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Nonreciprocal conversion between microwave and optical photons
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We propose to demonstrate nonreciprocal conversion between microwave and optical photons in an
electro-optomechanical system where a microwave mode and an optical mode are coupled indirectly via
two nondegenerate mechanical modes. The nonreciprocal conversion is obtained in the broken time-reversal
symmetry regime, where the conversion of photons from one frequency to the other is enhanced for constructive
quantum interference while the conversion in the reversal direction is suppressed due to destructive quantum
interference. It is interesting that the nonreciprocal response between the microwave and optical modes in
the electro-optomechanical system appears at two different frequencies with opposite directions. The proposal
can be used to realize nonreciprocal conversion between photons of any two distinctive modes with different
frequencies. Moreover, the electro-optomechanical system can also be used to construct a three-port circulator
for three optical modes with distinctively different frequencies by adding an auxiliary optical mode coupled to
one of the mechanical modes.
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I. INTRODUCTION

Photons with a wide range of frequencies play an important
role in the quantum information processing and quantum
networks [1–4]. Microwave photons can be fast manipulated
for information processing [1,2], while the optical photons
are more suitable for information transfer over long distances
[3,4]. However, the microwave and optical systems are not
compatible with each other naturally. In order to harness the
advantages of photons with different frequencies, quantum
interfaces are needed to convert photons of microwave and
optical modes. A hybrid quantum system should be built by
combining two or more physical systems [5,6].

An optomechanical (electromechnical) system is a very
good candidate to serve as a quantum interface since the
mechanical resonators can be easily coupled to various
electromagnetic fields with distinctively different wavelengths
through radiation pressure (for reviews, see Refs. [7–10]). In
recent years, enormous progress has been made in optome-
chanical (electromechanical) systems, such as normal-mode
splitting in the strong coupling regime [11,12], ground-
state cooling of mechanical resonators [13–15], and co-
herent state transfer between itinerant microwave (optical)
fields and a mechanical oscillator [16,17]. A hybrid electro-
optomechanical system wherein a mechanical resonator is
coupled to both microwave and optical modes simultaneously
provides us a quantum interface between microwave and
optical systems [18,19]. It was proposed theoretically that
high fidelity quantum state transfer between microwave and
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optical modes can be realized by using the mechanically dark
mode, which is immune to mechanical dissipation [20–23], and
this proposal was demonstrated experimentally very quickly
[24–26]. The conversion between microwave and optical
fields via electro-optomechanical systems has been achieved
in several different experimental setups [27–29], and it was
shown that the wavelength conversion process is coherent
and bidirectional [28]. The electro-optomechanical systems
have also been studied for strong entanglement generation
between microwave photons and optical photons [30–33], and
such a strong continuous-variable (CV) entanglement can be
exploited for the implementation of reversible CV quantum
teleportation with a fidelity exceeding the no-cloning limit
[30] and microwave quantum illumination [33].

The nonreciprocal effect is the fundamental of isolators and
circulators which are very important devices for information
processing. Such an effect appears usually due to the broken
time-reversal symmetry [34,35]. There are two main avenues
to break the time-reversal symmetry for photons: (i) using
magneto-optical effects (e.g., Faraday rotation) [36–45] and
(ii) nonmagnetic strategies by employing optical nonlinearity
[46–60] or dynamic modulation [61–79]. Nonmagnetic optical
nonreciprocity based on dynamic modulation has drawn more
and more attentions in recent years, and many structures
have been demonstrated experimentally [61–74] or proposed
theoretically [75–79].

The nonreciprocal effect has also been developed in the
context of optomechanical systems. The optical nonreciprocal
effect was proposed in an optomechanical system consisting
of an in-line Fabry-Perot cavity with one movable mirror
and one fixed mirror based on the momentum difference
between forward and backward-moving light beams [80]. Non-
reciprocity was also studied in a microring optomechanical
system when the optomechanical coupling is enhanced in
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one direction and suppressed in the other one by optically
pumping the ring resonator [81] or by resonant Brillouin
scattering [82,83]. Some of us (Xu and Li) demonstrated the
possibility of an optical nonreciprocal response in a three-
mode optomechanical system [84] where one mechanical
mode is optomechanically coupled to two linearly interacted
optical modes simultaneously, and the time-reversal symmetry
of the system can be broken by tuning the phase difference
between the two optomechanical coupling rates [85–88]. As
discussed in the theoretical outlook of a recent experiment [89],
optical nonreciprocity can be achieved in distantly coupled
optomechanical systems with a waveguide that can mediate
a tight-binding-type coupling for both the mechanical and
optical cavity modes. It is worth mentioning that the two cavity
modes given in Refs. [84,89] are coupled to each other directly,
so that the optical modes need to be resonant or nearly resonant.
On how to obtain the nonreciprocal response between two
cavity modes of distinctively different wavelengths (such as a
microwave mode and an optical mode), there is still a lack of
studies.

