3

d4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0,

where ε11 = R1x , ε12 = 0, ε13 = Q1x , ε14 = 0, ε15 = R1x +
K − fxκ12x − ψ1x , ε16 = κ12x , ε17 = Q1x , ε18 = 0, ε21 =
R1x − K − fxκ12x + ψ1x , ε22 = κ12x , ε23 = Q1x , ε24 = 0,
ε25 = R1x , ε26 = 0, ε27 = Q1x , ε18 = 0, ε31 = Q1x , ε32 = 0,
ε33 = R1y , ε34 = 0, ε35 = Q1x , ε36 = 0, ε37 = R1y + K −
fyκ12y − ψ1y , ε38 = κ12y , ε41 = Q1x , ε42 = 0, ε43 = R1y −
K − fyκ12y + ψ1y , ε44 = κ12y , ε45 = Q1x , ε46 = 0, ε47 =
R1y , ε48 = 0, ε51 = 0, ε52 = R2x , ε53 = 0, ε54 = Q2x , ε55 =
κ12x , ε56 = R2x − K − κ12x

fx
− ψ2x , ε57 = 0, ε58 = Q2x , ε61 =

κ21x , ε62 = R2x + K − κ12x

fx
+ ψ2x , ε63 = 0, ε64 = Q2x , ε65 =

0, ε66 = R2x , ε67 = 0, ε68 = Q2x , ε71 = 0, ε72 = Q2x , ε73 = 0,
ε74 = R2y , ε75 = 0, ε76 = Q2x , ε77 = κ21y , ε78 = R2y − K −
κ21y

fy
− ψ2y , ε81 = 0, ε82 = Q2x , ε83 = κ21y , ε84 = R2y + K −

κ21y

fy
+ ψ2y , ε85 = 0, ε86 = Q2x , ε87 = 0, ε88 = R2y , and ψij =


vigj

(i = 1,2 and j = x,y).
In the general case, v1gx 
= v2gx 
= v1gy 
= v2gy ; but in

this paper in order to highlight the most important physical
effects in the ODC, we assume v1gx = v2gx = v1gy = v2gy ;
γ1x = γ1y= γ1 and γ2x= γ2y= γ2; fx= fy= f . The vanishing
condition of the determinant associated with this 8 × 8 stability
matrix leads to an eighth-order polynomial in ψ as given
below:

ψ8 + a6ψ
6 + a5ψ

5 + a4ψ
4 + a3ψ

3 + a2ψ
2 + a1ψ + a0 = 0.

(14)

The eight roots of Eq. (14) determine the stability of the
continuous-wave solution. To observe MI, one of the roots
of this eighth-order polynomial should possess a nonzero and
negative imaginary part. The expression for the instability gain
is given by the equation

g = |Im(ψmax)|, (15)

where Im(ψmax) denotes the imaginary part of ψmax, ψmax is
the root of the polynomial with the largest value.

III. MODULATION INSTABILITY IN BIREFRINGENT
OPPOSITELY DIRECTED COUPLER

The propagation of electromagnetic waves with two po-
larized modes in ODC possesses birefringence. According to
the polarized modes supported by the wave guide, the bire-
fringence may be linear or circular. In the case of linear bire-
fringence, the core is said to support two orthogonal linearly
polarized modes. On other hand, the circular-birefringent ODC
supports the right- and left-circularly polarized modes. For
better insight, we consider both types of birefringence, namely,
linear and circular birefringence. To provide a comprehensive
picture, we study MI in both normal and anomalous dispersion
regimes.

A. Normal dispersion

In this section, we briefly study MI in a normal dispersion
regime, where sgn(f ) = 1. It is well known that, due to the
lack of phase matching between the linear and nonlinear
effects, a normal dispersion regime is not subjected to MI.
However, under some special cases such as in the presence
of higher order dispersion or cross-phase modulation [40–42],
noninstantaneous nonlinear systems [43], directional couplers
[1], MI was observed even in the normal dispersion regime. To
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FIG. 2. MI gain spectra vs power P in the normal dispersion regime in a linear-birefringent ODC for different nonlinear configurations:
(a) γ1 = γ2 = 1 and (b) γ1 = −γ2 = 1.

report on the influence of birefringence on the MI spectra of
ODCs, we consider the two typical birefringence cases, linear
and circular, whose cross-phase modulation coefficients take
the values σ = 2/3 and σ = 2, respectively.

