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Time-to-frequency mapping of optical pulses using accelerating quasi-phase-matching
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It is shown theoretically that the temporal profile of an optical pulse can be mapped to the spectral profile of
its up-converted harmonic when an accelerating quasi-phase-matching modulation is used. Thus the problem of
temporal measurement at a given frequency band is converted to the problem of spectral measurement at another
frequency band. These results are developed and numerically demonstrated for the case of second-harmonic
generation.
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I. INTRODUCTION

Pulse characterization is an important problem in ultrafast
optics to which there are various solutions based on nonlinear
optics [1]. The most famous and commercially available are
frequency-resolved optical gating (FROG) [2] and spectral
phase interferometry for direct electric field reconstruction
(SPIDER) [3]. Methods for direct time-to-frequency mapping
of the amplitude of pulses are also known. These are based
on the time-frequency duality between first-order dispersion
and quadratic phase modulation and allow to estimate the
intensity profile of pulses using spectral measurement after
modulation of the original pulse [4–11]. Here we show
that direct time to frequency mapping can be achieved by
frequency converting an optical pulse to another frequency
band following an interaction with a nonlinear spatiotemporal
photonic crystal [12].

Efficient nonlinear optical frequency conversion requires
compensation for phase mismatch caused by dispersion.
Spatial quasi-phase-matching (QPM) modulation can be used
to compensate for momentum mismatch and accomplish
phase matching in energy-conserving nonlinear optical pro-
cesses [13,14]. More generally, temporal QPM can accommo-
date a mismatch in energy while momentum is conserved,
while spatiotemporal QPM can recompense for both mo-
mentum and energy mismatch [12]. Spatiotemporal QPM
was realized using an all-optical modulation to enhance the
efficiency of high-order-harmonic generation (HHG) [15]. In
that work, a sequence of counterpropagating pulses interacted
with a pump pulse to generate a QPM geometry described
by a grating moving at a constant velocity (see discussion
in Ref. [12]). The use of all-optical QPM suggests that
spatiotemporal modulations, which are more involved than
the steady moving grating, can be employed. For example,
it is well known that two (quasi-cw) counterpropagating
fields of different wavelengths would interfere to produce
an intensity pattern which moves at a constant velocity (in
contrast to a standing wave which is due to the interference
of fields with the same wavelength). If at least one of these
fields had a time-dependent wavelength (e.g., simple chirp),
then the overall intensity pattern would necessarily move
with a time-dependent velocity—it would accelerate. Yet, a
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more general form of an all-optical accelerating grating is
technically possible: a modulation consisting (apart from the
regular linear terms associated with the carrier frequency) of a
sum of spatiotemporal bilinear terms (z2, zt , t2). It is possible
to generate a field containing such terms by using prisms or
gratings. In particular, spatiotemporal coupling is achievable
through pulse front tilt (see a detailed review in Ref. [16]). In
these cases, the spatial coordinate under consideration is trans-
verse to the propagation direction. To induce a general bilinear
spatiotemporal intensity pattern for the propagation coordinate
for some pump pulse, two such spatiotemporal pulses can be
used, propagating at a relative angle to each other (see Fig. 1).

The parameters of the modulation depend on the amount
of initial chirp in each pulse, the amount of pulse front tilt,
and the relative angle between the beams and the pump pulse.
When the QPM modulation accelerates, light passing through
the nonlinear material at different times would be subjected
to different phase-matching conditions, allowing one to ma-
nipulate nonlinear frequency-conversion processes and shape
the temporal and spectral profiles of the generated fields [17].
This basic idea is used here to show that an accelerating QPM
modulation can facilitate time-to-frequency mapping of optical
pulses. A judicious selection of the QPM geometry yields a
spectrum which approximates the temporal intensity profile
of the input pulse, while prior knowledge of the dispersion
properties of the medium allows one to extract the exact profile.
For simplicity, we develop this concept for second-harmonic
generation. However, it should be adequate using an all-optical
modulation of the nonlinear polarization for both HHG, where
such a modulation was proven experimentally [15], and for
perturbative frequency conversion in nonlinear crystals, as was
suggested theoretically [18] and demonstrated recently [19].

