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Composite pulses for high-fidelity population inversion in optically dense,
inhomogeneously broadened atomic ensembles
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We derive composite pulse sequences that achieve high-fidelity excitation of two-state systems in an optically
dense, inhomogeneously broadened ensemble. The composite pulses are resistant to distortions due to the
backaction of the medium they propagate in and are able to create high-fidelity inversion to optical depths
αz > 10. They function well with smooth pulse shapes used for coherent control of optical atomic transitions in
quantum computation and communication. They are an intermediary solution between single π -pulse excitation
schemes and adiabatic passage schemes, being far more error tolerant than the former but still considerably faster
than the latter.
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I. INTRODUCTION

Coherent control methods that achieve the precise manip-
ulation of atomic quantum states play a vital role in quantum
information processing and quantum communication. One
class of methods that was applied extensively in this field
utilizes various forms of adiabatic passage [1,2]. While
adiabatic methods possess robust fault tolerance, their slow
speed can be a serious disadvantage. Therefore, alternative
methods were developed using various optimization schemes
with the aim of speeding up the control process, but at the same
time retaining at least some of the fault tolerance [3–7]. One of
these alternative approaches is the method of composite pulses
(also called composite pulse sequences) that was originally
developed in NMR [8,9], but has recently found its way into
coherent control and quantum information processing [10–18].

One specific task in quantum information processing is
building an optical quantum memory, a device that can
store and retrieve the quantum state of a single-photon light
pulse [19]. This is an indispensable component of quantum
repeaters, devices that allow long-range quantum communi-
cation [20,21], but of also a number of other quantum tech-
nologies [22]. Memory schemes based on inhomogeneously
broadened atomic ensembles (such as rare-earth ion-doped
optical crystals) and some variant of the photon-echo effect
have been studied intensively [21,23]. Some of these achieve
the rephasing of atomic coherences that is necessary for the
echo emission by inverting a part of the atomic ensemble with
laser pulses [24–26]. The difficulty is that the ensemble must
be optically dense to absorb the signal, which means that it
will also distort the control pulses that are meant to produce
population inversion. Thus inverting an inhomogeneously
broadened, optically dense ensemble of atoms is not a simple
task, yet it is an important skill to master if these photon-echo-
type memories are to reach maturity.

Using single Rabi π pulses in an optically dense ensemble
is problematic because the pulse is quickly rendered ineffective
by the medium [27,28]. Control pulses that utilize adiabatic
passage are more convenient [24,28–30], but depending on the
maximum pulse amplitude possible (limited, for example, by
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the maximum available laser power or the damage threshold
of the crystal that hosts the ensemble) they may be too time
consuming. The method of composite pulses (CPs) involves
constructing complex control pulses for quantum state manip-
ulation from a sequence of elementary pulses. Free parameters
in the construction can be used to obtain fault tolerance with
respect to various errors of the constituent pulses, such as
frequency offsets or amplitude errors. Even universal CPs
can be developed that tolerate arbitrary imperfections. The
method of CPs has recently been used to develop error-tolerant
high-fidelity population inversion schemes using smooth pulse
shapes that are encountered in the optical regime [12,13,18].
In terms of speed and error tolerance, CPs can be regarded as
a compromise between the single Rabi π pulse and adiabatic
passage methods.

In this paper we investigate the use of CPs for robust high-
fidelity population inversion in inhomogeneously broadened,
optically dense atomic ensembles for quantum information
processing purposes. Similarly to [12], we try to perform the
inversion using a CP built from a sequence of N monochro-
matic Rabi π pulses with appropriately chosen phases. We
seek sets of phases (phase sequences) that allow the CP to
invert an extended region within the ensemble (in terms of
spectral width and optical depth) despite pulse distortions
due to propagation in the medium. The usual approach in
deriving CPs assumes that the error that the phase sequence
must compensate for arises due to some imperfection of the
experimental parameters such that it is reproduced for each
elementary pulse of the sequence. In our case however, the
pulses are distorted while propagating and they are not all
distorted the same way because some pulses excite the atoms
while some return them to the ground state.

The paper is divided as follows. In Sec. II we describe
the basic physical setting and the equations to be solved. In
Sec. III we generalize the method of [12] to derive CPs that are
resilient with respect to amplitude errors due to the backaction
of the optically dense medium on the pulses. The key point
here is that we allow the amplitude of even and odd numbered
pulses of the sequence to change differently. In Sec. IV we
derive CPs where amplitude error compensation is combined
with a compensation of the atomic resonance frequency offset
from the inhomogeneously broadened line center. In Sec. V
we present numerical simulation results of the Maxwell-Bloch
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equations for resonant pulse propagation. We also investigate
the applicability of universal CPs derived recently in [18] for
high-fidelity inversion in optically dense ensembles.

