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Taking into account relaxing Kerr nonlinearity and walk-off effects, the conditions and gain spectra of cross-
phase modulation-induced modulational instability (XPM-MI) of two incoherently copropagating optical waves
of different frequencies and same polarization are investigated. We devote particular attention to the mixed case
in which one pulse propagates under the normal group-velocity dispersion (GVD) regime, while the second one is
under an anomalous GVD regime. We unveil that in the limit of an instantaneuous nonlinear response, the typical
frequency with maximum gain converges to a finite value in the mixed GDV regime, while it continuously grows
with the group-velocity mismatch in the normal GVD regime. As a result, the maximum gain typically decreases
with the group-velocity mismatch in the mixed regime, contrasting with the opposite trend in the normal GVD
regime. Further, we show that besides the mode having maximum gain at a frequency decaying with 1/τ 1/3 in the
slow response limit, there is a second mode having maximum gain with a distinct scaling behavior �max ∝ 1/τ in
the absence of group-velocity mismatch. The associated maximum gains scale, respectively, as 1/τ 2/3 and 1/τ ,
thus signaling the corresponding quadratic and linear dispersion relation of these modes in the low-frequency
limit. A detailed analysis of the influence of the nonlinear response time and group-velocity dispersion on the
MI gain spectrum is also provided.
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I. INTRODUCTION

The optical nonlinear properties of amorphous materials
have been extensively studied due to their vast potential in
practical applications along with a great deal of interesting
fundamental features. One of their most representative mem-
bers is the silica. However, there is a consensus that silica
fibers do not present any even-order nonlinearity, although
the induction of stable second-order nonlinearity in silicate
glasses has been demonstrated [1,2]. Therefore, in general,
the lowest nonlinear susceptibility present is the third-order
one, and practically all nonlinear effects observed in fibers
used in telecommunication systems are related to the χ (3)

tensor. The copropagation of two intense optical beams in
such media may lead to many fascinating effects such as
modulational instability (MI), stimulated Raman scattering
(SRS), stimulated Brillouin scattering, four-wave mixing, and
many others.

Under appropriate conditions, a great variety of nonlin-
ear dispersive systems exhibit modulation instability, which
corresponds to the exponential growth of weak perturbations,
breaking a continuous-wave (cw) or quasi-cw wave in a train of
solitonlike pulses [3–6]. In the temporal domain, MI material-
izes itself as a result of the interplay between nonlinearity and
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group-velocity dispersion (GVD): anomalous group-velocity
dispersion for self-phase modulation and both anomalous and
normal group-velocity dispersion for cross-phase modulation
(XPM). This instability occurs in diverse physical fields
and may correspond to the fundamental physical mechanism
igniting unique processes such as spin waves in magnetic
films, solitons, and rogue waves [7–17]. Furthermore, among
the vast technological applications of MI we can cite the
measurement of optical fiber parameters [18], the creation
of all-optical switches [19], the construction of fiber lasers
[20,21], and the control of nonlinearity-managed optical media
[22].

From a theoretical perspective, the description of the evo-
lution of copropagating pulses is made by using extensions of
the nonlinear Schrödinger equation (NLSE), whose analytical
results provide the dispersion relation, the unstable conditions,
as well as the gain spectra. This class of models for the
copropagation of pulses has been the theoretical background
of several experimental studies [23–25]. In recent years,
a large variety of physical properties was incorporated in
the model such as higher-order dispersion [26–28]; multiple
optical beams [29]; cubic, quadratic, and quintic nonlinear-
ities; negative index material [30–35]; saturable nonlinearity
[35–38]; and noninstantaneous nonlinear response [25,38–47].
Due to the inadequacy of the conventional instantaneous Kerr
nonlinearity for ultrashort pulses and highly dispersive media,
the delayed nonlinear response must be considered. This
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delayed nonlinear response can be incorporated by including
additional terms corresponding to the Taylor expansion of the
delayed envelope amplitude in the NLSE, which is a good
approximation only for the low-frequency regime, not being
valid for high frequencies. Therefore, models incorporating a
Debye relaxation of the nonlinear response are considered to
be more reliable regardless of the frequency regime [38–47].