More recently, Metelmann and Clerk gave a general
method for generating nonreciprocal behavior in cavity-based
photonic devices by employing reservoir engineering [90].
In the spirit of the general approach of Ref. [90], here
we propose an optomechanical nonreciprocal device which
allows photon routing with unidirectional links combining
mechanically mediated coherent and dissipative couplings. In
our proposal, the links convert the signal carrier frequency
from the microwave to the optical domain (or vice versa).
The transmission of photons from one mode to the other is
determined by the quantum interference between the two paths
through the mechanically mediated coherent and dissipative
couplings. Due to the broken time-reversal symmetry, the
nonreciprocity is obtained when the transmission of photons
from one mode to the other is enhanced for constructive
quantum interference while the transmission in the reversal
direction is suppressed with destructive quantum interference.
It is interesting that the electro-optomechanical system shows
a nonreciprocal response between the optical and microwave
modes at two different frequencies with opposite directions.
Moreover, after adding an auxiliary optical mode to couple
to one of the mechanical modes, the electro-optomechanical
system can be used as a three-port circulator for three optical
modes with distinctively different frequencies.

This paper is organized as follows: In Sec. II, the Hamilto-
nian of an electro-optomechanical system is introduced and the
spectra of the optical output fields are given. The nonreciprocal
conversion between the microwave and optical photons is
shown in Sec. III, and a three-port circulator for three optical
modes with distinctively different frequencies is discussed in
Sec. IV. Finally, we summarize the results in Sec. V.

II. MODEL

As schematically shown in Fig. 1(a), the electro-
optomechanical system is composed of two cavity modes
(a microwave mode and an optical mode), each of which is
coupled to two nondegenerate mechanical modes. The two
cavity modes cannot couple to each other directly because of
the vast difference of their wavelengths. The Hamiltonian of
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FIG. 1. (a) Schematic diagram of an electro-optomechanical
system consisting of two cavity modes (a1 and a2) and two mechanical
modes (b1 and b2). The cavity mode i and the mechanical mode j

are coupled with effective optomechanical coupling strength Gi,j

(i,j = 1,2). (b) Schematic panel indicating the relevant frequencies
involved in the nonreciprocal conversion process. The cavity mode
i is driven by a two-tone laser at two frequencies ωa,i − ωb,1 and
ωa,i − ωb,2 with amplitudes �i,1 and �i,2 in the well resolved
sidebands (ωb,j � {κi,γj }, where the damping rate of the mechanical
mode γj is not shown in the drawing).

the electro-optomechanical system is (� = 1)

Heom =
∑
i=1,2

ωa,ia
†
i ai +

∑
j=1,2

ωb,j b
†
j bj +

∑
i,j

gi,j a
†
i ai(bj + b

†
j )

+
∑
i,j

�i,j (aie
i(ωa,i−ωb,j )t eiφi,j + H.c.), (1)

where ai (a†
i ) is the bosonic annihilation (creation) operator

of the cavity mode i with resonance frequency ωa,i , bj (b†j ) is
the bosonic annihilation (creation) operator of the mechanical
mode j with resonance frequency ωb,j , and gi,j is the elec-
tromechanical (optomechanical) coupling strength between
the cavity mode i and the mechanical mode j (i,j = 1,2). The
cavity mode i is driven by a two-tone laser at two frequencies
ωa,i − ωb,1 and ωa,i − ωb,2 with amplitudes �i,1 and �i,2 in
the well resolved sidebands (ωb,j � {κi,γj }) as schematically
shown in Fig. 1(b), where κi is the decay rate of the cavity mode
i and γj is the damping rate of the mechanical mode j. φi,j is
the phase of the driving field. We can write each operator for
the cavity modes as the sum of its quantum fluctuation operator
and classical mean value, ai → ai + αi(t). In the condition that
min[ωb,j ,|ωb,1 − ωb,2|] � max[|gi,jαi(t)|], the classical part
αi(t) can be given approximately as αi(t) ≈ ∑

