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Critical behavior of coherence and correlation of counterpropagating twin beams
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This work analyzes the temporal coherence and correlation of twin beams generated in a quasi-phase-
matched nonlinear crystal in a counterpropagating configuration, ranging from the low-gain regime, where
counterpropagating photon pairs are generated spontaneously, to the regime of stimulated pair production, close
to the mirrorless optical parametric oscillator threshold. Here, we show a critical divergence of the correlation
time and slowing down of quantum fluctuations originating from the feedback mechanism responsible for the

MOPO threshold.
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I. INTRODUCTION

Parametric down-conversion in a quasi-phase-matched y ®
crystal with a poling period on the order of the pump-field
wavelength allows the generation of counterpropagating twin
beams (Fig. 1). This occurs because, in each elementary
down-conversion process, the momentum imparted by the
nonlinear grating is sufficiently large to almost compensate for
the pump photon momentum and, as a result, the emitted twin
photons propagate along opposite directions in order to satisfy
momentum conservation. A unique feature of this counter-
propagating geometry is the presence of distributed feedback
which leads to a transition towards coherent oscillations when
the pump intensity exceeds a given threshold value. This
concept was proposed theoretically many years ago [1], but
only recently experimental evidence has been achieved [2] due
to the technical difficulties involved in the fabrication of peri-
odically poled crystal with the required submicrometric poling
period [3,4]. Above threshold the system can in principle be
exploited as a source of coherent and tunable radiation, thereby
the name mirrorless optical parametric oscillator (MOPO) [2].
The unique property of the MOPO is the ultranarrow spectral
bandwidth characterizing the backward propagating field,
which can be smaller than that of the pump by about two
orders of magnitude [2,4]. The unusual properties of temporal
coherence of the MOPO radiation above threshold have been
studied in Ref. [5-7]. The three wave-mixing interaction with
counterpropagating fields has been investigated also in differ-
ent contexts [8—12]. An overview can be found in Ref. [13].

In the regime of purely spontaneous down-conversion, the
counterpropagating configuration offers the unique opportu-
nity of generating highly monochromatic photon pairs in
an almost separable state, so that it represents a promising
source of heralded single photons with a high degree of
purity [14]. In a parallel and complementary work [15] we
made a systematic investigation of the degree of entanglement
of counterpropagating twin photons generated in the purely
spontaneous regime.

In this paper we investigate the coherence and correlation
properties of the twin beams generated in the MOPO below
threshold, pumped by a stationary monochromatic field. Based
on a model describing parametric down-conversion (PDC)
within the undepleted-pump approximation we analyze the
transition from the regime far from threshold, where purely
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spontaneous down-conversion is the main source of twin
photon pairs, up to a regime close to threshold where the
combined effect of stimulated PDC and distributed feedback
affects dramatically the properties of the light source. We
provide an intuitive picture explaining the transition between
these two regimes and illustrate the divergence of the cor-
relation time and the critical slowing down phenomenon
of temporal fluctuations occurring when approaching the
transition towards coherent oscillations.

The paper is organized as follows: Section II introduces a
general quantum model, describing the coupled propagation
equations of pump, signal, and idler field operators in the
counterpropagating geometry. Section III illustrates its classi-
cal counterpart and reviews the main features of the classical
MOPO description in the the cw pump approximation. Sec-
tion I'V derives a linearized quantum model, equivalent to the
one introduced in Ref. [16], valid below the MOPO threshold
in the cw pump approximation. With this model, in Sec. V, we
derive the general expression for the correlation and coherence
functions. In the last part of the paper we provide a detailed
analysis of their behavior both in the frequency domain and in
the time domain, illustrating what distinguishes the regime of
single photon pair production (Sec. VI) from the regime close
to the MOPO threshold (Sec. VII). An intuitive explanation of
the transition between these two regimes is given in Sec. VIIIL.

II. THE GENERAL QUANTUM MODEL

Periodic poling in ferroelectric x ® materials such as KTP
or LiNbO3 allows us to manipulate the phase-matching condi-
tions for three-wave-mixing interactions to a high extent. In the
counterpropagating configuration, the poling period A must
be on the order of the pump-field wavelength A, (see Fig. 1).
This allows us to satisfy quasi-phase-matching conditions at
first order with one of the two down-converted waves, say the
idler, propagating in the opposite direction with respect to the
incident pump. Denoting with @, the pump central frequency,
this occurs for those frequencies w,; and w; = w, — w, of
the signal and idler waves for which the corresponding wave
numbers k; = @) satisfy the condition

ks —ki —k, + ks =0, (1)
where kg = 2w /A is the fundamental k-vector associated to

the periodic nonlinear grating.
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FIG. 1. Scheme of the counterpropagating parametric down-
conversion based on a periodically poled crystal of length /.
and poling period Ayo A A,. Quasi-phase-matching determines the
propagation of the idler field opposite to the pump and signal
propagation directions (see text).

