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Bose-Einstein condensation of ideal photons in a one-dimensional barrel cavity
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Our experimental scheme is based on a barrel optical microresonator filled with a dye solution. The barrel
mirror provides a confining potential, a chemical potential, and an effective mass for a photon, making the
system formally equivalent to a one-dimensional gas of harmonically trapped, number-conserving, and massive
bosons. Within the framework of quantum statistical mechanics, we propose an exact analytical solution to
the problem of Bose-Einstein condensation in harmonically trapped, one-dimensional, and ideal photons. It is
found that the photon number of vapor is characterized by an analytical function, which involves a q-digamma
function in mathematics. The numerical calculation of the analytical solution gives many interesting results. In
the thermodynamic limit, the analytical expressions of the critical temperature and the condensate fraction are
derived. We find that the spectral radiance of a one-dimensional barrel cavity has a sharp peak at the frequency
of the cavity cutoff when the photon number exceeds the critical value determined by a temperature.
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I. INTRODUCTION

It is currently recognized that Bose-Einstein condensation
(BEC) is a common quantum property of many-particle
systems in which the number of particles is conserved. In
1995, the three research groups in the United States observed
the BEC of ultracold Bose atomic gases in a trapping potential
[1–3]. The BEC has been observed also in several systems
of solid-state quasiparticles, which include excitons [4,5],
exciton-polaritons [6,7], and magnons [8,9]. However, the
most ubiquitous blackbody radiation does not reveal such
condensation. The reason for this is that the photon number of
a blackbody is not conserved. Thermalization of laser photons
has been considered in the processes that involve Compton
scattering with a gas of thermal electrons [10]. The superfluid
behavior of photons in a nonlinear resonator configuration has
been investigated theoretically [11–13]. Number-conserving
thermalization has been observed experimentally [14] for a
two-dimensional photon gas in a dye-filled optical micro-
cavity, which acts as a “white-wall” box. In the presence of
thermalization processes that conserve photon number, Weitz
and colleagues have observed the BEC of two-dimensional
photons in a dye-filled optical microcavity [15,16]. Kirton and
Keeling have established a nonequilibrium model of photonic
BEC in the dye-filled microcavity [17]. Recent progress in
research into BEC of photons has been made both theoretically
[18–24] and experimentally [25–27].

One-dimensional systems of many particles have fascinated
physicists for more than 60 years now [28]. The physics in one-
dimensional systems is drastically different from that in higher-
dimensional systems. The one-dimensional character makes
the problem simple enough that some exact analytical solutions
can be obtained using specific methods, and these solutions can
lead to incredibly rich physics. Originally, the BEC of atomic
polaritons in a biconical waveguide cavity was investigated
under the quasiclassical approximation [29]. The biconical
waveguide cavity provides a linear confining potential for
an atom polariton. In this paper, we study the BEC of ideal
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photons in a one-dimensional barrel cavity. Our experimental
scheme is based on a barrel optical microresonator filled with a
dye solution. The barrel mirror provides a confining potential,
a chemical potential, and an effective mass for a photon,
making the system formally equivalent to a one-dimensional
gas of harmonically trapped, number-conserving, and massive
bosons. The photons of the incident laser thermalize to
the temperature of the dye solution (room temperature) by
repeated absorption and reemission processes in the dye
solution. In the one-dimensional barrel microcavity, the levels
of a one-dimensional harmonic oscillator are nondegenerate,
and so the Bose-Einstein condensate of a one-dimensional
photon gas can be investigated analytically.

For simplicity, we neglect interactions between the photons.
In fact, interactions between the photons are very small in a
one-dimensional barrel microcavity. Therefore, the object of
study is an ideal photon gas moving in a one-dimensional
harmonic potential. The topic of BEC of a noninteracting
boson gas in a one-dimensional harmonic potential is treated
in all the references in the following manners: (1) the
whole study is carried out numerically by a computer, (2)
the thermodynamic limit is used, and (3) the discrete level
structure is approximated by a continuous density of states
under the assumption that the level spacing is negligible com-
pared to the temperature (the quasiclassical approximation).
For example, the thermodynamic properties of harmonically
trapped low-dimensional boson systems have been studied
under the quasiclassical approximation [30]. In the present
paper, we derive an exact analytical solution of the BEC of
an ideal photon gas in a one-dimensional barrel cavity. This
solution is valid for arbitrary temperature and photon number.
The solution is of great significance owing to the following
reasons. First, the noninteracting Bose-Einstein condensate in
a one-dimensional barrel cavity is a starting point for other
various studies in the presence of interactions and disorders.
Second, the form of this solution is so beautiful that the solution
can be used for purposes of tuition. Third, the method and
concept used in this study can be applied in the whole field of
statistical physics. The exact analytical solution of the BEC of
an ideal photon gas in a one-dimensional barrel cavity can be
verified in present-day physics laboratories.
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The remainder of this paper is organized as follows.
Section II describes the characters of a one-dimensional barrel
microcavity. Section III depicts the microscopic theory of an
ideal photon gas in a one-dimensional barrel microcavity. In
Sec. IV, we derive an exact analytical solution to the BEC
of a finite number of ideal photons in a one-dimensional
barrel microcavity. In Sec. V, we derive an exact analytical
solution to the BEC of ideal photons in the thermodynamic
limit. Section VI describes the radiation properties of a
one-dimensional barrel cavity. A comprehensive discussion
is given in Sec. VII.