j=1,2 αi,j e
iωb,j t ,

where the classical amplitude αi,j is determined by solving

023827-2



NONRECIPROCAL CONVERSION BETWEEN MICROWAVE . . . PHYSICAL REVIEW A 93, 023827 (2016)

the classical equation of motion with only cavity drive
�i,j at frequency ωa,i − ωb,j [31,32,91,92]. To linearize the
Hamiltonian (1), we take |αi,j | � 1 so that we can only keep
the first-order terms in the small quantum fluctuation operators;
then the linearized Hamiltonian in the interaction picture
with respect to Heom,0 = ∑

i=1,2 ωa,ia
†
i ai + ∑

j=1,2 ωb,j b
†
j bj

is obtained as

Heom,int = G1,1a
†
1b1 + G1,1a1b

†
1 + G1,2a

†
1b2 + G1,2a1b

†
2

+G2,1e
iθa

†
2b1 + G2,1e

−iθ a2b
†
1 + G2,2a

†
2b2

+G2,2a2b
†
2, (2)

where Gi,j = |gi,jαi,j | is the effective electromechanical
(optomechanical) coupling strength and the nonresonant and
counter-rotating terms have been neglected. The phase of αi,j

can be controlled by tuning the phases φi,j of the driving
fields. Actually, here the phases of αi,j (three of them) have
been absorbed by redefining the operators ai and bj , and only
the total phase difference θ between them has physical effects.
Without a loss of generality, θ is only kept in the terms of a

†
2b1

and a2b
†
1 in Eq. (2) and the following derivation.

By the Heisenberg equation and taking into account the
damping and corresponding noise terms, we get the quantum
Langevin equations (QLEs) for the operators of the optical and
mechanical modes:

d

dt
V (t) = −MV (t) +

√
	Vin(t), (3)

with the vector V (t) = (a1,a2,b1,b2)T of fluctuation operators,
the vector Vin(t) = (a1,in,a2,in,b1,in,b2,in)T of input operators,
the diagonal damping matrix 	 = diag(κ1,κ2,γ1,γ2), and the
coefficient matrix

M =

⎛
⎜⎜⎜⎝

κ1
2 0 iG1,1 iG1,2

0 κ2
2 iG2,1e

iθ iG2,2

iG1,1 iG2,1e
−iθ γ1

2 0

iG1,2 iG2,2 0 γ2

2

⎞
⎟⎟⎟⎠. (4)

ai,in and bj,in are the input quantum fields with zero mean
values. The system is stable only if the real parts of all the
eigenvalues of matrix M are positive. The stability conditions
can be given explicitly by using the Routh-Hurwitz criterion
[93–97]. However, they are too cumbersome to be given here.
All of the parameters used in the following satisfy the stability
conditions.

Let us introduce the Fourier transform for an operator o

õ(ω) = 1√
2π

∫ +∞

−∞
o(t)eiωtdt, (5)

õ†(ω) = 1√
2π

∫ +∞

−∞
o†(t)eiωtdt ; (6)

then the solution to the QLEs (3) in the frequency domain can
be given by

Ṽ (ω) = (M − iωI )−1
√

	Ṽin(ω), (7)

where I denotes the identity matrix. Using the standard input-
output theory [98], the Fourier transform of the output vector

Vout(t) = (a1,out,a2,out,b1,out,b2,out)T is obtained as [99]

Ṽout(ω) = U (ω)Ṽin(ω), (8)

where

U (ω) =
√

	(M − iωI )−1
√

	 − I. (9)

The spectrum of the field with operator o is defined as

so(ω) =
∫ +∞

−∞
dω′〈õ†(ω′)̃o(ω)〉; (10)

then the spectra of the input quantum fields, svin (ω),

are obtained as 〈ṽ†
in(ω′)ṽin(ω)〉 = svin (ω)δ(ω + ω′) and

〈ṽin(ω′)ṽ†
in(ω)〉 = [1 + svin (ω)]δ(ω + ω′), where the term “1”

results from the effect of vacuum noise and ṽ
†
in (ṽin) is the

Fourier transform of v
†
in (vin) (for vin = a1,in,a2,in,b1,in,b2,in).