We restrict our analysis to a purely temporal description:
we consider only collinear propagation, either assuming that
a small angular bandwidth is collected and the process is
characterized by a single spatial mode operation, or because
of a waveguiding configuration. The pump and signal fields
propagate along the 4z direction, while the idler propagates
along the —z direction (Fig. 1).

It is convenient to introduce the positive-frequency parts of
the field operators for the three wave packets as

A(Q,2) = e P2q(Q,7), (2a)
Ai(Q,2) = e M D7q,(Q,2), (2b)
Ay(Q,2) = e (Q,2), (2¢)

where capital Q2 denotes the frequency offset from the re-
spective central frequencies wy, w;, and w, = ws + w;, which
satisfy the quasi-phase-matching condition (1). The phase
factors e**i)% in Eq. (2) account for linear propagation, with
k;(€2) denoting the wave number of the field j at frequency
w; +  (j =s,i,p). The lower-case operators a; are thus
slowly varying with respect to the original field operators A j
since they evolve only because of the nonlinear interaction.

Considering the simplest case of a periodic poling of
the crystal with identical layers of alternate orientation, the
effective nonlinear susceptibility y(z) is a periodic function
which can be expressed as a Fourier series of the form

j2mn
X@ =) e n=£1£3,£5.... (3)

with the Fourier coefficients y, scaling as 1/n. Retaining only
the lowest-order terms, n = 41 for the signal and idler fields
and n = —1 for the pump, it can be shown that the operators
a; satisfy the following propagation equations:

;—Zas(z,sz) = +x f da,(z,Q + Q)a) (z,Q)e P22,
(4a)

a%ai(z,sz) =—x / dQa,(z,Q + Q)al(z,Q)e P27,
(4b)

aa—zap@,sz) =X / dQay(z, ) (z,Q — Qe P,

(40)
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where the coupling constant x o x; = x—; and
/ / , 2
D(R,Q) = k() — k() — k(2 + Q') + - (5)

is the effective phase mismatch, which rules the efficiency
of each elementary down-conversion process, where a signal
photon and an idler photon of frequencies w; + Q, w; + &’
are generated out of a pump photon of frequency w, + € +
Q'. Tt expresses the momentum balance including also the
momentum kg = ZT” of the reciprocal lattice of the polarization
inversion.

As a final remark, we mention that, in this counterpropagat-
ing geometry, the spatial and temporal degrees of freedom are
independent [17]. A purely temporal description is therefore
expected to give sensible results. This is quite different from
the copropagating case, where spatial and temporal degrees of
freedom are strongly coupled [18-20].

III. THE CLASSICAL MODEL

The classical counterpart of the quantum model (4) can
be obtained by formally replacing the fields operators &; in
Egs. (4) with c-number fields, d; — «;, which corresponds
to considering &; = «; + 8a; and neglecting the quantum
fluctuations 84; . In this way one obtains propagation equations
for the c-number fields o;(£2,z) which are formally identical
to Eqs. (4). In order to recast them in a form which is more
familiar in the literature (see, e.g., Refs. [5,6]), we rather
consider the fields

Bs(z,Q) = 6D hkgy, (62)
Bi(z,Q) = e*i[kf(Q)fk;]zai’ (6b)
Bp(z,Q) = ei[kp(ﬂ)_kplzap. (6¢)

Then we assume that the effects of second- and higher-order
dispersion are negligible with respect to the first order:

ki(Q) —k; =K+ %k;fszz 4. isz (7)
where derivatives k}, k}’, etc. are calculated at the central
frequencies w; and v,; = 1/k) are the group velocities of
the three waves. By back-transforming to the temporal do-
main ;(z,1) = [ %ﬂj (z,Q)e™"¥  the classical propagation
equations take the form

9Bu(z) 1 )

= Xﬂ[)(z’t)ﬂl:*(ZJ)v (83)

0z Vs OF
9Bi(z,1) 1 3gi(z.) «
e T UL LMD
8ﬂ1:r)(1,t) Laﬂp(z,[) = —xB:(z.0)Bi(z,1). (8¢c)
z Vgp 01