1. Effect of input power on MI

Now we discuss the effect of the input wave power P on
the instability spectra of birefringent ODCs. As reported earlier
[1,25], the instability gain is found to increase monotonously
with increase in the input power [1]. Figure 2 depicts the MI
gain spectra versus power P for different nonlinear configura-
tions in linear-birefringent ODC. Two nonlinear combinations
will be considered in this context, i.e., γ1 = γ2 = 1 and γ1 =
−γ2 = 1. When γ1 = γ2 = 1, the instability spectra consist
of symmetric instability bands centered at zero perturbation
constant as shown in the Fig. 2(a). As the input power

increases, the instability gain and the width of the instability
band proportionally increase. But the scenario is different for
the defocusing nonlinear configuration. For instance, when
γ1 = −γ2 = 1, new symmetric instability bands at higher
values of K are noted, in addition to the primary pair of
instability bands. Thus, the defocusing nonlinearity enables
new instability bands and thereby extends the domain of the
instability region as shown in Fig. 2(b).

Figure 3 represents the MI spectra corresponding to circular
birefringence for the nonlinear configurations γ1 = γ2 = 1 and
γ1 = −γ2 = 1. It is evident from Fig. 3(a) for γ1 = γ2 = 1, in
addition to the symmetric central band as observed for the
linear-birefringent case, a symmetric band of less gain and
narrow width is observed for the circular-birefringent system.
On the other hand, the defocusing nonlinear configuration γ1 =
−γ2 = 1 enhances MI by increasing gain and width of the
instability band.

�40
�20

0

(a) (b)

20
40

K cm�1

0

5

10

P �cm�1�

0
5

10

15

G
ai

n
�c

m
�

1 �

�50

0

50
K cm�1

0

5

10

P �cm�1�

0

5

10

G
ai

n
cm
�

1

FIG. 3. Same as Fig. 2, but in a circular-birefringent ODC.
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FIG. 4. MI gain spectra vs f in the normal dispersion regime in a linear-birefringent ODC for different nonlinear configurations:
(a) γ1 = γ2 = 1 and (b) γ1 = −γ2 = 1.

2. Effect of the wave amplitude ratio on MI

Xiang et al. investigated MI in ODCs without consider-
ing birefringent effects such as cross-phase modulation and
polarization-dependent coupling between the cores [22]. It
is reported that in ODCs, the nonlinear PIM channels form
symmetric MI bands at lower f values and nonlinear NIM
channels form MI bands at higher values of f [25]. In similar
lines with [22,25], one can observe two pairs of instability
bands on either side of K , the one corresponding to lower
values of f represents the PIM band and the other at higher
values of f corresponds to the NIM band. Figure 4 shows the
MI gain spectra versus f for different nonlinear configurations
in linear-birefringent ODCs.

Besides the PIM and NIM bands, one can observe new
symmetric instability bands in Fig. 4, which ares identified as
the result of the birefringence and we call them birefringent
bands. The birefringent bands are generally weak, which is
reflected by the less gain and narrow width of the instability
bands. In similar lines with inherent PIM and NIM bands in
the ODC, the emergence of two pairs of birefringent bands is
identified as the result of the nonlinear PIM and NIM channels.
It is worth mentioning that the two pairs of birefringent
bands are reduced to one pair if either PIM (γ1 = 0) or
NIM (γ2 = 0) is turned off. This is a clear indication that
the inclusion of birefringence induces new bands in addition
to the intrinsic PIM and NIM bands. The birefringent band
identified at the lower values of f is called the birefringent
PIM band (B-PIM) and the one at the higher values of f

is called the birefringent NIM band (B-NIM). As evident in
Fig. 4(a), the two birefringent bands overlap at a particular
value of f , which is marked by an abrupt increase in the MI
gain.