II. COMPUTING PROPAGATORS IN AN OPTICALLY
DENSE MEDIUM

The physical setting we consider consists of an inhomoge-
neously broadened, spatially extended ensemble of two-level
atomic systems. The number density N of the absorbers is
uniform in space and the precise resonance frequency of the j th
atom is offset by �j from the inhomogeneous line center ω0:
�j = ωj − ω0. The distribution of atomic frequencies g(�)
is constant in space and assumed to be sufficiently wide to be
taken a constant g0 in the spectral region of the laser fields.
A one-dimensional propagation of CPs is considered along
the z direction, where the ensemble is optically dense. At the
entry z = 0, the CPs consist of N = 2n + 1 monochromatic
pulses tuned to resonance with the atomic line center ω0.
Homogeneous decay processes are neglected and the ensemble
is assumed to be in the ground state initially.

In this setting, the effect of the CP on the j th atom located
at zj is given by the Schrödinger equation for the atomic
probability amplitudes |ψj 〉 = αj |g〉 + βj |e〉:

∂tαj = i

2
	∗(zj ,t)βj ,

∂tβj = i

2
	(zj ,t)αj − i�jβj . (1)

The complex Rabi frequency 	(zj ,t) = E(zj ,t)d/� char-
acterizes the atom-field coupling, with E(zj ,t) the slowly
varying electric-field amplitude at zj and d the dipole matrix
element. In deriving Eq. (1) the central frequency of the
absorption line ω0 has been separated and the rotating-wave
approximation applied. Provided 	(zj ,t) is known, one can
integrate Eq. (1) and describe the effect of the CP on the atoms
from the initial time ti until the final tf in terms of the unitary
propagator [αj (tf ),βj (tf )]T = Uj [αj (ti),βj (ti)]T , which can
be conveniently written in terms of the complex Cayley-Klein
parameters as

Uj =
(

a(�j,zj ) b(�j,zj )
−b(�j,zj )∗ a(�j,zj )∗

)
.

Clearly, the parameters a(�j,zj ) and b(�j,zj ) depend on the
location and frequency offset of the atom. The problem is
that the field is initially known only at the boundary and
has to be computed for z > 0 from the Maxwell equation
for wave propagation. Using the slowly varying envelope
approximation, this can be written as(

1

c
∂t + ∂z

)
	(z,t) = i

α

πg0
P(z,t), (2)

where α (without any subscript) is the absorption constant α =
πg0kNd2/ε0� and the medium polarization P that constitutes
the backaction of the ensemble on the propagating field
is obtained by summing the atomic coherences within an
infinitesimally thin region of z:

P(z,t) =
∑

j :zj ∈[z−dz,z+dz]

α∗
j (t)βj (t).

Equation (2), and consequently the propagator U, can
usually be computed only numerically. Furthermore, any result
will pertain only to the specific initial state that the ensemble
was in before the CP arrived. The choice we made (all atoms
in |g〉) is adapted to quantum memory applications where the
absorption of a single- or few-photon signal pulse before the
CP amounts to a negligible change in the ensemble initial
state when the propagation of a strong classical control field is
concerned. In accordance with the requirements encountered
in several photon-echo-type quantum memory schemes, we
seek to establish high-fidelity atomic inversion in an extended
region of the ensemble. The figure of merit we use is the
error probability that the atoms remain unexcited by the CP:
Perr = |U11|2 = |a(�,z)|2, which is required to be as low as
10−2–10−4 for high-fidelity quantum information applications.
The region must be wide enough around � = 0 to encompass
the spectral width of the absorbed signal and extend to
an optical depth of αz = 5–10. This latter requirement is
defined by the fact that the signal, absorbed in the medium
as ∼ exp(−αz), is contained in the region αz < 5 up to an
accuracy of 10−2 and in the region αz < 10 up to an accuracy
of 10−4.

The standard procedure would now be to build the prop-
agator of the CP from those of the constituent elementary
pulses and use the free parameters to tune its effect on the
atoms. In case the figure of merit used cannot be computed
analytically with symbolic values of the parameters, a numer-
ical optimization procedure can also be employed [11]. In our
case however, not only is it impossible to obtain analytical
formulas for the propagating fields with symbolic parameters,
but the numerical solution of (2) is also expensive enough to
make the use of numerical optimization practically impossible.
Therefore, we will use intuition to determine some conditions
that we expect will improve the ability of the CP to invert
extended regions in the optically dense, inhomogeneously
broadened ensemble and then verify a posteriori that this is
indeed the case. Similarly to [12], we will assume that the
CP is made up of N = 2n + 1 consecutive Rabi π pulses, the
only difference between them being an initial phase ϕk . It is
also convenient to adapt the anagram condition ϕk = ϕN+1−k

and fix the overall phase of the CP by ϕ1 = ϕN = 0. Thus
the CP is characterized by the composite phase sequence
[0,ϕ2,ϕ3, . . . ,ϕn+1,ϕn, . . . ,ϕ2,0], defined entirely by the set
of n phases {ϕk}n+1

k=2 with which we can optimize the effect
of our CP. We assume that the maximum Rabi frequency for
all pulses is 	0 (fixed by either available laser power or the
damage threshold of the optical crystal that hosts the impurity
ions) and compare the performance of all CPs to that of a
single π pulse.