Recently, a method to obtain slow light from noninstan-
taneous MI has been theoretically proposed [48]. There, a
straight incident light beam is used as the pump wave, whereas
a much less intense oblique incident one is the plane signal
wave to be modulated. It is also demonstrated that the group
velocity is tunable in such a system. From the practical point
of view, with the improvements in the fabrication of highly
noninstantaneous Kerr media [49], the conventional Kerr
response must be replaced, demanding a better understanding
of the problem. It is also important to mention the fundamental
role played by XPM between signal and probe beams as a tool
for realizing quantum nondemolition measurements [50–52],
which, in turn, have opened the way for future applications
in photonic quantum communication systems and quantum
information processing [53,54].

Notwithstanding the myriad of previous works devoted to
investigate distinct aspects of nonlinear pulse propagation,
one still lacks a full understanding of the main basic phys-
ical processes for the case of noninstantaneous responding
media. Here, we include both the XPM and delayed non-
linear response contributions to extensions of the nonlinear
Schrödinger equation in order to study the MI of incoherently
coupled copropagating beams in optical fibers with nonin-
stantaneous Kerr response. The combined effects of relaxing
nonlinearity, group-velocity mismatch (GVM), and XPM has
been previously addressed in Ref. [40] for the particular
case of both pulses experiencing normal GVD. However, as
emphasized in Ref. [25], a complete characterization of the
modulational instability process requires the investigation of
the anomalous dispersion regime on which quite new physical
aspects can emerge.

In this paper, by considering the importance of XPM and
walk-off effects in the MI dynamics [55–61], we investigate
the interplay between the XPM and walk-off effect in the MI
spectrum in the system of relaxing nonlinear response for the
case in which one of the beams experiences the normal GVD
regime and the other beam is propagating in the anomalous
GVD regime. This situation is particularly important, for
example, in the realization of a nondemolition measurement
of a signaling pulse whose frequency is considerably different
from that of the probe, inasmuch as both pulses propagate
through the nonlinear medium under distinct GVD regimes.
Specifically, the main characteristic of the MI gain spectrum
will be analyzed as a function of the characteristic response
time and GVM.

II. THEORETICAL MODEL AND LINEAR
STABILITY ANALYSIS

We consider the case in which two optical pulses of
different frequencies and identical polarizations are incident
on a single-mode optical fiber with Kerr nonlinearity, which
is described by the following set of coupled nonlinear

Schrödinger equations (CNLSEs) [3,37,55–57,62]:
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+ δ
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)
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where Ei = Ei(t,z) represents the electric field envelope of the
ith wave propagating along the z axis with a group velocity
νgi (i = 1,2). We are assuming a retarded time reference frame
t = T − z/ν̄g moving with the average group velocity 1/ν̄g =
(1/νg1 + 1/νg2)/2. βi is the GVD coefficient, and γj is the Kerr
parameter of the fiber experienced by this particular beam. The
GVM is represented by δ, where δ =| ν−1

g1 − ν−1
g2 |. The factor

2 before the XPM terms accounts for the assumption that the
two beams have the same polarization.

The above relations describe the propagation of pulses
strictly in the instantaneous nonlinear response. Roughly
speaking, for the case of ultrashort pulse propagation, besides
the instantaneous response due to electronic contribution, the
slow response of thermal origin or reorientational nonlinearity,
whose time scale may vary from picoseconds to nanoseconds,
must be considered. The origin of such delayed effects is in
general assumed to be due to the vibrational Raman effect. In
describing such effects, we adopt a simple relaxational model
known as the Debye relaxational model, whose applicability
is known to be valid independent of the frequency regime.
The relaxation coefficient in this model represents the finite
response time inherent of the nonlinear material.