II. CHARACTERS OF A ONE-DIMENSIONAL
BARREL MICROCAVITY

In an open cavity there are many losses, such as the loss
from coupling to optical modes not confined in the cavity, the
nonradiative decay, and the mirror loss. To compensate for
the losses, we use an external laser beam to optically pump the
dye. Our experimental setup shown in Fig. 1 is based on an
optical resonator with a surface of revolution. The surface of
revolution is formed by the rotation of an arc of circle in the y-z
plane about the z axis. The resonator surface is a high-reflecting
barrel optical mirror that has a radius R of spherical curvature
(R = 0.47 m). The barrel cavity has the maximum inner radius
r0 (r0 = 1.60 μm). The resonator is filled with a drop of dye
(rhodamine 6G) dissolved in an organic solvent (methanol)
and is pumped with a laser beam that is near the transversal
plane. It may be difficult for the present technology to create
the barrel cavity. With the advance of science and technology,
the future technology must create such a barrel cavity.

As shown in Fig. 1, the wave vector k of photons in a barrel
cavity can be resolved into the sum of transversal wave vector
k⊥ and longitudinal wave vector kz: k = k⊥ + kz. The barrel
cavity has the maximum inner radius r0 and a height d. For
d large enough (d > 2.03r0), the resonance frequency of the
lowest TE mode is smaller than that for the lowest TM mode.
Then the lowest TE mode is the fundamental oscillation of the
cavity [31]. At distance z from the x-y plane, the barrel cavity
has an inner radius

r(z) = r0 − (R −
√

R2 − z2). (1)

In cylindrical coordinates, for a TE mode the transverse
wave equation for the magnetic field Bz(ρ,φ), subject to the

FIG. 1. Experimental scheme for thermalization of a one-
dimensional photon gas.

boundary condition ∂Bz/∂ρ = 0 at ρ = r(z), has the solution

Bz(ρ,φ) = Jm(k⊥ρ)e±imφ, (2)

where k⊥ = xmn/r(z). Jm(x) is the Bessel function of the first
kind of order m. xmn is the nth root of the equation, J ′

m(x) = 0.
The integers m and n take on the values m = 0,1,2, . . . and
n = 1,2,3, . . . .

At this point, we need to derive the energy-momentum
relation for the photon in a barrel cavity. In general, this
relation is given by E(k) = �v

√
k2

⊥ + k2
z . This is a relativistic

relation. Here v = c/n0 is the speed of light in the medium,
and the medium has a linear index n0 of refraction. If the
cavity height d is much larger than the cavity radius r0

(d � r0), the transverse wave number k⊥ is much greater
than the longitudinal wave number kz (k⊥ � kz). This is
contrary to the paraxial approximation in a slablike cavity
[14–16]. Under the near-planar approximation, from a Taylor
expansion of the relativistic relation we obtain a nonrelativistic
energy-momentum relation,

E(kz) = �v

(
k⊥ + k2

z

2k⊥

)
. (3)

Under the near-planar approximation of |z| � R, we substitute
Eq. (1) into k⊥ = xmn/r(z), and so k⊥(z) can be expressed as

k⊥(z) = k⊥(0) + k⊥(0)

(
z√

2r0R

)2

, (4)

where k⊥(0) = xmn/r0. The substitution of Eq. (4) into Eq. (3)
results in

E(kz) = mphv
2 + (�kz)2

2mph

+ 1

2
mph�

2z2. (5)

It is evident that the barrel cavity maps the three-dimensional
photons onto the one-dimensional photons. For near-planar
propagation, the one-dimensional photons are the nonrela-
tivistic massive particles that possess an effective mass mph =
�k⊥(0)/v = �ωc/v

2, where ωc = k⊥(0)v is the lower cutoff
frequency of one-dimensional photons. The motion of nonrel-
ativistic massive photons is restricted to the one-dimensional
longitudinal resonator axis under harmonic confinement with
trapping frequency � = v/

√
r0R.

III. MICROSCOPIC THEORY OF A TRAPPED
IDEAL PHOTON GAS

A dilute-photon condensate of density n in an axially sym-
metric microcavity is characterized by four length scales: its
transverse radius R⊥, its axial radius Rz, the scattering length a

which represents the strength of the two-body interaction, and
the healing length ξ = (4πna)−1/2. In the experiment on Bose-
Einstein condensates of photons [14–16], both the radii and
lengths are determined by the interaction between the photons,
and thus, R⊥ > Rz > ξ > a. In this regime, a Bose-Einstein
condensate is two-dimensional and is well described by the so-
called Thomas-Fermi approximation. A qualitatively different
behavior of a Bose-Einstein condensate is expected when the
healing length is larger than R⊥ since then the condensate
becomes restricted to one dimension. New phenomena in this
regime are, for example, quasicondensates with a fluctuating
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phase and a Tonks-Girardeau gas of impenetrable bosons. In
this paper, we investigate a barrel-shaped one-dimensional
condensate with Rz > ξ > R⊥ > a.