A nontrivial stationary solution to these equations, cor-
responding to 9B,(z,t)/0t =0, is known to exist [21],
provided that the injected pump amplitude overcomes a
suitable threshold value. Assuming that the injected pump
is a cw beam, i.e., that B,(z =0,t) = a),, and that there
is no injected signal and idler wave B(z = 0,t) = B;(z =
l.,t) = 0, a nontrivial stationary solution, with S;(z) and 8;(z)
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FIG. 2. Conversion efficiency of the MOPO as a function of the
parametric gain g evaluated from Eq. (10). The classical model with
a cw pump predicts that PDC emission occurs above the MOPO
threshold g = 7.

different from zero, exists provided that the dimensionless gain
parameter

b4

8 =N2mxldplle > gur = 7. (€))
Above this threshold, the fraction of down-converted power
n =Bz = 01> — |By(z = L)I*)/1B,(z = 0)]* (the MOPO
conversion efficiency) grows with g as shown by Fig. 2. More
precisely, n satisfies the implicit equation

de’

g = /0 NS (m, (10)
where the transcendental function K (1) on the right-hand side
is the complete Jacobi elliptic integral of the first kind [22]. It
is found (see Ref. [21]) that this equation has positive solution
n > 0 only for g > 7. We also notice that that the phases ¢,
and ¢; of the stationary signal and idler fields above threshold
can take arbitrary values, but their sum is always equal to the
pump phase ¢, ¢s + i = ¢).

In this work we are interested in the quantum properties of
the PDC field generated from vacuum fluctuations below the
threshold (for g < %), where the classical description predicts
that the signal and idler waves are identically equal to zero.
To this end, we introduce in the next section the linearized
model that describes the quantized PDC field in the regime of
an undepleted and cw-pump field.

IV. QUANTUM MODEL BELOW THRESHOLD

Our aim is to investigate the coherence and correlation
properties of the down-converted field when approaching the
MOPO threshold, describing the transition from a regime of
purely spontaneous down-conversion into a regime where most
photon pairs are produced through stimulated PDC and the
effect of distributed feedback becomes relevant.

In order to perform an analytical treatment, we limit
ourselves to the case of a monochromatic coherent pump
wave of frequency w,, assuming its intensity is sufficiently
far from the MOPO threshold so that the undepleted-pump
approximation holds. Under these conditions the pump field
can be treated as a known classical field. The corresponding
spectral field operator a,(z,2) defined by Eq. (2c) can
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be substituted with the z-independent c-number function
ap(2,z2=0) =a,+/278(2). In this limit, the propagation
equations for the signal and the idler fields take the form

0
—a,(z,2) =

+341(z, — Qe P @i (11a)
0z I,
d = .
-l — @) = —Fa PP e (1)
Z c

where ¢, = argla,] is the pump phase at z = 0 and D(R) is
the phase-matching function for a monochromatic pump wave,
defined by

D(Q) =D(Q, — Q) = ky(Q) — ki(—Q) — kp +kg. (12)

The system boundary conditions differ from those found
in more common copropagating geometries. The input field
operators, assumed in the vacuum state, are indeed defined at
different transverse planes: the left face of the crystal (z = 0)
for the forward-propagating signal wave and the right face
(z = 1) for the back-propagating idler wave

a;(Q,z = 0) = a"(Q),
4;(Q2,z =1.) = a™(Q).

(13a)
(13b)

By solving Egs. (11) the corresponding output fields
a?(Q) = a,(z =1,,Q) and a"'(Q) = a;(z =0,2) can be
found. The complete field operators [see Eq. (2)]

AM(Q) =e
AN Q) = af™ (),

@lad(qy), (142)

(14b)

can be expressed in the form of a unitary Bogoliubov

transformation, equivalent to the one in Ref. [16]:
AM(Q) = U()ANQ) + V(AN (-,
APN(Q) = Ui(QAP(Q) + V(AN (—Q).

If we introduce the functions ¢(£2), (€2), and y (£2), defined
by

(15a)
(15b)

1
Q) = , 16
oD cos y(2) — 1723(5(?2’) smy(Q)l (16)
B(2) = [ko(82) + ki (—S2) — (k; +ki)]§c, (17)
N2 )2
p(@) = g2 + 2 (18)

4 bl
the gain coefficients U(2) and V(f2) can be written as
trigonometric functions of the form

Uy (Q) = ehleePD (), (19a)
_ pitk—kile g i, SNV (SD)
Vi(Q)=e o) — (), (19b)
Ul(Q) — eik,‘lCeiﬂ(fﬂ)(ﬁ*(_Q)’ (190)
siny (—Q)
Vi(Q2) = Q 19d
9) %) — 0" (—Q), (19d)
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and satisfy the following unitarity conditions:

U Q)P = Vi QPP =1, j=s.i,
U () Vi(—Q) = Ui(—Q)Vi(Q).