For the usual Kerr response, the medium exhibits an
instantaneous response which is given by

P ∝ |E|2E, (2)

with P being the nonlinear polarization. Nevertheless, in the
Debye relaxation model, the medium has a finite response time
τ . This feature is effectively taken into account by writing
P ∝ χ (E,t)E, where the rate at which χ varies on time is
given by

∂χ

∂t
= − 1

τ
χ + 1

τ
|E|2, (3)

which describes the exponential relaxation of the nonlinear
contribution to its stationary solution. Thus, a time-dependent
nonlinear response can be incorporated in the system of
CNLSEs, which in turn are expressed as [38–47]
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= 1

τ
(−N1 + |E1|2 + 2|E2|2),

∂N2

∂t
= 1

τ
(−N2 + 2|E1|2 + |E2|2),

with N = N (z,t) describing the nonlinear index of the
medium. The parameter τ corresponds to the finite response
time. Therefore, it was shown that it reaches the usual Kerr
response in the limit when τ → 0. This is also valid when the
slowly varying envelope approximation does not hold [47].
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Then, it will be shown that the regimes of slow and fast
response times (large and small values of τ , respectively) lead
to distinct outcomes.

The steady state can be easily found as the time-
independent solution of Eq. (4) which is given by E1 =
E0

1e
[iγ1(|E0

1 |2+2|E0
2 |2)z], E2 = E0

2e
[iγ2(2|E0

1 |2+|E0
2 |2)z], N1 = |E0

1 |2 +
2|E0

2 |2, and N2 = 2|E0
1 |2 + |E0

2 |2. Hereafter, E0
1 and E2

0 will
be considered as real stationary field amplitudes for simplicity.
In order to investigate the effect of the small harmonic
perturbations against the steady-state solution of the above
dynamical equations, we make use of a linear stability analysis.
We assume that

E1 = [
E0

1 + e1(z,t)
]
e[iγ1(|E0

1 |2+2|E0
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(5)
N1 = n1(z,t) + ∣∣E0

1

∣∣2 + 2
∣∣E0

2

∣∣2
,

N2 = n2(z,t) + 2
∣∣E0

1

∣∣2 + ∣∣E0
2

∣∣2
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with ej (z,t) as a weak perturbation which satisfies |ej (z,t)|2 �
|E0

j |2, and nj (z,t) as a small perturbation to the stationary
nonlinearity. Also, by substituting Eqs. (5) in (4), we can derive
the linearized equations satisfying the perturbations ej (z,t) and
nj (z,t), which yields

i
∂e1

∂z
+ i

vg1

∂e1

∂t
= 1

2
β1

∂2e1

∂t2
− γ1n1E

0
1 ,

i
∂e2

∂z
+ i

vg2

∂e2

∂t
= 1

2
β2

∂2e2

∂t2
− γ2n2E

0
2 ,

∂n1

∂t
= 1

τ

[−n1 + E0
1(e1 + e∗

1) + 2E0
2(e2 + e∗

2)
]
,

∂n2

∂t
= 1

τ

[−n2 + 2E0
1(e1 + e∗

1) + E0
2(e2 + e∗

2)
]
.

(6)

The solution for this system of coupled complex linear
equations can be simply achieved after performing proper
mathematical transforms (Fourier transform in time with
components having a real modulation frequency � and
Laplace transform in space with components having a complex
wave number k). Thus, expressing the decomposition of the
perturbations as

ej (z,t) = 1√
2π

∫
e−ikzei�t êj (�,k)dk d�,

(7)

nj (z,t) = 1√
2π

∫
e−ikzei�t n̂j (�,k)dk d�,

simple relations for the components can be obtained. In what
follows, we examine the extent to which the effects of XPM
and noninstantaneous response interfere in this specific case
that modulations with equal wave vectors are associated to
each beam. In Ref. [58] a method is demonstrated to extend
the present case to the general one. After eliminating n̂j (�,k),
the amplitude of the harmonic components of the perturbation

fields can be found to be coupled as follows:(
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ê2(�,k) + γ2E

0
2

(i�τ + 1)

{
2E0

1 [̂e1(�,k)

+ê∗
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(8)

In a similar fashion, the conjugate of Eq. (8) provides
the counterpart equations for the complex conjugate of these
perturbation fields. After some calculations, it can be seen that
the system of four homogeneous equations for e1, e∗