We consider a one-dimensional gas of ideal photons with
spin one. mph is the mass of photons. The system under
study consists of N noninteracting photons moving in a one-
dimensional harmonic potential. The one-dimensional photons
possess a longitudinal momentum p̂z = �kz. In quantum
mechanics, the canonical momentum of a photon at position
z is given by the operator p̂z = −i� d

dz
, where � is Planck’s

constant reduced. In nonrelativistic quantum mechanics, the
Hamiltonian of a photon in a one-dimensional harmonic
potential is given by

Ĥ = p̂2
z

2mph

+ 1

2
mph�

2z2, (6)

where � is the axial angular frequency of the microcavity. The
stationary state of a photon at position z is described by the
wave function 	l(z), where l is a quantum number. The wave
function 	l(z) satisfies the Schrödinger equation,(

− �
2

2mph

d2

dz2
+ 1

2
mph�

2z2

)
	l(z) = El	l(z), (7)

where El is the energy eigenvalue of a photon.
Equation (7) is the one-dimensional harmonic oscillator

equation and has the oscillator levels

El =
(

l + 1

2

)
��, l = 0,1,2, . . . . (8)

The eigenfunctions 	l(z) corresponding to the oscillator levels
are given by

	l(z) = 1

π1/4a1/2
√

2l l!
exp

(
− z2

2a2

)
Hl

( z

a

)
, (9)

where a = √
�/mph� is a length characterizing the spread

of the wave function in the z direction. Hl(ξ ) is the Hermite
polynomial of the lth degree in ξ = z/a. The states described
by the wave function 	l are called oscillator states.

The energy of a longitudinal eigenmode belonging to the
manifold of transverse electric mode mn is El = �ωc + El ,
where ωc = xmnv/r0. In order to undertake a numerical calcu-
lation, we notice that the linear refractive index for methanol is
n0 = 1.33. For simplicity, we assume that the low-frequency
cutoff ωc corresponds to the n = 8 zero of the derivative J ′

0(x)
of the Bessel function of order m = 0, which is given by
x08 = 22.76008. For the geometric parameters of the barrel
cavity, we take R = 0.47 m, r0 = 1.60 μm, and d = 4.0 mm.
With the relation ωc = x08v/r0, the lower cutoff frequency
of the barrel cavity is calculated as ωc = 3.21 × 1015 s−1,
or ωc/2π = 5.10 × 1014 Hz. According to Refs. [14,15], the
lower cutoff frequency ωc is in the low-lying tail of the
dye emission (fluorescence) spectrum. At room temperature
(T = 300 K), the energy of thermal excitation corresponds
to the frequency kBT /h = 6.25 × 1012 Hz. We see that the
lower cutoff energy of photons is far larger than the thermal
excitation energy. The number of laser photons in the barrel
resonator is not altered by the temperature of the dye solution
because purely thermal excitation is suppressed by a factor
of the order of exp(−�ωc/kBT ) = exp(−81.64). The n = 9

zero of the derivative J ′
0(x) of the Bessel function of order

m = 0 is given by x09 = 25.90367. As a result, the frequency
spacing between adjacent transverse modes (the free spectral
range) is 
ω/2π = 7.05 × 1013 Hz, which is comparable
to the spectral width of the dye emission (fluorescence).
Furthermore, the free spectral range 
ω is much larger than
the thermal excitation energy kBT in frequency units. The
photon frequencies will accumulate within a range kBT /h =
6.25 × 1012 Hz above the low-frequency cutoff.

From the formula � = v/
√

r0R, the trapping frequency of
the harmonic potential is obtained as � = 2.599 × 1011 s−1, or
�/2π = 4.137 × 1010 Hz. The mean longitudinal excitation
number (per plane) of the one-dimensional photon gas is
kBT /�� = 151.10. The ratio is quite considerable, so that
the longitudinal motion is quasicontinuous. From the formula
mph = �ωc/v

2, the effective mass of one-dimensional photons
is computed as mph = 6.655 × 10−36 kg. The de Broglie
wavelength associated with the thermal motion in the resonator
axis is defined by λth = h/

√
2πmphkBT . The computation

gives λth = 1.592 μm. Now we introduce the quantity ρ

to denote the number density in photons per length. The
mean interphoton spacing is of order ρ−1. The BEC in a
photon gas sets in when λth is comparable to ρ−1. According
to Refs. [14,15], the dye absorption spectrum overlaps the
upper-lying tail of the dye emission (fluorescence) spectrum.
This overlapping leads to the nonradiative decay of photons.
To compensate for the loss rate, the dye is pumped with
an external laser beam. The electronic excitations in the
dye form a thermal bath that exchanges particles with the
photon gas. The photon gas is thermalized to a thermal bath
near room temperature. Thus, the photon gas is seen as an
open system in the sense of a grand-canonical ensemble. The
pumping maintains a steady state in which the average photon
number Nph will be proportional to the number of electronic
excitations Nexc and is determined by Nph/Nexc = τph/τexc,
where τph and τexc denote the lifetimes of photons and
electronic excitations, respectively. τph

∼= 20 ps and τexc is
of the order of a nanosecond.