(20a)
(20b)

Notice that U;(€2) and V;(£2) diverge when approaching
g = m/2, the value of the parametric gain corresponding to
the MOPO threshold in the stationary cw-pump regime [21].

V. COHERENCE AND CORRELATION

The quantity of primary interest, which characterizes the
twin beams correlation in the spectral domain, is the so-called
biphoton correlation:

W(Q,, ) = (AM(Q)AM(Q)). 1)

The correlation function (21) gives the probability amplitude
of finding a signal photon of frequency w; + €2 at the right
crystal face and an idler photon of frequency w; 4 €2; at the
left one. Assuming that the signal and the idler input fields
are in the vacuum state, and using the input-output relations
written in Eq. (15), we obtain the following expression for the
biphoton correlation:

W(€2,€2) = 8(2 + QU () Vi(—£2) (22)

= 8(Q + Qe Thl]P@ Q) (23)

where the §(€2; + €2;) function expresses the perfect signal-
idler frequency correlation of the monochromatic pump limit.
Here we introduced the spectral correlation density

V() = gsine[y(2,)]|¢()]? (24)

= gsinc[y ()11 + [Vi(Q)*]. (25)

The last identity has been obtained from the explicit expression

of U,(R2) and V;(2) given in Egs. (19) and the unitarity
condition (20).

Other important quantities are the signal and idler coher-
ence functions

1) | atout A .
G (2,.9) = (A(@)A(@) j=si @6

which describe the properties of coherence of each of the two
fields taken independently from the other. From the input-
output relations (15), it is possible to obtain the following
expression for the coherence function:

(AlU@AM () = 8(2 — )IVs(Q0IF @)

= (A" (—2)AM(-)).  (28)

We wish also to investigate the behavior of these quantities

in the time domain. Precisely, introducing the output temporal

fields A;?”‘(t) = %e"Q’A?“‘(Q), it is possible to write the
temporal correlation as

Wty 1) = (A1) A (1)) (29)

:gei[¢,,+kﬁl(]/d_Qe—iszm—t.')
2

x (P Dsinc[y (I[1 + Vi), (30)
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This function represents the probability amplitude of finding a
signal and an idler photon at their exit faces at times #,;. The
temporal coherence is in turn characterized by

Gy, = (A1) ANM (1)) S

a2 . ,
= [ Soe @ = 6. 62
T

Note that both W and GV depend only on the difference t, — ¢/,
as it should be for a stationary model.

Approximated analytical expressions of these quantities can
be obtained both in the purely spontaneous regime (for g <«
7) and close to the threshold (for g — 7) by considering
the behavior of the intensity spectrum in these two important
limiting cases:

4g%sin” y(R)
S = V(P = =5 - 2% (33)
D(Q)I + 4g* cos” y(R2)
gzsinczw forg — 0
~ 4g%sin’ g f /g (34)
DI 44g’cos’ g OT8 T 7

Further details on the derivation of the spectrum for g —
7 /2 can be found in Appendix B.

Performing the expansion of the phase-matching function
D(Q) (12) and keeping terms up to the first order (phase-
matching bandwidths in the counterpropagating case are in
fact extremely narrow) we obtain the approximate relation

DI 1. le

(2) = E(k; +k)Q + Z(k;/ — kN2 + -+ (35)
~ 2 (36)

ngs '

where
171 I

Ql=r, =<+ -2 37
gvs ‘Cg 2 |:ng + vgi:| ( )

The inverse (tgys) of the characteristic bandwidth Qg involves
the sum of the inverse group velocities rather than their
difference: 74 is on the order of the photon transit time
across the crystal and represents the typical time delay between
counterpropagating twin photon in the spontaneous regime. As
we shall see in the next section, in this regime $2qys represents
the width of the PDC spectrum.