1, e2, and e∗
2,

given by Eqs. (8) and the corresponding complex conjugates,
presents a nontrivial solution only when the dispersion relation
is satisfied by the parameters k and �, which is given by[(

k − �

νg1

)2

− f1

][(
k − �

νg2

)2

− f2

]
= CXPM, (9)

where
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The coupling parameter CXPM is given by

CXPM = 4γ1γ2β1β2

∣∣E0
1

∣∣2∣∣E0
2

∣∣2
�4

(1 + i�τ )2
. (11)

The above dispersion relation [Eqs. (9)–(11)] determines
the stability of the steady-state solution against harmonic
perturbations. These become exponentially unstable whenever
the wave number k exhibits an imaginary term, with the
modulational instability gain being defined as g(� = 2 Imk.
Different MI gain spectra correspond to distinct solutions of
this equation and one can examine qualitatively and quantita-
tively the main role played by the nonlinear response time.

For the case of instantaneous nonlinear response (τ = 0),
one can note that the dispersion relation is a fourth-order
polynomial in k with real coefficients leading to four solutions.
Two of the solutions are always real and thus completely
irrelevant to MI investigations, and the other two can be a
complex conjugate pair, thereby being responsible for the MI
dynamics and thus providing the emergence of, in general,
only one unstable gain sideband, as extensively seen in many
previous works [3,37,40,55–57,62].

On the other hand, by adding a response time in the
nonlinear response (τ �= 0), it is evident from the dispersion
relation that the terms fi [Eq. (10)] and CXPM [Eq. (11)]
become complex numbers, thus producing an imaginary part
to the wave number k and expanding the frequency range of
unstable harmonic perturbations [38–44]. In fact, for any finite
value τ , Eqs. (9)–(11) account for a fourth-order polynomial
equation with complex coefficients. Since the complex roots
do not necessarily appear in conjugate pairs, this leads to the
possibility of up to four unstable modes for a given frequency
� [40]. More detailed discussions are presented in Secs. III B
and III C.
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Thus, the incorporation of delay in the XPM leads to two
unstable modes in contrast to a single unstable mode in the
case of an instantaneously responding medium. The interplay
of XPM, walk-off effect, and delayed nonlinear response in
the coupled system can be analyzed by numerically solving
the dispersion relation equation to obtain the gain spectrum.
Therefore, we organized our analysis in three parts: (a) study
of the effect of walk-off on the XPM-MI spectrum, (b) analysis
of the impact of a finite relaxation time on the MI dynamics,
and (c) investigation of the of interplay of both of these effects.
Furthermore, in order to give a complete picture of the role of
walk-off and delayed nonlinear response in the XPM-induced
MI dynamics, we consider the case in which one of the beams
propagates in normal GVD regime and the other beam runs
under the anomalous GVD regime.

In the following results, we use the dispersion parameters
as β1 = −β2, with β1 = ±0.06 ps2 m−1 and the nonlinear pa-
rameters γ1 = γ2 = 0.015 W−1 m−1. The input optical powers
are set as P1 = 100 W and P2 = εP1, where ε = 1, except as
otherwise stated. Moreover, ν1 = 1 m/ps, the group-velocity
mismatch varies in the range δ = 0–10 ps m−1, and the delay
parameters range in the interval τ = 0–10 ps.

III. RESULTS AND DISCUSSIONS

In this work we intend to provide a detailed analysis of
the interplay between walk-off and noninstantaneous Kerr
response for the case in which one of the beams is experiencing
normal GVD and the other beam undergoes anomalous GVD
(β1β2 < 0). For the sake of clarity, the particularities of
each physical effect are discussed separately in the following
subsections.

A. Walk-off effect on XPM

To illustrate the role of the walk-off effect in the XPM-MI,
let us consider the case of instantaneous nonlinear response
(τ = 0). Here, we investigate the walk-off effect in the case
in which one of the beams experiences normal GVD and the
other beam anomalous GVD (β1β2 < 0).