IV. QUANTUM STATISTICAL PROPERTIES OF A FINITE
NUMBER OF IDEAL PHOTONS

Because the reflectivity of the cavity mirror is near unity
in the relevant wavelength regime and the dye molecules are
pumped with a laser beam, the number of one-dimensional
photons is conserved in the experiment under study. As a result,
the one-dimensional photon gas possesses a nonzero chemical
potential μ. The projection of the spin operator along the z

direction is called the helicity σ , and spin-1 photons have
σ = ±1. At temperature T , Nlσ denotes the thermal population
of the photon number occupying level l and helicity σ . In the
usual method, one finds that

Nlσ = 1

e(El−μ)/kBT − 1
, (10)

where kB is Boltzmann’s constant. Equation (10) is the well-
known Bose-Einstein distribution. The chemical potential μ is
determined by the constraint that the total number of massive
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photons in the system is N :∑
lσ

Nlσ = N. (11)

The phenomenon of BEC for noninteracting massive photons
is fully described by Eqs. (10) and (11). The remaining thing
is to determine the chemical potential as a function of N

and T .
To this end, we first rewrite Eq. (8) as El = l�� + 1

2 ��.
On putting the last equation into Eq. (10), Eq. (10) can be
rewritten as follows:

Nlσ = ze−βl��

1 − ze−βl��
, (12)

where β = 1/kBT . The fugacity z can be expressed as
z = exp(βμ∗), and we have introduced an effective chemical
potential μ∗ = μ − 1

2 ��. The ground state of the system is the
state with l = 0. Since we have moved the zero-point energy
into the effective chemical potential, the energy of the ground
state has been taken to be zero. From Eq. (12), the number
of massive photons in the ground state is N0 = 2z/(1 − z).
The ground-state population diverges as z → 1, and hence,
BEC occurs at z = 1. For this reason N0 is called the photon
number of the condensate. When we separate the ground-state
population in Eq. (11), Eq. (11) becomes

2z

1 − z
+

∑
l 
=0,σ

Nlσ = N. (13)

Putting Eq. (12) into Eq. (13) and completing the summation
over l and σ , we then obtain

2z

1 − z
+ 2

∞∑
j=1

zjqj

(1 − qj )
= N, (14)

where q = exp(−β��). In the above summation, we use
the degeneracy factor 2 to account for the two possible
polarizations. The infinite series converges, and its analytical
expression can be obtained as

Fq(x) =
∞∑

j=1

zjqj

(1 − qj )
= ln(1 − q) + ψq(x)

ln q
, (15)

where x = 1 − μ∗/��. ψq(x) is the q-digamma function
defined by ψq(x) = d[ln �q(x)]/dx, where �q(x) is the
q-gamma function defined by

�q(x) = (1 − q)1−x

∞∏
n=0

1 − qn+1

1 − qn+x
, (16)

when |q| < 1 and x 
= 0,−1,−2, . . . . The q-gamma function
was introduced by Jackson [32], and the q-digamma function
was introduced by Krattenthaler and Srivastava [33]. In recent
decades the q-gamma function and the q-polygamma function
have gained extensive applications in science and technology
[34].

To acquire a simple expression of Fq(x), we consider the
high-temperature limit of kBT � ��. In this case, we find that
q → 1 and

| ln(1 − q)| � |ψq(x)|. (17)

10
2

10
4

10
6

10
8

10
0

10
1

10
2

10
3

N

x

T=1 K
T=30 K
T=100 K
T=300 K

FIG. 2. The variation of the reduced chemical potential x with
the photon number N in a gas of one-dimensional photons.

Equation (15) is then reduced to the form:

Fq(x) = ln(1 − q)

ln q
, kBT � ��. (18)

One must notice that Fq(x) = 0 at T = 0 K.
Because the temperature T appears in the fugacity z, the

fugacity z does not parametrize the chemical potential μ∗ by
much, and so z is not a good physical quantity. The quantity
x parameterizes the chemical potential μ∗ a lot, and so x is a
good physical quantity. As a result, the quantity x is called
the reduced chemical potential, and the reduced chemical
potential x is dimensionless. In the same way, the quantity
q parameterizes the temperature T a lot, and so q is a good
physical quantity. In terms of the good physical quantities x

and q, Eq. (14) is cast into a simple form:

2qx−1

1 − qx−1
+ 2Fq(x) = N, (19)

where Fq(x) is given by Eq. (15) and 2Fq(x) represents the
photon number in vapor. The reduced chemical potential x can
be determined numerically from Eq. (19). x is a function of
temperature T and photon number N . Once x is known, the
number of massive photons in the ground state can be obtained
from the relation N0 = 2qx−1/(1 − qx−1). To satisfy Eq. (19),
it is necessary that x � 1. When x = 1, a one-dimensional
photon gas is in the state of BEC. All the information about
the BEC of a one-dimensional photon gas is embraced in the
analytical function Fq(x).