III. AMPLITUDE-ERROR-COMPENSATED
COMPOSITE PULSES

For � = 0 Eqs. (1) can be solved exactly to obtain the
propagator for a single pulse

Uk(ϕk) =
(

cos Ak

2 i sin Ak

2 eiϕk

i sin Ak

2 e−iϕk cos Ak

2

)
, (3)

where the final level of atomic excitation is determined solely
by the pulse area A = ∫

	(t)dt . An elegant approach was
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developed in [12] to derive CPs that are fault tolerant with
respect to errors of pulse amplitude based on this fact, which
we will adapt to our problem. The matrix (3) was used to build
the overall propagator as

U = UN (0)UN−1(ϕ2) · · · U3(ϕ3)U2(ϕ2)U1(0) (4)

and, assuming that the amplitude of the constituent pulses
was not perfect, Ak = π + ε was inserted for the imperfect
pulse area. Then a(ε)|ε=0 = 0 and various derivatives ∂l

εa(ε)
were nullified with appropriate choices of {ϕk} to obtain CPs
with considerable robustness against amplitude errors, having
Perr = O(ε2N ). (Since all even order derivatives disappear due
to the anagram relation ϕk = ϕN+1−k , only odd order deriva-
tives pose constraints for the phases.) All of the elementary
pulses were identical in this approach (the error is duplicated
identically for each one) and the result valid for arbitrary pulse
shapes.

Fault tolerance with respect to amplitude errors seems
useful also when trying to invert atoms in an optically dense
sample. It follows from the famed area theorem [31,32] that
for a single pulse, A = π is an unstable fixed point of the
area equation, so any error will increase during propagation.
Furthermore, even though a single perfect π pulse should
retain its area, due to energy loss it reshapes, gradually
becoming longer, which means that its area will eventually
start decreasing during the finite time interval allocated for the
control. However, inserting the amplitude-error-compensated
CPs of [12] into the propagation equations shows that they
do not perform better than single π pulses at all. The results
are shown in Figs. 1(a) and 1(b) where the error contours
Perr = 10−2 and 10−4 are plotted on the αz-� plane (i.e.,
the boundary of the domain around � = 0 and z = 0 within
which Perr � 10−2,10−4). The data for the plot were obtained
by computing U for a single incident cos2-shaped π pulse,
the amplitude-error-compensated N = 3 CP defined by {ϕ2 =
2π/3}, and the N = 5 CP with {ϕ2 = 2π/5,ϕ3 = 4π/5} [12].
It is evident that while the single pulse can only produce high-
fidelity population inversion in an extremely limited domain of
the ensemble, the N = 3 and 5 amplitude-error-compensated
CPs are no better.

Now it also follows from the area theorem that for a
pulse traveling in an inverted medium, the stability properties
are reversed: A = π is the stable solution and A = 2π is
the unstable one. Thus the area equation suggests that the
amplitude error that develops during propagation is not the
same for all pulses, so assuming them to be identical is not
justified in our case. Indeed, it is intuitively clear that a pulse
that must excite the atoms of the ensemble will be affected
differently during propagation than one that returns them to
the ground state. We thus write the error that we seek tolerance
against in the following form:

Ak = π + (−1)kε. (5)

This is perhaps the simplest expression that, without
introducing new parameters, allows us to differentiate between
odd numbered pulses of the composite sequence (i.e., those
that are to excite the atoms) and even numbered ones (those
that are to return them to the ground state). We will refer
to this ansatz as alternating amplitude error. Inserting (5)
into Eq. (3), composing the overall propagator (4), and using
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FIG. 1. Contour lines of the error probability Perr = |a(�,z)|2
for (a) and (b) amplitude-error-compensated CPs of [12] and (c) and
(d) the alternating-amplitude-error-compensated CPs on the αz-�
parameter plane: (a) Perr = 10−2 and (b) Perr = 10−4 for a single
pulse (blue line), the N = 3 CP defined by {ϕ2 = 2π/3} (red line),
and the N = 5 CP with {ϕ2 = 2π/5,ϕ3 = 4π/5} (black line) and
(c) Perr = 10−2 and (d) Perr = 10−4 for a single pulse (blue line),
the N = 3 CP designated U3a and defined by {ϕ2 = π/3} (red
line), and the N = 5 CP U5a2 : {ϕ2 = π/5,ϕ3 = 8π/5} (black
line) and the N = 9 CP U9a8 : {ϕ2 = 0.2708π,ϕ3 = 1.0829π,ϕ4 =
0.5898π,ϕ5 = 4π/9} (magenta line). Note that the scale on the z axis
is the same for all plots, but the scale on the � axis varies. The lines
are tagged by N in each panel. The first three phases for the nine-pulse
sequence are approximate values.