II. THEORY

We start our theoretical treatment with the one-dimensional
wave equation in the frequency domain for the second-
harmonic (SH) electric field Ẽ2ω0 (z,ω) in a nonmagnetic
medium under the nondepletion approximation:

∂2Ẽ2ω0 (z,ω)

∂z2
+ β2(ω)Ẽ2ω0 (z,ω) = −μ0ω

2P̃NL(z,ω), (1)

where β(ω) = n(ω)ω
c

, n(ω) is the index of refraction, and
c = 1√

μ0ε0
is the speed of light with μ0 and ε0 being the

2469-9926/2016/93(2)/023823(5) 023823-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.93.023823


MOR KONSENS AND ALON BAHABAD PHYSICAL REVIEW A 93, 023823 (2016)

FIG. 1. General scheme for all-optical accelerating QPM. The
grating pulses possess both temporal and transverse spatial chirp
allowing the creation of the required spatiotemporal modulation along
the z axis. The grating acts upon the signal (pump) pulse during the
frequency-conversion process.

vacuum permeability and permittivity, respectively. P̃NL(z,ω)
is the Fourier transform of the material second-order nonlinear
polarization,

PNL(z,t) = ε0χ
(2)g(z,t)Eω0 (z,t)2, (2)

where χ (2) is the second-order electric susceptibility, Eω0 (z,t)
is the fundamental-harmonic (FH) electric field, and g(z,t) =
ei�(z,t) describes the QPM spatiotemporal geometry which
macroscopically modulates the nonlinear polarization. The
spatial (temporal) frequency of �(z,t) can be used to phase
match a momentum (energy) mismatch of the nonlinear
process [12]. In order to obtain a linear mapping from the time
domain to the frequency domain, the modulation has to be such
that the energy mismatch is a linear function of the reduced
time τ in the frame moving at the FH pulse group velocity
vg1 : τ = t − z

vg1
, ξ = z. To find the phase function �(z,t)

obeying this condition, we use the generalized phase-mismatch
condition that exists between the energy mismatch 
ω, the
momentum mismatch 
k, and the material dispersion [12]:


k(τ ) = 
ω(τ )
n(ωSH )

c
+ 2ω0

c
[n(ω0) − n(ωSH )], (3)

where ωSH = 2ω0 − 
ω(τ ). To achieve phase matching, the
instantaneous spatial and temporal frequencies of the phase
function must obey ∂�

dz
= 
k and ∂�

dt
= −
ω. In the τ , ξ

frame,

∂�(ξ,τ )

∂ξ
= 
k(τ ) − 1

vg1


ω(τ ), (4)

∂�(ξ,τ )

∂τ
= −
ω(τ ). (5)

FIG. 2. Space-time diagram of the real part of an example of
accelerating spatiotemporal QPM modulation. It can be seen that
constant phase lines are curved in space-time, implying acceleration.

When group velocity dispersion can be neglected such that
vg1 = vg2, we can approximate

n(ωSH ) =
c

vg1

ω − 2ω0n(2ω0)


ω − 2ω0
. (6)

In this case, Eq. (4) is equal to the constant 2ω0
c

[n(2ω0) −
n(ω0)] ≡ −
k0 and |
k0| = π

lc
, where lc is the coherence

length in an energy-conserving second-harmonic generation
(SHG) process. With this approximation, any form of 
ω(τ )
can satisfy Eqs. (4) and (5). In particular, we can now choose
the linear mapping, 
ω(τ ) = a + bτ , for which the solution
of Eqs. (4) and (5) yields

�(ξ,τ ) = −
k0ξ − aτ − 1
2bτ 2 + A0, (7)

where A0 is an arbitrary constant. Notice that a change in
the relative delay between the QPM modulation and the
pump pulse translates to a change in the a and b parameters.
Figure 2 depicts the space-time diagram of the real part
of the accelerating spatiotemporal QPM modulation g(z,t)
with the phase function given by Eq. (7) for b = π

t2
c
, where

tc = π
|
ω0| is the coherence time in a momentum-conserving

SHG process that corresponds to energy mismatch of 
ω0 =
2ω0

n(2ω0−
ω0) [n(2ω0 − 
ω0) − n(ω0)]. For this figure, we set
A0 = 0 and a = −bt0, with t0 being at the middle of the FH
pulse at z = 0, to achieve the central frequency of the SH field
at 2ω0. This is the actual modulation used for simulation in
Sec. III below.