Another useful approximation needed to perform analytical
calculations is the linearization of the phase (17) of the
biphoton spectral correlation (21):

I,
B(Q) ~ (k, — k;)EQ = A1, Q. (38)
Here,
| ALyl L L |« (39)
= - Tgvs
4 20gs 204 gvs

represents the difference of the transit times along the crystal
for a pair of counterpropagating signal and idler photons
generated at the crystal center at the reference frequencies.
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VI. LOW-GAIN REGIME, g < 7

We start our analysis from the low-gain regime, i.e., g < 7,
where the dominant process is the spontaneous production of
photon pairs and distributed feedback does not enter into play.

A. Biphoton correlation

We consider first the field correlation defined by Eq. (21)
and given by expression (23). In the regime of purely sponta-
neous PDC, |V,(2)|? is on the order of g2 « 1 according to
Eq. (34). Its contribution in the expression of the correlation
density (25) is therefore negligible and we have in this limit

. i D@L
;gr(l)w(ﬂs)_gsmc(—z ) (40)
Qs

&) @)

where in the last equality we used the linearized approximation
for the phase matching (36).

The temporal correlation can be calculated by Fourier
transforming the spectral correlation [see Eq. (30)]. By using
the approximations (38) and (41) we recover the result of
Suhara for the temporal correlation in the coincidence-count
regime [16]. It is given by the box-shaped temporal correlation

of width 27gys:
dQ Q
W(Ar) = ge'lkltor] / oA A'A>smc< ) (42)
ngs
At — Aty
Rect , (43)

2Tgys

~ gsinc(

eilksletd,]

=38

2Tgys
with At = ¢, —t; and where we introduced the rectangular
function defined as

1 if|x] <
0 if|x| >

This function describes a flat distribution of the temporal

delays At between the 51gna1 and idler arrival tlmes ranging

between —Tyys + Aty = —-< and Tgys + Aty = <. Asit will
X

be further discussed in Sec. VIII, this flat dlstrlbutlon reflects
the spontaneous character of the emission in the low-gain
regime: each photon pair is generated independently from the
others, and the process can take place at any point of the crystal
with uniform probability.

The red curve in Fig. 3(b) is the approximate solution (43),
the blue curve is obtained from the numerical integration of
Eq. (30). All numerical examples reported here and in the
following have been obtained for a 4-mm-long KTP crystal
using the Sellmeier dispersion formula found in Refs. [23,24].
Here we consider the same configuration as in Ref. [2]: Type
O(e — ee) phase matching for A, = 821.4nm, A, = 1141nm,
A; =2932nm. In this configuration tgs = 25.2ps, Aty =
—0.55 ps.

(44)

[STERSIES

Rect(x) = {

B. Coherence function

In the purely spontaneous regime, the signal and idler
spectra [Eq. (33)] are well approximated by Eqs. (34) and (36):

Q2 45
0 ) @

S(Q) = V() ~ gzsinc2<
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FIG. 3. Biphoton correlation in the spontaneous PDC regime with
g = 1073 (a) in the spectral and (b) in the temporal domain. In all
the figures “exact” refers to results obtained from the input-output
relations (15), without the use of the linear approximations (36)
and (39).

and exhibit the usual squared sinc shape characteristic of the
coincidence-count regime of PDC.

The coherence function in the time domain is obtained by
Fourier transforming the spectrum [Eq. (45)]. It is charac-
terized by a triangular shape (see Appendix A for a detailed
derivation) and can be expressed as a convolution integral over
the rectangular biphoton correlation (43):

s Q
GV(Ar) = g* / ’QAfsmcz( ) (46)
2 Qgvs
2 At
-8 T< ) (47)
2Tgys 2Ty

g’ /dtR o = YReet[ =21, s
= ec ec ,
4Ty 2Tgys 2Tgys

where the triangle function is

1—|x| ifxe(—11)
Tx) = {O elsewhere (49)
and has the shape of a triangle of base (—2Tgys,274ys) (see
Fig. 4). Therefore, the coherence time, taken as the half-width
at half maximum of the coherence function, is given by half
of the sum of the propagation times of the signal and idler
photons along the crystal:

Tcoh = Tgys- (50

023837-5
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FIG. 4. (a) PDC spectrum at the crystal output faces in the low-
gain regime, (b) coherence function in the time domain. In both cases
g =107

VII. HIGH-GAIN REGIME (THRESHOLD REGION), g — 7
We now consider the regime of stimulated PDC, which
occurs when approaching the MOPO threshold from below,
i.e., for small positive value of € = 7 — g. In this regime, the
spectrum is well approximated by the Lorentzian function:

g%sin’g

, (5D
(92 / ngs) +glcos?g

lim |V(Q)* =
g—m/2

as can be inferred from Egs. (34) and (36) [see Appendix B for
further details]. Such a Lorentzian is characterized by a peak
of width (half-width at half maximum)

AQp = Qg Ccos g & %eﬁgvs — 0 for €—0, (52)

which shrinks progressively as the threshold is approached.