In the absence of GVM (δ = 0), the MI spectrum extends
over all frequencies. This feature would imply in the generation
of an infinitely wide sideband which is not observed in
practical situations. However, for any non-null value of δ the
MI instability band acquires a finite range. As δ is further
increased, the MI band is shifted toward lower frequencies
and its range is reduced, narrowing the band. Moreover, the
maximum value of the gain decreases, reaching a saturation
as a function of δ, as is evident from Fig. 1 (top). As it
will be better analyzed ahead, for δ < δc ≈ 0.4 ps m−1 two
maxima can be seen. We have plotted a qualitative study of
this behavior in Fig. 1 (bottom), where the two bands can
be seen for every chosen value of the GVM: one with large
values of the maximum gain occurring in high frequencies
and the other taking place for lower frequencies with smaller
corresponding peaks. Note that both the peaks and their
corresponding frequencies are reduced with increasing δ.

The qualitative picture of the role of GVM on MI plotted
in Fig. 1 can be better analyzed by exploring the dependence
of the local gain maxima on the GVM. Figure 2 depicts the

0 2 4 6
Ω

0

1

2

3

4

5

g(
Ω

)

β1 = −0.06, β2 = 0.06, δ = 0
β1 = −0.06, β2 = 0.06, δ = 1
β1 = −0.06, β2 = 0.06, δ = 2
β1 =  β2 = 0.06, δ = 0

 τ = 0

0 5 10 15
Ω

0

1

2

3

4

5

6

g(
Ω

)

 δ = 0.1
 δ = 0.2
 δ = 0.3
 δ = 0.4

 τ = 0

FIG. 1. MI gain spectra g (m−1) as a function of the fre-
quency � (THz) with the effect of GVM for different values
of δ (ps m−1) for instantaneous nonlinear response (τ = 0 ps).
Top: β1 = β2 = 0.06 ps2 m−1 (solid line) and β1 = −0.06 ps2 m−1,
β2 = 0.06 ps2 m−1 otherwise. Bottom: β1 = −0.06 ps2 m−1 and β2 =
0.06 ps2 m−1.

local maximum gain and the corresponding frequency in each
instability band for all possible combinations of GVD regimes
of the propagating pulses for the case of instantaneous Kerr
response (τ = 0).

When both beams experience the normal GVD regime
(β1 = β2 = 0.06 ps2 m−1), just one MI band is present and its
peak increases with GVM [40,55–57], saturating after some
value of δ, as it can be inferred from Fig. 2 (pluses, top).
Withal, the situation is somewhat different for the case of
mixed GVD regimes. Here, for small values of δ (δ < δc ≈
0.4 ps m−1), two peaks are present and their values, gmax,
decrease monotonically, apart from the very small values of δ

and the greatest peak. Notice that the values for smaller peaks
decrease almost linearly with δ for the two-band condition
(δ < δc). Furthermore, for larger values of δ we can see just
one peak which also reaches a plateau with increasing values
of δ [compare pluses and circles in Fig. 2 (top)]. This scenario
is well distinct from the case of both pulses experiencing the
normal GVD regime [40,55–57].

The frequency at which the gain in the instantaneous (τ =
0) band is maximum does increase linearly with GVM [see
pluses in Fig. 2 (bottom)] when both pulses experience normal
GVD regime, as pointed out in Refs. [40,55–57]. On the other
hand, for the case of mixed GVD regimes (β1β2 < 0) there are
two spectral MI bands, as already mentioned before, whose
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FIG. 2. Local maximum gain gmax (m−1) and its corresponding
frequency �max (THz) for each instability branch as a function of the
GVM δ (ps m−1) and conventional Kerr response τ = 0 ps for the
case of both beams in the normal GVD regime (pluses) and mixed
GVD regime (circles). The other parameters are the same as those
used in the previous figure.

peaks rapidly decay with δ. The corresponding frequencies
at which those maxima occur are also different from each
other, as can be deduced from Fig. 2 (bottom). However, if
δ > 0.4 ps m−1, just one MI band occurs and its frequency
is practically independent of the GVM parameter. It is worth
mentioning that this delimiting value for the GVM (δc) depends
on all parameters used and it was not further investigated in
this work.