In the undepleted-pump approximation, the fundamental
electric field is

Eω0 (z,t) = A

(
t − z

vg1

)
ei(ω0t−k0z), (8)

where k0 = n(ω0)ω0
c

and A(t − z
vg1

) is the pulse envelope we
are interested in imprinting upon the SH spectrum. We now
represent the envelope function with a Fourier series multiplied
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by a Gaussian window function which isolates one instance of
the periodic arrangement:

A(t) = e
− t2

T 2

∞∑
n=−∞

fne
iω̃nt , (9)

where ω̃n = 2πn

T̃
with an arbitrarily large time period T̃ ,

and fn are the Fourier series coefficients for this periodic
expansion of the envelope. For such a representation, we
require that T̃ � T � τ0, with τ0 being the temporal width
of the FH. Under these conditions, we can write the envelope
as

A

(
t − z

vg1

)
∼= e

− t2

T 2

∞∑
n=−∞

fne
iω̃n(t− z

vg1
)
. (10)

Notice that T can be set as large as required so the Gaussian
function need not be moved together with the Fourier com-
ponents. Substituting the modulation phase function given by
Eq. (7) and the FH electric field given by Eqs. (8) and (10) into
Eq. (2), and applying a Fourier transform in the time domain,
results in

P̃NL(z,ω) =
∞∑

n=−∞

∞∑
m=−∞

ε0χ
(2)√

4
T 2 − ib

fnfm

× e
−i(−
k0+2k0+ a+ω̃n+ω̃m

vg1
)z
e
i 1

2 b z2

vg1
2
e
−

(�+b z
vg1

)2

8
T 2 −2ib

,

(11)

where � is defined as � = ω − 2ω0 − a − ω̃n − ω̃m. By
selecting T such that 8

T 2 � 2b, Eq. (11) becomes

P̃NL(z,ω) = ε0χ
(2)

√−ib
e−iK(ω)z

∞∑
n=−∞

∞∑
m=−∞

fnfme
− �2

8
T 2 −2ib

, (12)

where K(ω) = −
k0 + 2k0 + ω−2ω0
vg1

. Let us examine the
rightmost expression,

e
− �2

8
T 2 −2ib ≈ e

− (ω−2ω0−a)2

8
T 2 −2ib

e−i
(ω−2ω0−a)(ω̃n+ω̃m)

b e−i
(ω̃n+ω̃m)2

2b . (13)

As the ω̃n frequencies span the FH envelope, their largest
absolute values would be bounded by 1/τ0 (this means that the
Fourier coefficients for larger ω̃n would be negligible). On the
other hand, |2(ω − 2ω0 − a)| is bounded by |bτ0|. This means

that for bτ 2
0 � 1, we can neglect the expression e−i

(ω̃n+ω̃m)2

2b and
get

P̃NL(z,ω) = ε0χ
(2)

√−ib
e−i

(ω−2ω0−a)2

2b e−iK(ω)z

×
[
A

(
ω − 2ω0 − a

b

)]2

, (14)

where A(t) is the temporal envelope of the input pulse.
Solving the wave equation given by Eq. (1) with the spec-
trum of the nonlinear polarization given by Eq. (14) and
the initial conditions Ẽ2ω0 (z = 0,ω) = ∂

∂z
Ẽ2ω0 (z = 0,ω) = 0

yields

Ẽ2ω0 (z,ω) = r(z,ω)

[
A

(
ω − 2ω0 − a

b

)]2

, (15)

where

r(z,ω) = −μ0ε0χ
(2)

√−ib

ω2

K(ω)2 − β(ω)2
e−i

(ω−2ω0−a)2

2b

×
{
−e−iK(ω)z + cos[β(ω)z] − i

K(ω)

β(ω)
sin[β(ω)z]

}
.