A. Field correlation

Based on the Lorentzian approximation (51) for | V()|
valid close to threshold, we can write the spectral correlation
density in Eq. (25) as

2 sin?
8 8 (53)
(Qsz/ Qévs) + g2 COSZ 8
g2sin’ g
(2/94,) + g7 cos? g’

V(Q) ~ gsinc[y (22)] [1 +

A~ gsinc[y (£2,)] +

(54)
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where in the last line we substituted gsinc[y(£2)] in the
second term with sin g, since the sinc[y (€2,)] varies on a scale
Qgys which is much broader than the narrow width AQ; =~
”{QM of the Lorentzian close to threshold. The contribution
of stimulated PDC, which increases dramatically close to
threshold because of distributed feedback, is responsible for
the emergence of this extremely narrow peak [second term in
Eq. (54)]. In contrast, the smaller contribution [first term in
Eq. (54)], similar to the one found in the low-gain regime (41),
originates from purely spontaneous PDC and extends on a
much broader emission bandwidth on the order of $gys.
Figures 5(a) and 5(b) show the spectral density correlation at an
intermediate-gain regime and close to threshold, respectively.
In the latter case, the narrow Lorentzian contribution of
width AQ; [second term of Eq. (54)] is clearly dominant
with respect to the purely spontaneous contribution. Using
approximation (54), we find the following expression for the
twin beam correlation in the temporal domain:

. aQ .
W(Ar) ~ gef[ksﬂ*%]{ / S AT MWsinely ()]
T

a2 . 2 5in?
+/_e—zQ(At—AtA) . é; 23 — . (55)
2w T2, Q2%+ g*cosc g

gvs

where At = t; — t;. The first term in Eq. (55) is on the order of
8/ Tavs and originates from purely spontaneous PDC. The peak
value of the second termis g/(27gys €Os 8) ~ g/(2Tgys€) — 00
for ¢ — 0, and therefore dominates over the first. Thus, close
to threshold, we approximately have

ei[krlr+¢[)] g sin3 ge |At—Aty]

W(AL) ~ “eess T (56)

2Ty cos g

The correlation time, which characterizes the decaying expo-
nential in Eq. (56),
T 27,
gvs gvs N
gcosg me

Teorr = for € — 0, (&Y))
which goes to infinity for € — 0, a feature which reflects the
establishment of a feedback effect (see Sec. VIII) and which
is typical in phase transitions. This behavior is illustrated in
Figs. 5(c) and 5(d), which display the temporal correlation.
In the intermediate regime [Fig. 5(c)] where spontaneous and
stimulated PDC contribute equally, tails reminiscent of the
exponential decay found close to threshold emerge at the
basis of the box-shaped correlation characterizing spontaneous
PDC. Close to threshold [Fig. 5(d)] the size of those tails
strongly increases and the correlation is well approximated by
the dominant stimulated PDC contribution (56).

B. Coherence function

Close to threshold the PDC emission spectra of the signal
and idler fields are well approximated by the Lorentzian
function written in Eq. (51). The spectrum peak value | V(2 =
0)|*> = tan?g diverges for g — 7, while its width shrinks to
zero for € — 0, as for the biphoton correlation, as shown
in Fig. 6(a). Clearly, this description based on the linearized
model (11) will loose its validity for small but finite values of

€, when pump depletion enters into play.
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equally. (b) Close to threshold (¢ = 7/2 — g = 0.07) where stimulated PDC is dominant. Biphoton correlation in the temporal domain (c) at
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FIG. 6. (a) Spectrum and (b) temporal coherence function for
decreasing values of € = /2 — g. The curves in panel (b) have been
obtained through the numerical evaluation of the integrals in Eq. (32).

By performing the Fourier transform of the Lorentzian
spectrum (51) we obtain the temporal coherence function in
the time domain within the same order of approximation:
Ggl)(At) _ LS]Hzge—gcosg%. (58)

274y COS g

In contrast to the low-gain limit described in Sec. VI, as
the MOPO threshold is approached, GV(At) becomes almost
indistinguishable from the biphoton correlation (56), apart
from the small temporal shift Az4 related to the different
group velocities of the signal and the idler fields. Approaching
threshold, thus, the coherence and the correlation reflect one
the properties of the other because of the cascading processes
characteristic of the stimulated regime of pair production. The
coherence time which characterizes the decaying exponential
in Eq. (58) is the same as the correlation time defined in
Eq. (57) and goes to infinity for e — 0, i.e.,

N ngvs e—0

(59)
€

Figure 6(a) shows the progressive narrowing of the spectrum
and Fig. 6(b) shows the correspondent broadening of the
temporal coherence function for decreasing values of €, a clear
manifestation of the critical slowing down of field fluctuations
occurring close to threshold.