the constraints ∂l
εa(ε) = 0 for various sets of derivatives,

we can derive CPs that are fault tolerant with respect to
alternating amplitude errors. For N = 3, the simplest case,
the condition ∂εa = 0 gives cos ϕ2 = 1/2, which is solved
by ϕ2 = π/3, defining the CP designated by U3a. Another
example is the N = 5 case, where the conditions ∂εa = 0
and ∂3

ε a = 0 eventually yield 4 cos ϕ2 + 2 cos(2ϕ2 − ϕ3) −
2 cos ϕ3 = 1 and cos(ϕ2 − ϕ3) − cos(2ϕ2 − ϕ3) = 1/2. (The
conditions ∂2

ε a = 0 and ∂4
ε a = 0 are satisfied automatically.)

Solving these equations, we obtain the sequences U5a1 :
{ϕ2 = 3π/5,ϕ3 = 4π/5} and U5a2 : {ϕ2 = π/5,ϕ3 = 8π/5}.
(The designation U5aj means that it is the j th phase sequence
with N = 5 and alternating-amplitude-error compensation.)
Since all even order derivatives of a(ε) disappear due to
the anagram relation, for an N -pulse CP where we have
n = (N − 1)/2 phases to nullify derivatives, the first nonzero
derivative will be the N th-order one, so Perr = O(ε2N ). The
procedure can be continued to higher orders, but of course
the resulting trigonometric equations will be progressively
more difficult to solve. Up to N = 9 we have found, for the
N = 2n + 1 phase sequence, 2n−1 solutions. All the phases
obtained are tabulated in Table I.
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TABLE I. List of phases given as multiples of π for alternating-
error-compensated CPs. Phases in fractional form are exact values,
while phases in decimal form are approximate.

Designation ϕ2 ϕ3 ϕ4 ϕ5

U3a 1/3
U5a1 3/5 4/5
U5a2 1/5 8/5
U7a1 1/7 10/7 13/7
U7a2 0.230 1.230 1
U7a3 3/7 2/7 11/7
U7a4 5/7 8/7 9/7
U9a1 1/9 4/3 5/3 10/9
U9a2 1/3 0 1/3 2/3
U9a3 1/3 0 5/3 0
U9a4 5/9 2/3 1/3 14/9
U9a5 7/9 4/3 5/3 16/9
U9a6 0.145 1.280 0.024 2/9
U9a7 0.199 1.803 1.160 8/9
U9a8 0.271 1.083 0.590 4/9

Inserting the CPs derived in this manner in Eq. (2), we
can verify that they are indeed more fault tolerant with
respect to propagation-induced distortions than a single π

pulse. Figures 1(c) and 1(d) show the Perr = 10−2 and 10−4

contours for several CPs together with the single-pulse case.
It can be seen that increasing N leads to the expansion of
the high-fidelity population transfer domain. For N = 9 the
Perr = 10−4 domain already extends past αz = 10 and it is
also about an order of magnitude wider in � than for the
single-pulse case. The performance of a CP can only be
evaluated by computing the propagating fields numerically;
the CPs depicted are the ones that perform best for each N .
An N = 7 sequence was omitted in the figure because the best
seven-pulse CP was only slightly better than the N = 5 one
depicted. Note that if the sequence {ϕk} is a valid solution, then
so is {−ϕk} and thus {2π − ϕk}; we consider these sequences
to be identical (they are not listed in Table I). The figures were
produced by using cos2-shaped pulses; they are convenient to
use because they become exactly zero at a finite time point.

IV. FREQUENCY-OFFSET AND AMPLITUDE-ERROR
COMPENSATION

Composite pulses with alternating-amplitude-error com-
pensation allow the Perr < 10−4 region to reach αz > 10,
which is perfectly sufficient. The region is still fairly narrow
with respect to the frequency offset �, so we now seek to
derive CPs with combined error compensation of alternating
amplitude error and frequency offset. However, when � �= 0
the Cayley-Klein parameters depend on the shape of the pulse
envelope, so we turn to pulse shapes for which Eqs. (1) are
analytically solvable.