B. Relaxing nonlinearity effect on XPM

In this subsection, we turn our attention to the specific
role played by the delayed nonlinear response in XPM-MI.
Thus, we restrict our analysis to the case of null group-velocity
mismatch (δ = 0).

In the seminal works of Agrawal for the XPM coupling of
pulses in the normal GVD regime [55–57] just one instability
band was present once the dispersion relation accounted for
a second degree polynomial equation with real coefficients.
As addressed before, the addition of a response time in the
nonlinear response (τ �= 0) turns the dispersion relation terms
fi and CXPM of Eq. (9) into complex numbers. In addition, for
δ = 0 and |β1| = |β2| (as used for the elaboration of Fig. 3),
Eq. (9) can be reduced to a second-order polynomial equation.
Observe that for τ �= 0 two spectral bands are present. This
new band appears only due to the noninstantaneous nonlinear
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FIG. 3. MI gain spectra g (m−1) as a function of the frequency
� (THz) for several values of the nonlinear delay parameter τ (ps)
when δ = 0 ps m−1. The other parameters are the same as those used
in previous figures.

response. Therefore, the delay in the nonlinear response is
responsible for the appearance of Raman bands besides the
conventional one.

In Fig. 3 it is possible to qualitatively understand the
main role played by the delayed nonlinear response. The
noninstantaneous parameter not only induce a new instability
band, but also reduces their peaks in comparison to the
instantaneous band and moves their corresponding frequencies
to lower values, a behavior similar to what is observed when
one is dealing with saturable response [35–38]. We can also
notice that the situation is distinct for small and large values of
τ , corresponding to fast and slow delayed nonlinear responses,
respectively.

A detailed analysis of the relation of the peaks of the gain
and their corresponding frequencies with the noninstantaneous
response is shown in Fig. 4, where the local maxima of
g(�) and their corresponding frequencies are plotted for each
instability branch as a function of the response time τ and
null GVM (δ = 0). In the regime of fast nonlinear responses
(small τ ), the two peaks show practically the same value
and they are roughly independent of τ < τ ′

c ≈ 0.01 [see the
region for τ < τ ′

c in Fig. 4 (top)]. For large values of τ the
situation is different: the peaks decay as 1/τ for one band
and as 1/τ 2/3 for the other. The frequency at which the gain
in the instantaneous band is maximum decays monotonically
with τ [see Fig. 4 (bottom)]. Again we can clearly see two
well distinct regimes for fast and slow nonlinear response. In
the region of fast response, the two frequencies are almost
indistinguishable decaying as 1/τ 1/3. However, for τ > τ ′′

c

(slightly larger than the previous one), the frequencies become
distinguishable: one frequency still decaying as 1/τ 1/3, and
the other one in the other band decaying faster as 1/τ . These
asymptotic behaviors can be understood by analyzing the
dispersion relation [Eqs. (9)–(11)]. One of the asymptotic
solutions having maximum gain is such that the two terms
within the brackets in Eq. (10) are of the same magnitude. This
implies that �2

max ∝ 1/�maxτ or, equivalently, �max ∝ 1/τ 1/3.
This solution has a quadratic dispersion relation thus leading
to gmax ∝ �2

max ∝ 1/τ 2/3. On the other hand, the second
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FIG. 4. Local maximum gain gmax (m−1) and its corresponding
frequency �max (THz) for each instability branch as a function of
the response time τ (ps) and null GVM (δ = 0 ps m−1) for the case
of mixed GVD regimes (circles). The other parameters are the same
as those used in previous figures. τ ′

c and τ ′′
c stand for the crossover

response times in the maximum gain and frequency, respectively.

maximum gain is related to a solution with �maxτ remaining
constant as τ increases and has a linear dispersion. As a result,
gmax ∝ �max ∝ 1/τ , as illustrated in Fig. 4.