VIII. AN INTUITIVE PICTURE

In this section we want to give an intuitive explanation of
the results obtained in Secs. VI and VII.
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¢t | (a) SPONTANEOUS PDC

|At|> 7

gvs

FIG. 7. Photon pairs originating from a first PDC event at t =
0 (a) in the purely spontaneous regime and (b) in an intermediate
regime where secondary events are triggered by the first one. In
case (a) the temporal delay |Az| between the arrival times of two
correlated photons cannot exceed tgy, because they originate from
the same PDC event. In case (b) | A¢| can exceed T, due to secondary
processes.

Figure 7 schematically represents in the (z,f) plane the
propagation of photon pairs originating from a PDC event
occurring at time ¢t = 0. It considers both a regime of purely
spontaneous PDC [Fig. 7(a)] and a regime of higher parametric
gain where secondary processes due to stimulated PDC take
place [Fig. 7(b)].

In the first case [Fig. 7(a)], the temporal delay At = ¢, — 1;
between the arrival times of the twin photons at their output
faces cannot be larger than ~ 7. If the photon pair is produced

close to the crystal center 7z = % the two counterpropagating
photons exit the crystal almost simultaneously (more precisely,
with a small delay Aty = UZ— - ul_g, due to a possible mismatch
of their group velocities). If the pair is produced at z = [,
the signal exits immediately, and the idler arrives at its exit
face at t = I. /vy, thus At = —I./v,;. If the pair is produced
at z = 0, conversely, the idler exits immediately while the
signal exits the crystal at t =1[./vg,, thus At = 4+l /vg.
The difference in the arrival times is thus strictly within the
interval [_1{_:,-’1)%] = [Ata — Tgvs, Ala + Tovs] = [—Tgvss Touss
since Aty < Tays. Well below threshold, where stimulated
PDC is negligible, each photon pair is generated independently
from the others and the probability of generating a pair
is uniform along the crystal length. As a consequence, the
distribution of time delays between the two extrema is flat,
which explains the box-shaped correlation function displayed

in Fig. 3(b).

PHYSICAL REVIEW A 93, 023837 (2016)

When stimulated PDC becomes relevant, the range of
allowed values of At is no longer strictly limited to the interval
[—])L‘i, vl—] This is shown in Fig. 7(b) where a few secondary
procgessges take place triggered by the first spontaneous pair. It is
clear from this picture that the exit times of a signal and an idler
photon originating from two different elementary processes
can differ by a value greater than tgs. If we look, for example,
at photons i and s”, we notice that the increase of the corre-
lation time beyond 74y originates from the back-propagation
of photon i’. Therefore, the increase of correlation time can
be attributed to the effects of the distributed feedback, created
by the combination of back-propagation and stimulated pair
generation. The situation described in Fig. 7(b) corresponds
to an intermediate-gain regime where purely spontaneous and
stimulated pairs contribute to the same extent and the biphoton
correlation retains its box-shaped structure, but with tails
developing at the base, as in the example of Fig. 5(c).

When approaching threshold (¢ — %), stimulated pair pro-
duction becomes the dominant mechanism, and a correlation
between the signal and idler fields is transferred back and
forth along the crystal because of the cascading processes.
The closer the threshold, the longer the chain of cascading
processes, and the longer becomes the correlation time. In this
conditions, the correlation function exhibits the exponential
decay shown in Fig. 5(d) [see Eq. (56) ], with a correlation
time in principle approaching infinity [Eq. (57)].

The same feedback mechanism is responsible for the
increase of the coherence time upon approaching the threshold.
A correlation among signal photons [photons s,s, ...,s” in
Fig. 7(b)] or idler photons (photons i,i’,...,i""), generated
in different elementary processes exists only because of
stimulated PDC, and the coherence time increases as more
and more processes are cascaded. Close to threshold, the
coherence function is also well approximated by a decaying
exponential [see Eq. (58) and Fig. 6(b)]. Its characteristic
decay time Teoh = Teorr becomes much larger than 7g for
g — % [Eq. 59)], as the number of secondary events increases
dramatically when approaching the MOPO threshold.