The relation between the vector of the spectrum of the output
fields Sout(ω) and the vector of the spectrum of the input fields
Sin(ω) is given by

Sout(ω) = T (ω)Sin(ω), (11)

where Sin(ω)= (sa1,in (ω),sa2,in (ω),sb1,in (ω),sb2,in (ω))T , Sout(ω) =
(sa1,out (ω),sa2,out (ω),sb1,out (ω),sb2,out (ω))T . Here T (ω) is the trans-
mission matrix with the element Tv,w(ω) (for v,w =
a1,a2,b1,b2) denoting the scattering probability from mode
w to mode v. In the next section, we will focus on the
photon scattering probability between the two cavity modes.
For simplicity, we define T12(ω) ≡ Ta1,a2 (ω) = |U12(ω)|2 and
T21(ω) ≡ Ta2,a1 (ω) = |U21(ω)|2, where Uij (ω) represents the
element at the ith row and j th column of the matrix U (ω)
given in Eq. (9).

III. OPTICAL NONRECIPROCITY

We assume that the effective optomechanical coupling
strengths Gi,j , the decay rates κi of the cavity modes, and
the damping rate γj of the two mechanical modes satisfy the
relation

γ1 � Gi,j ∼ κ1 = κ2 ≡ κ � γ2, (12)

i.e., the damping of the mechanical mode 1 is much slower
than the decay of the cavity modes and this is usually satisfied;
the damping of the mechanical mode 2 is much faster than the
decay of the cavity modes and this condition can be realized by
coupling the mechanical mode 2 to an auxiliary cavity mode
(more details are shown in next section). Under the assumption
(12), the operators of the mechanical mode 2 can be eliminated
from QLE (3) adiabatically [100,101]; then we have

d

dt
V ′(t) = −M ′V ′(t) +

√
	′V ′

in(t) − i
√

�b2,in, (13)

with the vector V ′(t) = (a1,a2,b1)T of fluctuation opera-
tors, the vector V ′

in(t) = (a1,in,a2,in,b1,in)T of input operators,
the diagonal damping matrices 	′ = diag(κ1,κ2,γ1), � =
diag(γ1,2,γ2,2,0), and the coefficient matrix

M ′ =

⎛
⎜⎝

κ1+γ1,2

2 J2 iG1,1

J2
κ2+γ2,2

2 iG2,1e
iθ

iG1,1 iG2,1e
−iθ γ1

2

⎞
⎟⎠, (14)
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where the dissipative coupling strength J2 = 2G1,2G2,2/γ2,
and the decay rates γ1,2 = 4G2

1,2/γ2 and γ2,2 = 4G2
2,2/γ2

are induced by the mechanical mode 2. Using the Fourier
transform and the standard input-output relation, we can get the
output vector V ′

out(t) = (a1,out,a2,out,b1,out)T in the frequency
domain as

Ṽ ′
out(ω) = U ′(ω)Ṽ ′

in(ω) − iL′(ω)b2,in, (15)

where

U ′(ω) =
√

	′(M ′ − iωI )−1
√

	′ − I, (16)

L′(ω) =
√

	′(M ′ − iωI )−1
√

�. (17)

The explicit expressions of the transmission coefficients
between the two cavity modes are of the form

U ′
12(ω) = −√

κ1κ2(J ′
1 + J2)

D(ω)
, (18)

U ′
21(ω) = −√

κ1κ2(J1 + J2)

D(ω)
, (19)

where

D(ω) =
[
κ1,tot

2
− i(ω − ω1,1)

][
κ2,tot

2
− i(ω − ω2,1)

]
− (J1 + J2)(J ′

1 + J2). (20)

Here κi,tot is the total damping rate of the cavity mode i given
by

κi,tot = κi + γi,1 + γi,2. (21)

The ω-dependent effective coupling strength J1 (J ′
1) (coherent

coupling), the effective damping rate γi,1, and the frequency
shift ωi,1 induced by the mechanical mode 1 are given by

J1 = 2G1,1G2,1e
iθ

γ1 − i2ω
, (22)

J ′
1 = 2G1,1G2,1e

−iθ

γ1 − i2ω
, (23)

γi,1 = 4G2
i,1γ1

γ 2
1 + 4ω2

, (24)

ωi,1 = 4G2
i,1ω

γ 2
1 + 4ω2

. (25)

We would like to note that the coherent coupling strength J1

(J ′
1) and damping rates γi,1 induced by the mechanical mode

1 are dependent on the frequency ω of the input photons,
while the dissipative coupling strength J2 and decay rates γi,2

induced by the mechanical mode 2 are independent of the
frequency ω. Moreover, there are frequency shifts ωi,1 induced
by the mechanical mode 1 but there are almost no frequency
shifts induced by the mechanical mode 2.