(16)

These last two equations constitute the major result of this
paper and show that indeed using an accelerating QPM, the
temporal profile A(t) is mapped to the spectral profile of the
generated harmonic radiation. We remind the reader that the a

and b parameters reflect the relative delay between the pump
pulse and the QPM accelerating grating. Thus a change in this
delay translates to both a change in the central frequency of the
up-converted spectrum and to a change in its bandwidth (seen
as a stretch factor here). The term r(z,ω) represents the distor-
tions in the time-to-frequency mapping due to dispersion of the
FH during the nonlinear interaction. Still, most importantly,
knowledge of the medium’s dispersion and the pump group
velocity completely determines r(z,ω), which allows one to
extract the original FH amplitude regardless of the interaction
length. In addition, in most cases, for the relevant frequency
range, the phase velocity and group velocity would be close
and the phase mismatch would be orders of magnitude smaller
than the FH wave vector, which would lead to K(ω)/β(ω) ≈ 1.
In this case, we can approximate the amplitude of Eq. (16) as

|r| ∼= μ0ε0χ
(2)

|√b|

∣∣∣∣sinc

{
[K(ω) − β(ω)]z

2

}
zω2

K(ω) + β(ω)

∣∣∣∣.
(17)

From this expression, we can estimate the distance at which
the distortions get significant as minω{2π/[K(ω) − β(ω)]}.
This value depends on the bandwidth of the generated SH
pulse; however, assuming this bandwidth would be wider
than the FH bandwidth, we can express the limiting case as
the following dispersion length: lD = τ 2

0 /|β2|, where β2 =
max{βFH

2 ,βSH
2 } is the maximum group velocity dispersion

(GVD) over the GVD of the SH and of the FH pulses. For in-
teraction lengths which are smaller than the dispersion length,
the SH spectrum would constitute a good approximation to
the envelope function (as long as we also keep bτ 2

0 � 1). An
important point to consider is that due to the phase-matched
conditions under which this interaction takes place, the SH
field is being built up efficiently and so a long interaction length
increases the generated SH signal strength. The condition
bτ 2

0 � 1 also means that any chirp present in the envelope A(t)
is much smaller than the chirp rate b of the QPM modulation
and so can be neglected. In this case, to achieve 
t temporal
resolution for the FH requires b
t resolution in the spectrum
of the SH. Significant chirp in the envelope would smear
the time-to-frequency mapping. One last remark regarding
this condition is that it is rather standard in the context of
time-to-frequency mapping and realizations of a time lens.
The initial pulse duration (which depends on its dispersion) is
always restricted with respect to the system chirp [5,20,21].
We would also like to note that in our derivation, we used the
nondepletion approximation. If depletion becomes significant,
it would degrade the time-to-frequency mapping as it depends
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on the intensity of the pump pulse, leading to distortions in the
pulse profile during the interaction.

III. NUMERICAL RESULTS

To demonstrate the time-to-frequency mapping in our
proposed system, we performed numerical simulations for
SHG within the accelerating nonlinear photonic crystal. For
this purpose, we convert the second-order differential wave
equation given by Eq. (1) to two first-order differential
equations. First, we define

Ẽ2ω0 (z,ω) = Ê2ω0 (z,ω)ejβ(ω)z (18)

and substitute to the wave equation to get

∂2Ê2ω0 (z,ω)

∂z2
+ 2jβ(ω)

∂Ê2ω0 (z,ω)

∂z

= −μ0ω
2P̃NL(z,ω)e−jβ(ω)z. (19)

By defining

H (z,ω) = ∂Ê2ω0 (z,ω)

∂z
e2jβ(ω)z, (20)