A. Hyperbolic-secant pulse

First we use the following solution for the Rosen-
Zener model [12,33], for which 	(t) = 	0sech(t/T ) and the
frequency offset (detuning) is constant. The Cayley-Klein

parameters for the kth pulse with phase ϕk are

ak = �
(

1
2 + iq

)2

�
(

1
2 + iq − p

)
�

(
1
2 + iq + p

) ,

bk = i
sin πp

cosh πq
eiϕk , (6)

where p = 	0T/2 and q = �T/2. Clearly, for 	0T = 1
we have the π -pulse case b = ieiϕ and a = 0. We insert
the alternating-amplitude-error ansatz for the mth pulse as
	0T = 1 + (−1)mε in Eqs. (6) and create the CP propagator
via (4) as before. We then seek phase sequences where various
derivatives of a(ε,�) are zero at ε = 0 and � = 0.

For N = 3 we have two equations from the first derivatives
∂�a = 0 and ∂εa = 0, but they both yield the same constraint
for ϕ2: cos ϕ2 = 1/2, which is satisfied by ϕ2 = π/3. The CP
designated U3c and defined by {ϕ2 = π/3} has been derived
in [12] as a detuning-compensated CP and in the previous
section of the present paper as the alternating-amplitude-
error-compensated CP U3a for arbitrary pulse shapes. We
now see that for the hyperbolic-secant pulse shape it is a
CP with combined compensation of frequency-offset and
alternating-amplitude error. The order of the error for this
sequence is Perr = O(�4),O(ε4).

For N = 5 the equations ∂�a = 0 and ∂εa = 0 again both
yield the same constraint for the phases:

1 − 2 cos(ϕ2 − ϕ3) + 2 cos(2ϕ2 − ϕ3) = 0. (7)

Computing the second derivatives shows that the conditions
obtained from the equations ∂2

�a = 0 and ∂ε∂�a = 0 are also
equivalent:

1 + 2 cos(ϕ2 − ϕ3) + 2 cos(2ϕ2 − ϕ3) = 0. (8)

(The condition ∂2
ε a = 0 is automatically fulfilled). These two

conditions are then satisfied by two phase sequences U5c1 :
{ϕ2 = 5π/6,ϕ3 = π/3} and U5c2 : {ϕ2 = π/6,ϕ3 = 5π/3}.
(The designation of the form U5ci means that it is the ith
CP with N = 5 and combined error compensation.) The order
of the error is Perr ∼ O(�6),O(ε6) for these sequences.

For N = 7, ∂�a = 0 and ∂εa = 0 again yield a single
constraint

1 − 2 cos(ϕ3 − ϕ4) + 2 cos(ϕ2 − 2ϕ3 + ϕ4)

−2 cos(2ϕ2 − 2ϕ3 + ϕ4) = 0, (9)

while ∂2
�a = 0 and ∂ε∂�a = 0 both reduce to

1 + 2 cos(ϕ3 − ϕ4) + 2 cos(ϕ2 − 2ϕ3 + ϕ4)

+2 cos(2ϕ2 − 2ϕ3 + ϕ4) = 0. (10)

Computing all third-order derivatives, we find that from ∂3
�a =

0, ∂ε∂
2
�a = 0, ∂2

ε ∂�a = 0, and ∂3
ε a = 0 we obtain only one

more constraint for the phases. Any one of these four equations
can be used together with Eqs. (9) and (10) to obtain the same
phase sequences because any of the third-order derivatives
can be expressed as a linear combination of another one (say,
∂3
�a) and Eqs. (9) and (10). Thus, for N = 7 we can nullify

all derivatives up to third order using six phase sequences
tabulated in Table II as U7c1–U7c6. These sequences yield
CPs with Perr = O(�8),O(ε8).
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TABLE II. List of phases given as multiples of π for combined
error-compensated CPs. Phases in fractional form are exact values,
while phases in decimal form are approximate.

Designation ϕ2 ϕ3 ϕ4 ϕ5

U3c 1/3
U5c1 5/6 1/3
U5c2 1/6 5/3
U7c1 −0.647 1/3 0.647
U7c2 −0.176 1/3 0.176
U7c3 0.425 1/3 −0.425
U7c4 0.536 1/3 −0.536
U7c5 0.193 1.386 1.245
U7c6 0.955 0.911 1.533
U9c1 0.025 0.847 0.670 1.299
U9c2 0.057 1.30 1.911 0.095
U9c3 0.126 1.454 1.916 1.983
U9c4 0.128 1.458 1.789 1.724
U9c5 0.431 1.189 0.572 0.385
U9c6 0.500 0.606 0.304 1.601
U9c7 0.526 0.609 0.294 1.595
U9c8 0.721 0.254 0.878 1.925
U9c9 0.731 0.261 0.791 1.721
U9c10 0.782 1.474 0.530 0.212
U9c11 0.808 0.779 1.751 0.084
U9c12 0.866 0.570 0.814 1.585

Finally, we consider the N = 9 case. Similarly to the
N = 3, 5, and 7 cases, we find that all the equations from a
given order of derivatives essentially yield only one additional
independent constraint for the phases. Thus, solving four
trigonometric equations gives us phase sequences where all
derivatives of a(ε,�) will be nullified up to fourth order, yield-
ing CPs with Perr ∼ O(ε10),O(�10). The 12 phase sequences
obtained are tabulated in Table II for reference, designated
U9c1–U9c12.