Equations (18) and (19) imply that the transmission
coefficients between the two cavity modes are determined by
the quantum interference of the two paths through the me-
chanically mediated coherent and dissipative couplings [i.e.,
J1 (J ′

1) and J2]. In constructive interference, the transmission
rates will be enhanced; in contrast, the transmission rate will be
suppressed with destructive interference. The nonreciprocity

is obtained in the condition that one of the transmission
coefficients [U ′

12(ω) or U ′
21(ω)] is enhanced and the other one is

suppressed. The nonreciprocity can be intuitively understood
from the schematic diagram shown in Fig. 1(a). The input
photons from one cavity mode to the other one undergo
a Mach-Zehnder-type interference: one path is the hopping
through the mechanical mode 1 and the other path is the
hopping through the mechanical mode 2. The phase of the first
path is determined by the driven fields as shown in Eq. (2). The
nonreciprocal response of the electro-optomechanical system
is induced by this phase, which is gauge invariant and is
associated with the broken time-reversal symmetry for the
system [85–87].

The perfect nonreciprocity is obtained as |U ′
12(ω)| =

1,U ′
21(ω) = 0 or |U ′

21(ω)| = 1,U ′
12(ω) = 0. In order to satisfy

U ′
12(ω) = 0 or U ′

21(ω) = 0, from Eqs. (18) and (19), we should
have

J ′
1 = −J2 or J1 = −J2. (26)

Under the assumption (12), i.e., γ1 � Gi,j � γ2, we have

|ω| ≈ G1,1G2,1

G1,2G2,2

γ2

2
, (27)

and

θ = π

2
or

3π

2
. (28)

After substituting Eq. (26) into Eqs. (18) and (19), we obtain
the condition for |U ′

12(ω)| = 1 or |U ′
21(ω)| = 1 as

8J2
√

κ1κ2

[κ1,tot − i2(ω − ω1,1)][κ2,tot − i2(ω − ω2,1)]
= 1. (29)

For simplicity we choose

ω = ω1,1 = ω2,1; (30)

then the condition in Eq. (29) reduces to

8J2
√

κ1κ2 = κ1,totκ2,tot. (31)

Thus with the assumption (12), the nonreciprocity is obtained
as the effective electromechanical (optomechanical) coupling
strengths satisfy the conditions (for simplicity, we choose
G1,1 = G2,1 and G1,2 = G2,2)

G1,1 = G2,1 = κ

2
, (32)

G1,2 = G2,2 =
√

γ2κ

2
, (33)

and the perfect nonreciprocity appears around the frequencies

ω = ±κ

2
. (34)

As a specific example, under the conditions given in
Eqs. (12), (32), and (33), by choosing θ = π/2, the trans-
mission coefficients at frequency ω = κ/2 are given by

U ′
12(ω) ≈ −1, U ′

21(ω) ≈ 0, (35)

and the transmission coefficients at frequency ω = −κ/2 are
given by

U ′
12(ω) ≈ 0, U ′

21(ω) ≈ −1. (36)

023827-4



NONRECIPROCAL CONVERSION BETWEEN MICROWAVE . . . PHYSICAL REVIEW A 93, 023827 (2016)

FIG. 2. Scattering probabilities T12(ω) (black solid lines) and
T21(ω) (red dashed lines) as functions of the frequency of the
incoming signal ω for different phase differences: (a) θ = π/2 and
(b) θ = 3π/2. The other parameters are κ1 = κ2 = κ , γ1 = κ/1000,
γ2 = 16κ , G1,1 = G2,1 = κ/2, and G1,2 = G2,2 = 2κ .

Under the same conditions given in Eqs. (12), (32), and (33),
if we choose θ = 3π/2, when ω = κ/2, the transmission
coefficients are given by

U ′
12(ω) ≈ 0, U ′

21(ω) ≈ −1, (37)

and when ω = −κ/2, the transmission coefficients are given
by

U ′
12(ω) ≈ −1, U ′

21(ω) ≈ 0. (38)

In Fig. 2, the scattering probabilities between the two
cavity modes T12(ω) = |U ′