According to the definition kBT = ��, the axial frequency
of the harmonic potential corresponds to the temperature
T = 1.985 K. In the above statistical mechanics, we introduce
the concept of temperature of a one-dimensional photon gas.
The temperature is meaningless when the photon number is
smaller than 40, and it is meaningful when N > 40. According
to Eq. (19), the variation of the reduced chemical potential x

with the photon number N is given in Fig. 2 for various T .
It is interesting to note that when T � 1 K, x = 1 for all
N . Namely, when �/2π = 4.137 × 1010 Hz and T � 1 K, a
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FIG. 3. The variation of the reduced chemical potential x with
the temperature T in a gas of one-dimensional photons.

one-dimensional photon gas is always in the state of BEC no
matter how large the photon number N is. Note that when
T � 300 K and N � 104, x = 1. Namely, when T � 300 K
and N � 104, a one-dimensional photon gas is always in the
state of BEC. Furthermore, Fig. 2 shows that when N → ∞,
x = 1 for all T . According to Eq. (19), the variation of the
reduced chemical potential x with the temperature T is given
in Fig. 3 for various N . It is interesting to note that at N = 104,
x = 1 for T � 300 K. For a fixed N , x is a monotonically
increasing function of temperature T .

At this point, we need to calculate the condensate fraction
N0/N , which is given by

N0/N = 2qx−1

N (1 − qx−1)
. (20)

The reduced chemical potential can then be used in Eq. (20)
to obtain the condensate fraction. N0/N is a function of
temperature T and photon number N . When calculating
N0/N , we must combine Eq. (19) with Eq. (20). According to
Eq. (20), the variation of the condensate fraction N0/N with
the temperature T is given in Fig. 4 for various N . Figure 4
shows that for a finite number of one-dimensional photons,
there is no exact transition temperature Tc. For a fixed N ,
N0/N decreases smoothly to zero when T is near Tc. The
phenomenon of phase transitions becomes clearer and clearer
as the photon number becomes very large. Namely, when
N � 104, there is an approximate transition temperature Tc. As
T � Tc, N0/N = 0. According to Eq. (20), the variation of the
condensate fraction N0/N with the photon number N is given
in Fig. 5 for various T . It is interesting to note that at T = 1 K,
N0/N = 1 for all N . Figure 5 shows that for a fixed T , there is
a critical photon number Nc, above which a one-dimensional
photon gas is in the state of BEC and below which N0/N = 0.
A nice feature of the exact results in Eqs. (19) and (20) is that
they are valid for arbitrary T and N .
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FIG. 4. The variation of the condensate fraction N0/N with the
temperature T in a gas of one-dimensional photons.

V. QUANTUM STATISTICAL PROPERTIES OF IDEAL
PHOTONS IN THE THERMODYNAMIC LIMIT

We are now going to investigate the thermodynamic limit
when N → ∞. To this end, let us rewrite Eq. (19) in the form

N0 + 2Fq(x) = N. (21)

It is known that when N → ∞, x = 1. The critical temperature
Tc can now be found by setting N0 = 0 and x = 1 in
Eq. (21). This results in the following equation for the critical
temperature:

2Fqc
(1) = N, (22)

where qc = exp(−��/kBTc). The function Fqc
(1) can be

rewritten as

L(qc) = Fqc
(1) = ln(1 − qc) + ψqc

(1)

ln qc

, (23)
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FIG. 5. The variation of the condensate fraction N0/N with the
photon number N in a gas of one-dimensional photons.
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where L(q) is a particular Lambert series. The critical
temperature Tc given by Eq. (22) is a monotonically increasing
function of the number of photons N .

In the limit as N → ∞, we obtain the solution of Eq. (21)
as

x =
{

1, T � Tc,

the root of 2Fq(x) = N, T > Tc.
(24)

By virtue of Eq. (22), from Eq. (21) we find that the condensate
fraction of massive photons is given by

N0

N
=

{
1 − L(q)

L(qc) , T � Tc,

0, T > Tc,
(25)

where L(q) and L(qc) are given by Eq. (23) and L(q)/L(qc)
represents the vapor fraction. The condensate fraction N0/N

given by Eq. (25) is a monotonically decreasing function
of temperature T . N0/N = 1 at T = 0 K and N0/N = 0 at
T = Tc.