It is remarkable that for hyperbolic-secant pulses, we have
been able to nullify all the derivatives up to nth order with n

phase parameters all the way up to n = 4 (i.e., N = 9). For
N = 11 and higher the expressions for the derivatives become
intractable, so it is unclear whether this trend continues.
However, it must be noted that nullifying so many derivatives
with so few parameters is possible because of the symmetries
inherent in the alternating-amplitude-error ansatz (5) and the
anagram relation together. A less symmetric amplitude-error
ansatz can easily lead to constraints that cannot all be satisfied
simultaneously. Relaxing the anagram relation allows more
phase parameters for the same pulse number N , but more
independent constraints per level of derivatives; overall there
is no gain.

B. Comments on other pulse shapes

Two important questions immediately arise. First, do the
CPs derived in the previous section actually show improved
performance when propagating in the ensemble and how
does this performance increase with the number of pulses
N? Second, are the results applicable to other pulse shapes?
The second question is important because hyperbolic-secant

pulses fall off very slowly, so with the time required for the
operation being an important factor, more compact pulses such
as Gaussian or cos2 pulse shapes are preferable.

To gain insight into the second question, we have repeated
the derivation outlined above for square pulses. While not
very relevant for short pulses in the optical domain, they too
allow analytic solution of Eqs. (1). We have found that up to
N = 7 we obtain precisely the same constraints and solutions
for the phases as for hyperbolic-secant pulses. However, for
N = 9 the square-pulse case deviates. The equations obtained
from the fourth-order derivatives can no longer be reduced to
a single constraint. Thus the four phases we have for N = 9
are no longer sufficient to nullify all fourth-order derivatives
for square pulses.

More insight can be gained by noting that the three- and
five-pulse CPs have been derived before. First, U3a/U3c has
been derived in [12] as a detuning-compensated sequence and
it has also been stated that up to N = 5 detuning-compensated
CPs are independent of the pulse shape, provided it is
symmetric in time: 	(t) = 	(−t). Next, U5c1 has also been
found in [12] as a CP with simultaneous compensation of
amplitude error and detuning. Finally, U5c1 and U5c2 have
been derived in [18] (denoted U5a and U5b there) as universal
CPs, sequences that compensate pulse errors to first order
regardless of their nature (imperfect pulse shape, amplitude,
detuning, chirp, etc., provided it is exactly reproduced for all
of the pulses).

Repeating the derivation in Sec. IV A using uniform am-
plitude error 	0T = 1 + ε, we find that for N = 5, ∂�a = 0
yields condition (7), while ∂εa = 0 reduces to condition (8). Of
the second-order derivatives, ∂2

�a = 0 yields constraint (8) and
∂�∂εa = 0 yields constraint (7). So for the uniform amplitude
error considered in [12] we need two phases to nullify both
first-order derivatives, but then the second-order ones are
simultaneously nullified as well. Thus U5c1 and U5c2 are in
fact CPs that compensate for both frequency offset (detuning)
and uniform amplitude error or alternating amplitude error
simultaneously up to second order. All these point to U5c1 and
U5c2 being combined alternating-amplitude-error–frequency-
offset-compensated sequences for arbitrary (symmetric) pulse
shapes.

V. SIMULATION RESULTS FOR CP PROPAGATION

To verify that the CPs derived in Sec. IV A do per-
form better at inverting an optically dense ensemble,
we have computed their propagation for three different
smooth pulse envelopes using Eq. (2): hyperbolic-secant,
	s(t) = 	0sech(t/Ts); Gaussian, 	g(t) = 	0 exp(−t2/2T 2

g );
and cos2, 	c(t) = 	0 cos2(tπ/2Tc). The same peak pulse
amplitude 	0 was used in all three cases and the time
constants were adjusted so that pulse areas were π : Ts = 1,
Tg = √

π/2, and Tc = π . Using the field 	(z,t) obtained from
the simulation, U(�,z) was computed and the error contours
Perr = |a(�,z)|2 plotted on the αz-� plane.