Figure 4(b) depicts the instability spectra corresponding to
defocusing nonlinearity, i.e., γ1 = −γ2 = 1. It is obvious from
the Fig. 4(b) that the defocusing nonlinearity does not bring
any new instability band, instead it suppresses the NIM band,
causing depletion in the gain and width of the instability band.

However, the birefringent bands show no significant changes
caused by the defocusing nonlinearity.

Following the linear-birefringent case, we now extend our
study to the case of circular-birefringent ODCs. Figure 5
depicts the MI gain spectra versus f in the normal dispersion
regime for nonlinear configurations γ1 = γ2 = 1 and γ1 =
−γ2 = 1. As reported in the linear birefringence, the PIM
and NIM bands remain independent of birefringence even for
the circular case.

Its worth mentioning that the two birefringent bands
(B-PIM and B-NIM) as a result of circular birefringence
dominate the inherent PIM and NIM bands of the ODC. This
preponderance is attributed to the fact that the cross-phase
modulation effect for circular birefringence is stronger, thus
allowing a better coupling between the beams, which results
in the enhancement of the gain. It is interesting to note that for
f ≈ 1, the B-PIM and B-NIM bands merge, resulting in the
coalesced instability region of elevated gain as shown in Fig. 5.
Figure 5(b) corresponds to the case of defocusing nonlinearity
in the circular-birefringent system. It is evident from Fig. 5(b),
that there is no significant impact on the birefringent bands;
however, defocusing nonlinearity suppresses the NIM band by
depleting the gain and width of the instability region.

B. Anomalous dispersion

Now, we extend our study to the case of anomalous
dispersion regime, where sgn(f ) = −1. It is well known
that the anomalous dispersion regime is said to support the
formation of solitons and MI as a result of the interplay
between the nonlinearity and the negative group dispersion
coefficient. Thus, the study of MI in the anomalous dispersion
regime deserves special interest. In this section, we briefly
study the impact of birefringence on MI in the context of
anomalous dispersion regime.

As discussed in the previous section, we consider both kinds
of birefringence, namely, linear and circular. In similar lines to
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FIG. 5. Same as Fig. 4, but in a circular-birefringent ODC.

the case of normal dispersion regime, in the following sections,
we exclusively study the impact of input power P and the wave
amplitude ratio f on the instability spectra of birefringent
ODC.

1. Effect of input power on MI

The dependence of power on MI for different nonlinear
configurations in the anomalous dispersion regime is shown in
Fig. 6, which clearly illustrates the monotonous increase in the
MI gain with input power. In the linear-birefringent case, two
pairs of symmetric instability bands on either side of the zero
propagation constant for γ1 = γ2 = 1 are observed as shown in
the Fig. 6(a). This is in contrast to the single pair of instability
bands noted for the case of the normal dispersion regime
(refer to Fig. 2). The primary band near the zero propagation
constant shows higher gain than the instability band at higher
values of K . Figure 6(b) shows the instability spectra when the

nonlinearity of the NIM channel is defocused. It is observed
that for defocusing nonlinearity, the primary band near the
zero propagation constant shifts to higher values of K , and
resembles the MI spectra corresponding to the case of the
normal dispersion regime (refer to Fig. 2).

The instability spectra corresponding to the circular-
birefringent case is portrayed in the Fig. 7. As for linear bire-
fringence, two pairs of instability bands are observed on either
side of the zero propagation constant. It is interesting to note
that the gain of the instability band is found to be significantly
larger than in the linear-birefringent case as shown in Fig. 7(a).
Figure 7(b) depicts the instability band when the nonlinearity is
defocused. It is observed that the instability bands shift toward
the higher values of K for defocusing nonlinearity; interest-
ingly, one can see that the gain of the instability band is greater
by a significant factor than its linear counterpart [refer to
Fig. 6(b)].
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FIG. 6. MI gain spectra vs power P in the anomalous dispersion regime in a linear-birefringent ODC for different nonlinear configurations:
(a) γ1 = γ2 = 1 and (b) γ1 = −γ2 = 1.
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FIG. 7. Same as Fig. 6, but in a circular-birefringent ODC.