We consider the high-temperature limit of kBT � ��. In
this case, one can find that

L(q) = −kBT

��
ln[1 − exp(−��/kBT )]. (26)

As the first result of Eq. (26), we reduce Eq. (22) into the form

Tc = N/2

ln(N/2)

��

kB

, (27)

which is close to the corresponding expression obtained in
Ref. [30]. As the second result of Eq. (26), we reduce Eq. (25)
into the form

N0

N
=

{
1 − T ln[1−exp(−��/kBT )]

Tc ln[1−exp(−��/kBTc)] , T � Tc,

0, T > Tc,
(28)

which is close to the corresponding expression obtained in
Ref. [30].

Although Eqs. (22) and (25) are derived in the case of
N → ∞, they are valid for arbitrary T and large N (N � 104).
When 103 � N < 104, Eqs. (22) and (25) are tenable too.
Practically, we first employ Eq. (22) to determine the transition
temperature Tc and then utilize Eq. (25) to determine the
condensate fraction N0/N . Qualitatively, the phase transition
of one-dimensional ideal photons can happen at an exact
transition temperature Tc, clearly indicating that the BEC in
one dimension exists in a one-dimensional harmonic potential.
According to Eq. (22), the variation with N of transition
temperature Tc is shown in Fig. 6. The transition temperature
Tc is not directly proportional to the total number N of ideal
photons, and hence Tc is a complicated function of N . Note that
at N = 1679, Tc = 298.11 K, which is the room temperature.
According to Eq. (25), Fig. 7 shows the condensate fraction
N0/N versus the temperature T for N = 104, 105, 106, and
107. From Eq. (22), we find that at N = 104, 105, 106, and 107,
Tc = 1.39 × 103, 1.08 × 104, 8.80 × 104, and 7.40 × 105 K,
respectively. Figure 7 demonstrates the clear behavior of phase
transitions of BEC in one dimension. From Fig. 7, one sees
that for a fixed T < Tc, the condensate fraction N0/N is a
monotonically increasing function of the number of photons
N . According to Eq. (24), a graph of x is given in Fig. 8.
For a fixed N and at T > Tc, the reduced chemical potential
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FIG. 6. The variation of transition temperature Tc with photon
number N according to Eq. (22).

x increases steeply with temperature T . Many properties of
BEC in harmonically trapped one-dimensional photons are
exhibited in the present paper.

Because the required experiment for this theory will be
implemented at room temperature (say T = 300 K), the tran-
sition temperature Tc must be larger than the room temperature.
Here we take Tc = 1.392 × 103 K, which corresponds to the
total photon number N = 104. At T = 300 K and N = 104,
from Eq. (20) we find that the condensation fraction is
N0/N = 0.831. The temperature is meaningful only when
N > 40. This requires that the intensity of pumping light
should exceed a threshold. On the other hand, if the cavity
losses are too high, we will not be able to assign a temperature.
The photon system will be out of thermal equilibrium when
the intensity of pumping light exceeds a saturation. In order
for a photonic Bose-Einstein condensate to be observed,
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FIG. 7. The condensate fraction of N photons in a one-
dimensional harmonic potential versus the temperature. Plots are
shown for N = 104, 105, 106, and 107.
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FIG. 8. The reduced chemical potential of N photons in a
one-dimensional harmonic potential versus the temperature. Plots
are shown for N = 104, 105, 106, and 107.

the intensity I of pumping light must be in the interval
[14,15] 102 W cm−2 � I � 103 W cm−2. It is plausible that
the characteristic intensities of a one-dimensional photon gas
are smaller than those of a two-dimensional photon gas by two
orders of magnitude. At a fixed temperature T , there is a critical
photon number Nc, which is the precise onset of BEC in this
one-dimensional and harmonically trapped system. According
to the above statistical mechanics, the critical photon number
Nc is determined by

Nc = 2L(q), (29)

where L(q) is given by Eq. (23). At room temperature
(T = 300 K), the calculation of Eq. (29) gives Nc = 1691.
It is interesting to note that the critical number Nc of a
one-dimensional photon gas is smaller than that of a two-
dimensional photon gas by two orders of magnitude. There is
a critical optical power Pc, which is directly proportional to the
critical photon number Nc. The experiment in a curved-mirror
microresonator has demonstrated that the critical optical power
Pc grows linearly with the mirror radius of curvature R and
possesses the form

Pc = Nc�ωc�
2R/4v. (30)

We assume that Eq. (30) holds also in a one-dimensional
barrel cavity. The calculation of Eq. (30) gives Pc = 0.02 W.
The statement that the critical power Pc of a one-dimensional
photon gas is smaller than that of a two-dimensional photon
gas by two orders of magnitude is to be proven. When the
intensity I of pumping light is of the order of 10 W cm−2, a
one-dimensional photon gas will be in a normal state, in which
the one-dimensional photon gas possesses a nonzero chemical
potential μ∗ (x > 1). The chemical potential μ∗ is determined
by measuring the power Pout of light transmitted by an area
of the cavity mirror, which corresponds to a photon number
N in the cavity, and solving Eq. (19) for x = 1 − μ∗/�� and
q = exp(−��/kBT ).