Figure 2 shows the Perr = 10−4 contours for (a) hyperbolic-
secant, (b) Gaussian, and (c) cos2 pulse shapes. The lines
tagged by 1, 3, and 5 belong to a single π pulse, the U3c

sequence, and the U5c2 sequence, respectively, in all three
panels. One can see that for all three pulse shapes the U3c
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FIG. 2. Contour lines of Perr = 10−4 on the αz-� plane for a
single π pulse (line 1), the N = 3 CP U3c : {ϕ2 = π/3} (line 3), and
the N = 5 CP U5c2 : {ϕ2 = π/6,ϕ3 = 5π/3} (line 5) in the case of
(a) hyperbolic-secant pulses, (b) Gaussian pulses, and (c) cos2-shaped
pulses.

and U5c2 sequences show greatly improved performance over
the single π pulse. The spectral width of the high-fidelity
population transfer region for the U5c2 CP is about 20 times
wider at αz = 0 and about 120 times wider at αz = 5 for
all three pulse shapes. This corroborates the conjecture that
these sequences are universal and should work for arbitrary
symmetric pulse shapes. It is important to note that the two
N = 5 CPs do not perform equally well: U5c1 (not depicted
here) is considerably better than the U3c sequence, but is
systematically inferior to the U5c2 one. This is because
after all second-order derivatives are nullified, the (nonzero)
values of the third-order derivatives will matter most. For
the hyperbolic-secant pulse where these derivatives can be
evaluated, we found the four third-order derivatives to be about
an order of magnitude smaller for the U5c2 sequence.

Because the cos2 pulses are the most compact of the
above three (they become exactly zero at finite t), this
is the pulse shape we have used for investigating longer
sequences. Figure 3 shows the Perr = 10−2 and 10−4 contours
for several CPs up to N = 9 on the αz-� plane. Evidently, the
performance does improve with N , but the improvement slows
considerably after N = 5. This, however, is not surprising, as
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FIG. 3. Contour lines of (a) Perr = 10−2 and (b) Perr = 10−4

on the αz-� plane. The lines tagged by 1, 3, 5, 7, and 9
correspond to the single-pulse case and to the CPs U3c : {ϕ2 =
π/3}, U5c2 : {ϕ2 = π/6,ϕ3 = 5π/3}, U7c1 : {ϕ2 = −0.647π,ϕ3 =
π/3,ϕ4 = 0.647π}, and U9c1 : {ϕ2 = 0.025π,ϕ3 = 0.847π,ϕ4 =
0.670π,ϕ5 = 1.299π}, respectively. Phases in fractional form are
exact values, while phases in decimal form are approximate.

the phases were derived using a series expansion. One can
also see that for lower fidelity and optical depth, U5c2 beats
even the seven- and nine-pulse CPs depicted. Note that we
have plotted, out of the six CPs designated U7c1–U7c6 and
of the 12 designated U9c1–U9c12, the ones that show the
best performance. It is not strictly true that each N = 9 CP
is better than any N = 7 CP. This effect is probably due to
the values of higher-order derivatives that are not nullified
as we have seen for U5c1 and U5c2. Overall, even though
the duration of a N = 9 pulse CP is considerably shorter
than pulses that would achieve the population transfer via
adiabatic passage, the best tradeoff seems to be N = 5, where
the Perr < 10−4 region already reaches αz = 10. Note also
that CPs with combined error compensation are superior to
CPs with solely alternating-amplitude-error compensation.
Comparing the lines in Figs. 1(d) and 3(c) (both represent
cos2-shaped pulses), one can see that the N = 5 CP with
combined error compensation is better than the N = 9 CP
with only amplitude-error compensation.

As the sequences U5c1 and U5c2 derived here have also
turned up as universal composite pulses in a very different
setting in [18], we carried out a detailed investigation of all
the CPs derived there as they propagate in the optically dense
medium. The derivation there did not assume any constraint
on the nature of the compensated imperfection or the shape of
the pulse (hence the term universal), only that it is exactly the
same for all elementary pulses. Phase sequences were derived
for N = 5, 7, and 9 pulse CPs that compensate for the errors
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CPs derived in [18]. The lines tagged by U5c2 (black solid line) and
U9c1 (magenta dashed line) correspond to CPs derived in this paper
as well.

up to second order, N = 13 CPs that compensate for them to
fourth order, and N = 25 CPs that do so to eighth order.

We have substituted the phases tabulated in Table I of [18]
for the CPs U7a, U7b, U9a, and U9b into the constraints
derived in Sec. IV A for hyperbolic-secant pulses. We found
the sequences to satisfy the constraints derived from the first-
and second-order derivatives, but not the third-order ones.
Correspondingly, computing their propagation using Eq. (2),
we found that their performance is practically the same as that
of the U5c2 CP (the shortest one that allows combined error
compensation to second order). By comparison, the U7c1 and
U9c1 CPs derived in the present work did function better than
U5c2, even if the increase in performance was not as prominent
as during the N = 3 to N = 5 step.