C. Interplay between walk-off and noninstantaneous
Kerr effects

Taking into account the results of the previous section,
we organized our analysis of the joint effects of both
noninstantaneous Kerr response τ �= 0 and group-velocity
mismatch δ �= 0. From the mathematical point of view, the
dispersion relation is again a fourth-order polynomial equation
with complex coefficients, opening the possibility of up to
four modes with distinct gain spectra. In Fig. 5 we provide
an overview of this interplay. Notice that for τ = 0.1 and
τ = 0.01 one can see four gain spectra. However, they coalesce
into just two spectra with increasing values of the delay
parameter.

It is also possible to observe up to five peaks for a given
value of τ , which can correspond to multiple instability
Raman bands. This is indeed the most relevant aspect of the
noninstantaneous nonlinear parameter when both effects are
taken into account, especially for the fast response regime
(small τ ). It is also possible to observe some sporadic
peaks, breaking the smoothness of some spectra (Fig. 5).
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 τ = 0.01
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 τ = 1

 δ = 2Conventional band

Raman bands

Sporadic peaks

FIG. 5. MI gain spectra g (m−1) as a function of the frequency �

(THz) with the effect of noninstantaneous Kerr response for different
values of τ (ps) for δ = 2 ps m−1. The other parameters are the same
as those used in previous figures.

However, for a better understanding of the phenomenological
transition from fast to slow noninstantaneous response we have
performed a more detailed study in Fig. 6, where it can be
seen that the analysis is richer when both effects take place
simultaneously.
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FIG. 6. Local maximum gain gmax (m−1) and its corresponding
frequency �max (THz) for each instability branch as a function of the
response time τ (ps) and null GVM (δ = 2 ps m−1) for the case of
mixed GVD regimes (circles). The other parameters are the same as
those used in previous figures.
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We plot [Fig. 6 (top)] the local maximum gain and its
corresponding frequency for each instability branch as a
function of the response time τ , for δ = 2 ps m−1 as a prototype
case. It is easy to identify a turnover point for τ ∗ ≈ 0.005 ps
delimiting two well distinct trends. For τ < τ ∗, gmax(�) ∼ τ ,
increasing linearly with τ . On the other hand, for τ > τ ∗,
gmax(�) decreases with τ in two different forms: as 1/τ for the
smaller peaks and proportional to 1/τ 3/4 for the larger values
of gmax(�). The sporadic peaks decay in a fashion which is
intermediate between these two tendencies, as illustrated in
Fig. 6 (top) for τ > 0.05. Another important feature is that the
global maximum value of gmax(�) as well as its second largest
maximum remain unaltered in the regime of fast nonlinear
response, decaying only when τ reaches the turnover point.

The corresponding frequencies in which the peaks take
place are shown in Fig. 6 (bottom). One can verify that the
greater the frequency, the faster it decreases with τ . Once
again, the main role played in increasing the delayed response
over the frequencies is to move them towards lower values
until these Raman bands eventually fade out for sufficient
large values of τ . We still identify the same threshold for τ =
τ ∗ ≈ 0.05, delimiting two different decaying slopes for �max.
For τ < τ ∗, �max decays as 1/τ for the frequencies related
to the Raman bands (which occur for the higher frequencies).

FIG. 7. Top: Total gain as a function of both the frequency �

(THz) and the GVD δ (ps m)−1 for τ = 1 ps (top). Total gain as
a function of nonlinear response time τ (ps) for the δ = 1 ps m−1

(bottom).

Observe that, in this fast regime, the frequencies related to the
conventional band, second largest and sporadic peaks remain
independent of τ . On the other hand, for τ > τ ∗, �max is
merged in just two characteristic curves; one remains constant
and the other decays as 1/τ 1/3.