VI. RADIATION PROPERTIES OF A ONE-DIMENSIONAL
BARREL CAVITY

In this section we describe the electromagnetic radiation
emitted by a one-dimensional barrel cavity in thermal equilib-
rium at a definite temperature. At first, we must point out that
strict one-dimensional systems are very unstable and hence
do not exist in nature. The one-dimensional barrel cavity is
a quasi-one-dimensional system. The one-dimensional barrel
cavity has a specific spectral radiance that depends on the
wavelength, the temperature, and the photon number. In order
to derive this spectral radiance, we rewrite the oscillator
levels of photons as El = �ωk − �ωc, where ωk = c|k| is the
frequency of a photon with three-dimensional wave vector k.
Now we let Nkσ denote the thermal population of the photon
number occupying wave vector k and helicity σ , and from
Eq. (10) one has the expression

Nkσ = 1

e(�ωk−�ωc−μ∗)/kBT − 1
. (31)

The main thermodynamic quantity in a one-dimensional
barrel cavity is the total energy E of photons, as given by

E =
∑
kσ

�ωkNkσ . (32)

Because the temperature concerned is much larger than the
level spacing, the wave vector k is quasicontinuous. In the
usual way we can alter the summation to an integration in three-
dimensional momentum space. Since the trapping potential
or the shape of the cavity is incorporated into the chemical
potential μ∗ in Eq. (31), the one-dimensional barrel cavity
can be regarded as uniform in three-dimensional momentum
space. Consequently, in the integral we can use the density of
states V/(2π )3 for a three-dimensional box with volume V .
Putting Eq. (31) into Eq. (32), we immediately obtain

E = �cV

π2

∫ ∞

0

k3

e(�ck−�ωc−μ∗)/kBT − 1
dk . (33)

Using the relation k = 2π/λ, where λ is the wavelength of
light, we can simplify Eq. (33) as

E = V

∫ ∞

0
ρ(λ,T ,N )dλ, (34)

where ρ(λ,T ,N ) stands for the spectral energy density of a
one-dimensional barrel cavity and is given by

ρ(λ,T ,N ) = 8πhc

λ5

1

e(hc/λ−hc/λc−μ∗)/kBT − 1
, (35)

where λc is the wavelength of the cavity cutoff defined by
the relation ωc = 2πc/λc and the computation gives λc =
587.46 nm. Equation (35) is called Planck’s law.

Since the radiation is the same in all directions and
propagates at the speed of light c, the spectral radiance of
light transmitted by an area of the cavity mirror is defined by

I (λ,T ,N ) = ρ(λ,T ,N )c

4π
= 2hc2

λ5

1

e(hc/λ−hc/λc−μ∗)/kBT − 1
,

(36)

where Eq. (35) is used. Because the chemical potential μ∗
is a function of temperature T and photon number N , the
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FIG. 9. The spectral radiance of N photons in a one-dimensional
harmonic potential versus the wavelength. Plots are shown for
N = 50, 100, 400, 10 000 and T = 300 K.

spectral radiance I is a function of wavelength λ, temperature
T , and photon number N . The spectral radiance of the cavity
is measured in terms of the power emitted per unit area of the
cavity mirror, per unit solid angle, per unit wavelength. The SI
units of the spectral radiance I are W sr−1 m−3.

At this point, we need to calculate the spectral radiance
I , which is given by Eq. (36). The chemical potential μ∗ is
related to the reduced chemical potential x by the relation μ∗ =
��(1 − x). I is a function of wavelength λ, temperature T ,
and photon number N . When calculating I , we must combine
Eq. (19) with Eq. (36). According to Eq. (36), the variation
of the spectral radiance I with the wavelength λ is given in
Fig. 9 for various N at T = 300 K. From Eq. (29), one finds
that at T = 300 K, Nc = 1691. Figure 9 shows that for a
fixed T and N , the spectral radiance I is a monotonically
increasing function of the wavelength λ. From Fig. 9, we see
that the spectral radiance of a one-dimensional barrel cavity
has a sharp peak at the wavelength of the cavity cutoff when
N > Nc. This is a signature of BEC of photons when N > Nc.
According to Eq. (36), the variation of the spectral radiance
I with the temperature T is given in Fig. 10 for various λ at
N = 1679 K. From Eq. (22), one finds that at N = 1679 K,
Tc = 298.11 K. For a fixed N , the spectral radiance I is a
monotonically increasing function of the temperature T when
λ < λc. From Fig. 10, we see that the spectral radiance of a
one-dimensional barrel cavity has a rise at the wavelength of
the cavity cutoff when T < Tc. This is also a signature of BEC
of photons when T < Tc. According to Eq. (36), the variation
of the spectral radiance I with the photon number N is given in
Fig. 11 for various λ at T = 300 K. Figure 11 reveals that for a
fixed T , the spectral radiance I is a slowly increasing function
of the photon number N when λ < λc. Further, Fig. 11 shows
that for a fixed T , the spectral radiance I is a fast increasing
function of the photon number N when λ = λc. A nice feature
of the exact results in Eq. (36) is that they are valid for arbitrary
λ, T , and N . The present theory can address the anomaly of the
spectral radiance at the cutoff frequency of a one-dimensional
barrel cavity. In fact, the anomaly of the spectral radiance at
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FIG. 10. The spectral radiance of a one-dimensional barrel cavity
versus the temperature. Plots are shown for λ = 547.46, 567.46,
577.46, 587.46 nm and N = 1679.

the cutoff frequency of a two-dimensional cavity has been
observed and analyzed in Refs. [15,16]. As is well known,
this anomaly is associated with the properties of resonance
fluorescence near the cutoff (or a band edge) [35].