While we have not been able to derive phases for com-
bined error compensation CPs higher than N = 9, it is still
interesting to check the performance of the N = 13 and 25
universal sequences. Figure 4 shows the error contours that
mark the boundary of high-fidelity inversion for several CPs.
For N = 13, we have plotted U13a, which is clearly better,
but for N = 25 the two CPs U25a and U25b are both shown:
The former is better for smaller optical depths, while the latter
is superior for larger ones. For a comparison, the U9c1 CP
derived here and the U5c2 CP derived in both papers are also
shown. Clearly, there is a considerable increase in performance
with N , which is intriguing because it suggests that CPs with
N > 9 and combined compensation of frequency-offset and
alternating-amplitude error can be derived to achieve still
higher performance in inverting an optically dense ensemble.
One must keep in mind, however, that very long sequences
(such as N = 25) are not practical because the time required
already allows adiabatic passage schemes to function better.

Another problem must be considered when employing CPs
for inverting optically dense ensembles, namely, the time
window in which the amplitude of the pulse sequence is

appreciably different from zero at a given optical depth. A
single π pulse increases its temporal length as it propagates,
developing a long tail that can overlap any signal echoes
that are to be retrieved from the ensemble [27], making
its application impractical. A similar effect can be observed
with some of the CPs studied in this paper. For some phase
sequences a long oscillatory tail develops as the CP propagates,
increasing the time window where the control field is non-
negligible. This does not affect all sequences equally: Some
CPs are much less affected than others. It is a property that
has to be investigated for each sequence separately when
considering its application in photon-echo quantum memory
schemes.

Finally, some comments on the validity of the two-level
model without relaxation are in order. To achieve high-fidelity
quantum state control, the entire manipulation process has to
be concluded in a time TCP much less than the lifetime T1 of
the atomic excited state (or the coherence lifetime T2 if that
is shorter). Given the requirement Perr < 10−2,10−4, we can
readily estimate the time available as TCP < PerrT1. (A more
precise calculation using a master equation for the two-state
system shows that this is in fact an overestimation, but it is very
useful for order of magnitude considerations.) Conversely, if
the interaction time is shorter than this limit, relaxation can
be neglected for our purposes. For a number of rare-earth ions
such as erbium, thulium, europium, or terbium that can be
described as two-state systems in optical crystals under certain
conditions, excited-state lifetimes in the range of 1–10 ms were
measured [34]. The time available for the manipulation in these
cases is then 10–100 μs (for Perr = 10−2) and 0.1–1 μs (for
Perr = 10−4). Of course, for longer composite sequences this
means shorter elementary pulses, so very long sequences are
inconvenient.

VI. SUMMARY AND OUTLOOK

In this paper we have investigated the use of composite
pulses for the high-fidelity inversion of two-level systems in
an optically dense, inhomogeneously broadened ensemble.
Such ensembles, found, for example, in rare-earth-doped
optical crystals, have important applications in quantum
communication and quantum computing, e.g., as a medium
for realizing photon-echo-based optical quantum memories.
High-fidelity inversion in optically dense media is problematic
because they distort the pulses as they propagate.

We have introduced the concept of alternating amplitude
error (amplitude error that is of opposite sign for even and odd
numbered pulses of the sequence) and have derived phase
sequences that grant the CP robustness with respect to it.
We have shown that these CPs are then able to invert the
atoms of the ensemble to a greater optical depth than single
π pulses. When alternating-amplitude-error compensation is
combined with frequency-offset compensation, we obtain CPs
that are even more effective. Using CPs made up of of as few
as five pulses, the region of high-fidelity inversion can easily
reach an optical depth of αz = 10 and be over two orders of
magnitude wider in spectral width than the inversion obtained
using a single π pulse. The phase sequences were derived
using series expansions of various analytically solvable models
for two-level atomic excitation. Their performance in creating
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high-fidelity inversion within the ensemble was then verified
by numerical simulation of the Maxwell-Bloch equations for
pulse propagation. Finally, we have also verified that some
of the universal composite pulses derived in [18] are also
effective at creating high-fidelity inversion in optically dense
ensembles.

Overall, some of the CPs derived demonstrate great poten-
tial for inverting optically dense ensembles: They are much
more robust than single monochromatic π pulses, but can be
considerably faster than adiabatic passage methods. Further-
more, one can possibly refine further the phase sequences using
numerical optimization schemes. Numerical schemes that need

to solve the Maxwell-Bloch equations at each step are far too
expensive computationally to perform an optimization from
the start. They may, however be suitable to obtain an even
higher performance by using one of the sets of phases derived
in this paper as a starting point and executing the optimization
scheme only for a very limited number of steps.
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