In order to have an overview of the interplay between the
XPM and the nonlinear response time on MI, we report in
Fig. 7 a color plot of the total gain (the sum of all unstable
modes) as a function of both frequency � and response time
τ . Figure 7 (top) shows the overall effect of the GVM over
the gain spectra. Its main effect is to reduce the width of
the spectra as δ increases. Analyzing Fig. 7 (bottom), we can
clearly see the two gain bands for fast responding media. The
first band at low frequencies is due to the inherent instability
of instantaneously responding media. The second one at larger
frequencies is the Raman band. This plot shows clearly the shift
of the Raman band as the response time increases up to the final
coalescence of these instabilities in the slowing responding
regime, after some turnover point. For τ sufficiently large, the
modulation gain vanishes. In its central portion, it is possible
to identify a minor distortion caused by the sporadic peaks.

IV. SUMMARY AND CONCLUSIONS

In summary, we have investigated the modulation instability
in optical fibers with delayed Kerr nonlinearity and subjected
to XPM in virtue of the coupling due to the intensity-dependent
refractive index for two copropagating optical beams with
the same polarization, but experiencing mixed GVD regimes.
We modeled this system by incorporating time-dependent
nonlinearities in the nonlinear Schrödinger equation governing
the time evolution of the field envelopes. The dynamical
equations for the nonlinear contributions were assumed to
be relaxational. By considering small harmonic perturbations
to the stationary solutions, we obtained the exact dispersion
relation for the components of the perturbation fields that
includes both the XPM and relaxation effects.

We unveiled that the case of fields copropagating in the
mixed GVD regime presents quite new features associated
with the MI gain spectrum as compared with the copropagation
regime in with both fields experience normal GVD. We showed
that, in the limit of an instantaneuous nonlinear response, the
typical frequency with maximum gain converges to a finite
value in the mixed GDV regime, while it continuously grows
with the group-velocity mismatch in the normal GVD regime.
As a result, the maximum gain typically decreases with the
group-velocity mismatch in the mixed regime, contrasting with
the opposite trend in the normal GVD regime.

The above features are directly related to the single- and
double-band structures of the gain spectrum in the normal and
mixed regimes, respectively. In the case of a noninstantaneous
response, there are twice more harmonic modes exhibiting MI
gain in the mixed than in the normal GVD copropagation
regime. The MI gain spectrum displays four degenerated
harmonic modes for fast nonlinear responses and two de-
generated modes for the slow responding regime. Hence, it
depicts distinct aspects in media with fast and slow delayed
nonlinear responses. In media with fast nonlinear responses,
there is a well-defined instantaneous gain band and multiple
Raman bands associated with each degenerate unstable mode.
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In slowly responding media, the Raman bands are shifted to
lower frequencies and can suppress the instantaneous gain
band.

The cases of small and large group-velocity mismatches
also show distinct features, with the instantaneous gain band
being displaced to lower frequencies as the group-velocity
mismatch increases. The dependencies on the typical nonlinear
response time τ and on the group-velocity mismatch δ of
the main characteristics of the gain bands were also reported
and showed distinct scaling behaviors in the small and large
τ regimes. In particular, besides the mode having maximum
gain at a frequency decaying with 1/τ 1/3, there is a second
mode having maximum gain with a distinct scaling behavior
�max ∝ 1/τ in the absence of group-velocity mismatch. The
associated maximum gains scale, respectively, as 1/τ 2/3 and
1/τ , thus signaling the corresponding quadratic and linear
dispersion relation of these modes in the low-frequency limit.

The present investigation sheds a new light on studies of
ultrashort pulse propagation in nonlinear optical media with
finite response times, as well as provides some motivation in
manufacturing materials which account for the phenomenol-
ogy exposed here. Along this direction, photonic crystal fibers
filled with molecular liquids have been shown to exhibit a
highly noninstantaneous response [63]. Wave propagation in

such media depicts novel soliton solutions [49]. The interplay
between the slow nonlinear response and balanced gain or loss
contributions have been suggested as a possible mechanism
to develop a passively mode-locked soliton laser [64]. The
present results show that cross-phase modulation can strongly
influence the modulational instability process in such slowly
responding media. Considering that modulational instability
is the underlying mechanism triggering soliton formation,
further studies incorporating the joint effects of a delayed
nonlinear response and gain or loss contributions would be
in order to unveil their competing effects on the mechanism of
soliton formation of copropagating beams in noninstantaneous
nonlinear media.
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