12(ω)|2 and T21(ω) = |U ′
21(ω)|2 are

plotted as functions of the frequency ω of the incoming
signal for different phase differences, where the parameters
are given as κ1 = κ2 = κ , γ1 = κ/1000, γ2 = 16κ , G1,1 =
G2,1 = κ/2, and G1,2 = G2,2 = 2κ . When θ = nπ (n is an
integer), the time-reversal symmetry is broken and the electro-
optomechanical system exhibits a nonreciprocal response.
The optimal optical nonreciprocal response is obtained when
θ = π/2 or θ = 3π/2. As shown in Fig. 2, the electro-
optomechanical system shows the nonreciprocal response
between the optical and microwave modes at two different
frequencies with opposite directions: when θ = π/2 as shown
in Fig. 2(a), we have T21(ω) ≈ 1, T12(ω) ≈ 0 at ω = −κ/2 and
T12(ω) ≈ 1, T21(ω) ≈ 0 at ω = κ/2; when θ = 3π/2 as shown
in Fig. 2(b), we have T12(ω) ≈ 1, T21(ω) ≈ 0 at ω = −κ/2 and
T21(ω) ≈ 1, T12(ω) ≈ 0 at ω = κ/2.

IV. OPTICAL CIRCULATOR

In the derivation of Sec. III, we have assumed that κ1 =
κ2 � γ2, where γ2 should be the total damping rate of the
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FIG. 3. Schematic diagram of a three-port (a1, a2, and a3) optical
circulator by an electro-optomechanical system.

mechanical mode 2. This assumption seems counterintuitive
since usually the damping rate of the mechanical mode is
smaller than the decay rate of the cavity mode. In this section,
we will show that even when the intrinsic damping rate of the
mechanical mode 2 (denoted by γ2,0) is much smaller than the
cavity decay rate κi , the total damping rate of the mechanical
mode 2 can also satisfy the condition (12) when the mechanical
resonator 2 is coupled to an auxiliary cavity mode (cavity
mode 3), as shown in Fig. 3. Moreover, we will present the
spectra of the output optical fields from the hybrid system
which involves the electro-optomechanical system and the
auxiliary cavity mode. We will show that the hybrid system can
be used as a three-port circulator for three optical modes with
distinctively different wavelengths at two different frequencies
with opposite directions.

The Hamiltonian of the hybrid system for the electro-
optomechanical system with the auxiliary cavity mode is given
by

Hcir = Heom + Haux, (39)

and

Haux = ωa,3a
†
3a3 + g3,2a

†
3a3(b2 + b

†
2)

+�3,2(a3e
i(ωa,3−ωb,2)t + H.c.), (40)

where a3 (a†
3) is the bosonic annihilation (creation) operator

of the auxiliary cavity mode 3 with resonance frequency ωa,3,
and g3,2 is the electromechanical (optomechanical) coupling
strength between the cavity mode 3 and the mechanical
mode 2. The cavity mode 3 is driven with strength �3,2 at
frequency ωa,3 − ωb,2. In the interaction picture with respect to
Hcir,0 = ∑

i=1,2,3 ωa,ia
†
i ai + ∑

j=1,2 ωb,j b
†
j bj , the linearized

Hamiltonian of Eq. (39) can be written as

Hcir,int ≈ Heom,int + G3,2a
†
3b2 + G3,2a3b

†
2, (41)

with the effective optomechanical coupling strength G3,2 =
g3,2α3,2. Without a loss of generality, G3,2 is assumed to be
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FIG. 4. Scattering probabilities (a) and (b) T1i(ω), (c) and (d) T2i(ω), and (e) and (f) T3i(ω) (i = 1,2,3) as functions of the frequency of the
incoming signal ω for different phase differences: (a), (c), and (e) θ = π/2; (b), (d), and (f) θ = 3π/2. The other parameters are κ1 = κ2 = κ ,
κ3 = 10κ , γ1 = γ2,0 = κ/1000, G1,1 = G2,1 = κ/2, G1,2 = G2,2 = 2κ , and G3,2 = √

40κ (thus, γ2,id = 16κ).

real. The classical amplitude α3,2 is determined by solving the
classical equation of motion with only the cavity drive �3,2 at
frequency ωa,3 − ωb,2.