In this way, the onset of coherence above the MOPO
threshold is anticipated below threshold by longer and longer
coherence times, in principle approaching infinity, which
originate from the distributed feedback established by back-
propagation in the stimulated-gain regime.

IX. CONCLUSIONS

In this work we provided a theoretical analysis of the
coherence and correlation properties of the twin beams gen-
erated below the MOPO threshold from a monochromatic cw
pump field under stationary conditions. Under the undepleted-
pump approximation, it was possible to characterize the
transition from the regime far from threshold, where the
dominant process is the spontaneous production of photon
pairs, to the regime close to threshold, where the combined
effect of stimulated PDC and distributed feedback affects
dramatically the properties of the light source. A narrowing of
the spectra and the consequent widening of the correlation and
coherence times is predicted when approaching the threshold
for coherent emission. This critical slowing down of the
quantum fluctuations and critical divergence of the correlation
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time, which is typical of phase transitions, is studied for the first
time in this system. We also give an intuitive picture explaining
the main characteristics of the coherence and correlation of the
fields in the transition between the low-gain and the high-gain
regime.

APPENDIX A: COHERENCE FUNCTION IN LOW-GAIN
REGIME

In this Appendix we evaluate the PDC field coherence func-
tion in the low-gain limit given by the Fourier transform (46)
in Sec. V. By using the identity

1 1.
sinc(u) = 5 / e, (A1)
—1
it can be written as
aQ .
GO(AN = / B2 ey )P (A2)
27
dQ
= g? / o "2 5inc? 1oy Q) (A3)

Q
— _/ dS/ ds fd l[?‘r\cl*v‘r\d*At]Q (A4)

By using the relation ffooo e“ds = 2w 8(u) and making the
substitution ' = s'tgy, for the evaluation of the integral in ',
we find

Tavs
Ggl)(At) / ds/ dt5 t+S‘[gvs + Af) (AS)
gvs —Tgus
At Vs
= g / dsRect<¢>ReCt(i> (A6)
4Tgvs -1 2 2
g2 At
— T : (AT)
21ng5 2Tgvs

where T is the triangular function defined in Eq. (49).

APPENDIX B: LORENTZIAN APPROXIMATION FOR THE
SPECTRUM

We provide here a justification of the Lorentzian ap-
proximation of the spectrum used for g — m/2 given in
Eq. (51). We apply the following expansion of cos® y(Q2) =

PHYSICAL REVIEW A 93, 023837 (2016)

cos? [¢% + (B<)2]'/% in even powers of DI, /2:

c0s () = cos’ g singcos g ( DL\’
g 2
DL\
+0(— , (BI)

for evaluating the denominator of the spectrum |V,(£2)|* given
by relation (34). Keeping only terms up to second order we
obtain the following approximated expression:

sin? y () 1
S@) = V(P cos? 2-sin2g (D@, )
i ()
for [ D(Q)L,| <« 1, (B2)

which holds for small value of the phase mismatch. The

key factor lies in that the multiplicative factor of D?*(Q2)/2/4

becomes very large close to threshold, having in this limit
2—sin2g 4

1 for
2g2cos’ g >

~ = e:%—g«l. (B3)
As a consequence, the spectrum [V,(Q)]? is already reduced
by a factor 1/€? > 1 with respect to its peak value tan’g as
soon as the phase-mismatch becomes of the order of unity,
i.e., for |D(Q)I.| ~ 1. Itis thus legitimate to use the following
approximation:

iny(Q=0 1
s@ = V@ ~ 2 XE=0 :
cos- g ] — 2osin2g (z')(sz)zt.)
2g2cos? g 2
(B4)
2 i
~ g~ sin” g (B5)

g cos g + (D(Q)Z )

where in the last approximation we took into account
that the multiplicative factor of [D(R)1./2]*> is almost
equal to unity when g — m/2. Although strictly valid
only for frequencies satisfying the condition |D(R)l./2| <« 1
for which sincy () := sinc[g? + (DI./2)*]'/? ~ sincg, rela-
tion (B5) can be extended to the whole frequency domain
for the purpose of analytical calculations. According to the
previous discussion, | Vy|? seen as a function of DI, /2 is indeed
negligible everywhere except for a narrow neighborhood of
width ~e around DI, = 0. This neighborhood translates into
a frequency interval on the order of €2, when the linear
approximation for the phase-matching function (36) is taken
into account.
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