Eq. (19) can be rewritten as

∂H (z,ω)

∂z
= −μ0ω

2P̃NL(z,ω)ejβ(ω)z, (21)

and, according to Eqs. (18) and (20), we obtain

H (z,ω) =
[
∂Ẽ2ω0 (z,ω)

∂z
− jβ(ω)Ẽ2ω0 (z,ω)

]
ejβ(ω)z. (22)

We solved Eqs. (21) and (22) using the Runge-Kutta 4 (RK4)
method. We chose, for the simulations, propagation of an
FH pulse in barium borate (BBO) [22] crystal. Notice that
we assume an all-optical QPM mechanism and so we could
choose any material with a second-order susceptibility for
our purpose (that is, no need for choosing, for example, a
ferroelectric crystal where the QPM physical mechanism is
usually electric field poling). For a 800 nm pump, the ratio
between the dispersion length for the SH and coherence
length is ∼34. The FH is a pulse of ∼0.5 ps duration with
an asymmetric envelope. The envelope of the FH pulse and
the envelope squared are shown in Fig. 3(a). The use of
two accelerating QPM geometries is demonstrated for two
different values of b while a = −1.1bt0. Figure 3(b) shows
the SH spectrum—as integrated numerically (solid blue line)
and from the analytical approximation (dashed red line) for
bτ 2

0 = 4 (left column) and bτ 2
0 = 40 (right column) at three

different propagation distances: z/lD = 0.1, z/lD = 1, and
z/lD = 2.5 (top, middle, and bottom row, respectively). It
is evident that although for a small bτ 2

0 ratio there is no
agreement between the analytical and numerical result, when
the chirp rate of the QPM pattern satisfies the requirement of
bτ 2

0 � 1, the agreement is very good. We note that to support
the case bτ 2

0 = 40, the bandwidth of the spatiotemporal
modulation is bτ0 = 80 THz which translates to 
λ = 27 nm.
Such bandwidths are easily achievable with moderate-duration
commercial femtosecond lasers. In Fig. 3(c), the SH spectrum
divided by the r(z,ω) function is given at z/lD = 2.5 for the
two cases of accelerating QPM chirp rate. When bτ 2

0 � 1,

FIG. 3. Numerical and analytical results for the time-to-
frequency mapping. (a) The temporal envelope of the FH pulse (left)
and its square (right), (b) SH spectrum at three different propagation
distances: z/lD = 0.1, z/lD = 1, and z/ld = 2.5 (top, middle, and
bottom row, respectively), and (c) the SH spectrum normalized by
r(z,ω) at propagation distances of z/lD = 2.5, where bτ 2

0 = 4 (left
column) and bτ 2

0 = 40 (right column) as given by the numerical
solution (solid blue line) and by the analytical expression (dashed red
line). All amplitudes are in a.u.

the (squared) FH temporal envelope is clearly mapped to
the spectrum of the SH. These results also demonstrate that
for the case of bτ 2

0 � 1, although the distortions are evident
when the propagation is on the order of the dispersion length,
the SH spectrum normalized by r(z,ω) at any value of z is an
exact image of the square of the FH pulse waveform.

IV. CONCLUSIONS

To conclude, we have shown that accelerating quasi-phase-
matching can be used for mapping optical pulses from the
time domain to the frequency domain such that a temporal
measurement can be replaced with a spectral measurement
at a different frequency band than that of the original signal.
Such a scheme might be useful for characterizing pulses whose
spectral band suffers from lack of appropriate detectors. We
analytically developed this scheme for the case of SHG with
undepleted pump. However, the underlying principles can
also be developed to other nonlinear frequency-conversion
processes. Comparing our method with FROG [2], the need
for synthesizing the spatiotemporal modulation makes it
more complicated, while FROG also retrieves the phase of
the original pulse. However, our method does have a few
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advantages: when the dispersion of the nonlinear medium is
known, the interaction length can be long, leading to better
efficiency. In addition, it does not require a retrieval algorithm
and it is single shot at one spatial dimension.
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B. Broberg, Appl. Phys. Lett. 60, 145 (1992).
[8] Z. Jiang and X.-C. Zhang, Appl. Phys. Lett. 72, 1945 (1998).
[9] T. Jannson, Opt. Lett. 8, 232 (1983).