VII. DISCUSSION

In this paper we investigate the BEC properties of ideal
photons in a one-dimensional harmonic potential. One-
dimensional photons in a barrel cavity have an effective mass
mph = 6.655 × 10−36 kg. This agrees with the value mph =
6.7 × 10−36 kg reported for the two-dimensional photon
gas experiment [14]. One-dimensional barrel cavity has a
trapping frequency � = 2.599 × 1011 s−1. This also agrees
with the value � = 2.576 × 1011 s−1 of the two-dimensional
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FIG. 11. The spectral radiance of a one-dimensional barrel cavity
versus the photon number. Plots are shown for λ = 547.46, 567.46,
577.46, 587.46 nm and T = 300 K.
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curved-mirror cavity. Further, a one-dimensional barrel cavity
possesses a lower cutoff frequency ωc/2π = 5.10 × 1014 Hz,
which is the same as the value of the two-dimensional
curved-mirror cavity. As a result of these three reasons, the
BEC properties of a one-dimensional photon gas are very
similar to those of a two-dimensional photon gas. With the
geometric parameters of the barrel cavity, R = 0.47 m, r0 =
1.60 μm, and d = 4.0 mm, this type of microcavity can be
experimentally designed by future experimental technology.

The principal point in this study is that the problem of
BEC in harmonically trapped one-dimensional photons can
be solved analytically. We next point out that the analytical
solution is associated with an analytical function, which
involves a q-digamma function. The q-digamma function
was introduced in mathematics 20 years ago and now finds
a variety of applications in science and technology. In this
study we introduce a new physical quantity called the “reduced
chemical potential” to replace the fugacity. In the problem of
BEC in harmonically trapped one-dimensional photons, the
fugacity z is not a good physical quantity, but the reduced
chemical potential x is. The concept of fugacity was introduced
in investigating the quantum statistical properties of three-
dimensional, number-conserving, uniform, and ideal fermion
or boson gases [36]. In these problems the fugacity z is a good
physical quantity. As is well known, these problems can be
solved analytically, and the analytical solutions are associated
with some special functions in mathematics. For example,
the analytical solution of the problem of BEC in three-
dimensional, uniform, and ideal boson gases is associated
with the polylogarithm function Liν(z) in mathematics, which
is also called the Bose function gν(z) in quantum statistical
mechanics and is defined by

Liν(z) = gν(z) =
∞∑

n=1

zn

nν
, |z| < 1, (37)

where ν is complex and z is the fugacity. Since the discovery
of BEC in ultracold dilute atomic gases in 1995, it has been
believed that the problem of BEC in harmonically trapped
one-dimensional bosons may be solved analytically. In the
present paper this is what we succeed in doing.

In this paper we only deal with a gas of harmonically
trapped, one-dimensional, and ideal photons. For a gas
of harmonically trapped, one-dimensional, and interacting
photons, we need to adopt the Bogoliubov theory of BEC.
In the Bogoliubov theory of BEC, the expectation value 〈	̂〉
of the field operator 	̂(r) of the photon system is a classical
field. Thus, one can write 	0(r) = 〈	̂(r)〉. The function 	0(r)
is called the wave function of the condensate and plays the
role of an order parameter. It is a complex quantity. The order
parameter characterizes the BEC phase and vanishes above
the critical temperature. At zero temperature, the condensate
wave function can be described by a Gross-Pitaevskii equation,
in which the interphotonic interaction potential is replaced
by a mean-field pseudopotential [37,38]. For a spatially
homogeneous gas with repulsive interaction, there are stable
solutions to this equation. The off-diagonal long-range order
in the one-particle density matrix in BEC theory is associated
with the macroscopic condensation of massive photons.

To sum up, we have proposed the BEC theory of a one-
dimensional photon gas in a barrel optical microresonator filled
with a dye solution. The BEC of one-dimensional photons
in a barrel optical microresonator possesses some peculiar
properties. We have proposed an analytical solution to the
problem of BEC in harmonically trapped, one-dimensional,
and ideal photons. It is found that the photon number of vapor
is characterized by an analytical function, which involves a
q-digamma function in mathematics. The numerical calcula-
tion of the analytical solution gives many interesting results.
In the thermodynamic limit, the analytical expressions of the
critical temperature and the condensate fraction are derived.
We address the anomaly of the spectral radiance at the cutoff
frequency. In this study we introduce a new physical quantity
called the reduced chemical potential to replace the fugacity.
Our investigation in one dimension provides an example of the
BEC of photons in an optical microcavity.
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