The QLEs for the operators of the hybrid system are given
as

d

dt
V ′′(t) = −M ′′V ′′(t) +

√
	′′V ′′

in(t), (42)

with the vector V ′′(t) = (a1,a2,a3,b1,b2)T of fluctuation
operators, the vector V ′′

in(t) = (a1,in,a2,in,a3,in,b1,in,b2,in)T

of input operators, the diagonal damping matrix 	′′ =
diag(κ1,κ2,κ3,γ1,γ2,0), and the coefficient matrix

M ′′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

κ1
2 0 0 iG1,1 iG1,2

0 κ2
2 0 iG2,1e

iθ iG2,2

0 0 κ3
2 0 iG3,2

iG1,1 iG2,1e
−iθ 0 γ1

2 0

iG1,2 iG2,2 iG3,2 0 γ2,0

2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(43)
Using the Fourier transform and the standard input-
output relation, we can express the output vector V ′′

out(t) =
(a1,out,a2,out,a3,out,b1,out,b2,out)T as

Ṽ ′′
out(ω) = U ′′(ω)Ṽ ′′

in(ω), (44)

where

U ′′(ω) =
√

	′′(M ′′ − iωI )−1
√

	′′ − I. (45)

Under the assumption that the decay rate of the cavity
mode 3 is much larger than the intrinsic damping rate of the
mechanical mode 2 and the effective optomechanical coupling
strength between the mechanical mode 2 and the cavity mode
3, i.e., κ3 � {γ2,0,G3,2}, we can adiabatically eliminate the
cavity mode 3; then we obtained the QLEs (3) with the

replacement

γ2 → γ2,0 + γ2,id (46)

in the coefficient matrix, and the replacement

b2,in → √
γ2,0/γ2b2,in − i

√
γ2,id/γ2a3,in (47)

in the input operators vector Vin(t). Here γ2,id is the effective
damping rate of the mechanical mode 2 induced by the
auxiliary cavity mode 3,

γ2,id = 4G2
3,2

κ3
. (48)

γ2,id can be controlled by tuning the strength of the driving
field on the cavity mode 3. Even if the intrinsic damping rate
of the mechanical mode 2 is much smaller than the decay rates
of the cavity modes, i.e., γ2,0 � κi , the total damping rate of
the mechanical mode 2 (i.e., γ2 = γ2,0 + γ2,id) still can satisfy
the condition (12) when γ2,id � κi .

In the following, we will study the scattering probability be-
tween the three cavity modes. For convenience of discussion,
we set Tij (ω) ≡ Tai ,aj

(ω) = |U ′′
ij (ω)|2 (i,j = 1,2,3). Using

Eq. (45), we now show the numerical results of the scattering
probabilities between the three cavity modes. As shown
in Fig. 4, the electro-optomechanical system shows optical
circulator behavior for the three cavity modes at two different
frequencies (ω = ±κ/2) with opposite directions. When θ =
π/2 as shown in Figs. 4(a), 4(c), and 4(e), at frequency ω =
−κ/2, T21(ω) ≈ T32(ω) ≈ T13(ω) ≈ 1 and the other scattering
probabilities are equal to zero; at frequency ω = κ/2, T12(ω) ≈
T23(ω) ≈ T31(ω) ≈ 1 and the other scattering probabilities
are equal to zero. When θ = 3π/2, as shown in Figs. 4(b),
4(d), and 4(f), at frequency ω = −κ/2, T12(ω) ≈ T23(ω) ≈
T31(ω) ≈ 1 and the other scattering probabilities are equal to
zero; at frequency ω = κ/2, T21(ω) ≈ T32(ω) ≈ T13(ω) ≈ 1
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and the other scattering probabilities are equal to zero. That
is when θ = π/2, the signal is transferred from one cavity
mode to another either clockwise (a1 → a2 → a3 → a1) at
frequency ω = −κ/2 or counterclockwise (a1 → a3 → a2 →
a1) at frequency ω = κ/2. In contrast to θ = π/2, when
θ = 3π/2, the signal is transferred either counterclockwise
at frequency ω = −κ/2 or clockwise at frequency ω = κ/2.

V. CONCLUSIONS

In summary, we have demonstrated the nonreciprocal
conversion between microwave and optical photons in electro-
optomechanical systems. The electro-optomechanical system
shows nonreciprocal response between the microwave and
optical modes at two different frequencies with opposite
directions. The proposal is general and can be used to realize
nonreciprocal conversion between photons of two arbitrarily
different frequencies. Moreover, the electro-optomechanical
system with an auxiliary optical mode can be used as a
three-port circulator for three optical modes with arbitrarily

different frequencies at two different frequencies with opposite
directions. The electro-optomechanical system with broken
time-reversal symmetry will open up a different kind of
quantum interface in the quantum information processing and
quantum networks.
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