2. Effect of wave amplitude ratio on MI

The influence of the input wave amplitude ratio f on MI
corresponding to the linear-birefringent case is depicted in
Fig. 8. As in the case of a normal dispersion regime, one can
notice two pairs of instability bands, which are identified as
a characteristic feature of ODCs. In addition to the PIM-NIM
band, the impact of birefringence results in the emergence
of an additional two pairs of birefringent bands (B-PIM and
B-NIM). The B-PIM arises at the lower values of f and
the B-NIM is typically observed at the higher values of f .
The B-PIM and B-NIM bands collide at a particular value
of f , which results in the abrupt increase in the MI gain as
evident from Fig. 8(a). Figure 8(b) represents the instability
spectra as a function of f for defocusing nonlinearity. The
defocusing nonlinearity is found to enhance the instability
band corresponding to the NIM channel, which is evident from
the increase in gain and width of the NIM band. However the

PIM band and the birefringent band hardly show any changes
in the MI gain.

Figure 9 depicts the instability spectra corresponding to
the circular-birefringent ODC as a function of f . One can
clearly see the dramatic increase in the gain of the birefringent
band in comparison to the linear-birefringent counterpart. The
dramatic increase in the gain of the birefringent band in
the circular case is a consequence of the enhanced coupling
between the beams due to higher values of the cross-phase
coupling coefficient. The B-PIM and B-NIM bands dominate
the inherent PIM and NIM bands in terms of the gain, and a
hump with higher gain is noticed at a particular value of f .
The number of instability bands remains constant, and the type
of birefringence (linear or circular) is found to effect only the
gain and width of the instability bands. The instability spectra
corresponding to the defocusing nonlinearity are shown in the
Fig. 9(b); as in the case of linear birefringence, the defocusing
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FIG. 8. MI gain spectra vs f in the anomalous dispersion regime in a linear-birefringent ODC for different nonlinear configurations:
(a) γ1 = γ2 = 1 and (b) γ1 = −γ2 = 1.
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FIG. 9. Same as Fig. 8, but in a circular-birefringent ODC.

nonlinearity enhances the instability band corresponding to
NIM channel. However, a significant increase in the gain
of the NIM band of circular birefringence is evident in
Fig. 9(b), in comparison to the linear counterpart shown in
Fig. 8(b).

IV. SUMMARY AND CONCLUSION

We have investigated MI in linear- and circular-birefringent
ODCs with NIM channels. We extended our study in both
normal and anomalous dispersion regimes for different non-
linear configurations of the coupler channel. Special attention
was given to investigating the effect of input power and wave
amplitude ratio f on the instability spectra. It is found that
besides the nonlinear PIM and NIM bands, one can observe
new instability bands, which are identified as resulting from
the birefringence, as shown in Table I. It is also noted that
the birefringent bands (B-PIM and N-PIM) are characteristic
of the nonlinear PIM and NIM channels. It is observed that
the defocusing nonlinearity suppresses the NIM band in the
normal dispersion regime, whereas in anomalous dispersion
regimes, the defocusing nonlinearity enhances the gain of the
NIM band.

In contrast to the case of linear birefringence, in terms of MI
gain only two birefringent bands dominate when considering
circular birefringence: the inherently PIM and NIM bands.
This preponderance is attributed to the fact that the cross-phase
modulation effect for circular birefringence is stronger, thus
allowing a better coupling between the beams, which results
in the enhancement of the gain. Therefore, the manipulation
of MI and solitons in oppositely directed couplers is better
performed when the birefringence is circular rather than linear.
Thus we report ways to generate and manipulate MI and
solitons in birefringent ODCs with a particular emphasis
on a NIM channel. These theoretical results could provide
some guidelines in the design and development of ODC-based
devices.
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TABLE I. Summary of MI in birefringent oppositely directed couplers.

NL configuration NIM PIM B-NIM B-PIM

Birefringence γ1 γ2 band band band band

1 0 � �
0 1 � �

Linear 1 1 � � � �
1 −1 � � � �
1 0 � �
0 1 � �

Circular 1 1 � � � �
1 −1 � � � �
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