[10] J. Azaña and M. A. Muriel, IEEE J. Quantum Electron. 36, 517
(2000).

[11] N. Berger, B. Levit, S. Atkins, and B. Fischer, Electron. Lett.
36, 1644 (2000).

[12] A. Bahabad, M. M. Murnane, and H. C. Kapteyn, Nat. Photon.
4, 570 (2010).

[13] R. W. Boyd, Nonlinear Optics (Academic, New York, 2003).
[14] J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys.

Rev. 127, 1918 (1962).
[15] X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn,

M. M. Murnane, and O. Cohen, Nat. Phys. 3, 270 (2007).
[16] S. Akturk, X. Gu, P. Bowlan, and R. Trebino, J. Opt. 12, 093001

(2010).
[17] A. Bahabad, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. A

84, 033819 (2011).
[18] A. Bahabad, O. Cohen, M. Murnane, and H. Kapteyn, Opt.

Express 16, 15923 (2008).
[19] R. Myer, A. Penfield, E. Gagnon, and A. L. Lytle, in Frontiers

in Optics (Optical Society of America, Washington, DC, USA,
2014), p. FTh4C.4.

[20] B. H. Kolner and M. Nazarathy, Opt. Lett. 14, 630 (1989).
[21] M. A. Muriel, J. Azaña, and A. Carballar, Opt. Lett. 24, 1 (1999).
[22] D. Eimerl, L. Davis, S. Velsko, E. Graham, and A. Zalkin, J.

Appl. Phys. 62, 1968 (1987).

023823-5

http://dx.doi.org/10.1364/AOP.1.000308
http://dx.doi.org/10.1364/AOP.1.000308
http://dx.doi.org/10.1364/AOP.1.000308
http://dx.doi.org/10.1364/AOP.1.000308
http://dx.doi.org/10.1364/OL.23.000792
http://dx.doi.org/10.1364/OL.23.000792
http://dx.doi.org/10.1364/OL.23.000792
http://dx.doi.org/10.1364/OL.23.000792
http://dx.doi.org/10.1109/JQE.1986.1072882
http://dx.doi.org/10.1109/JQE.1986.1072882
http://dx.doi.org/10.1109/JQE.1986.1072882
http://dx.doi.org/10.1109/JQE.1986.1072882
http://dx.doi.org/10.1063/1.111177
http://dx.doi.org/10.1063/1.111177
http://dx.doi.org/10.1063/1.111177
http://dx.doi.org/10.1063/1.111177
http://dx.doi.org/10.1109/3.848351
http://dx.doi.org/10.1109/3.848351
http://dx.doi.org/10.1109/3.848351
http://dx.doi.org/10.1109/3.848351
http://dx.doi.org/10.1063/1.107456
http://dx.doi.org/10.1063/1.107456
http://dx.doi.org/10.1063/1.107456
http://dx.doi.org/10.1063/1.107456
http://dx.doi.org/10.1063/1.121231
http://dx.doi.org/10.1063/1.121231
http://dx.doi.org/10.1063/1.121231
http://dx.doi.org/10.1063/1.121231
http://dx.doi.org/10.1364/OL.8.000232
http://dx.doi.org/10.1364/OL.8.000232
http://dx.doi.org/10.1364/OL.8.000232
http://dx.doi.org/10.1364/OL.8.000232
http://dx.doi.org/10.1109/3.842092
http://dx.doi.org/10.1109/3.842092
http://dx.doi.org/10.1109/3.842092
http://dx.doi.org/10.1109/3.842092
http://dx.doi.org/10.1049/el:20001174
http://dx.doi.org/10.1049/el:20001174
http://dx.doi.org/10.1049/el:20001174
http://dx.doi.org/10.1049/el:20001174
http://dx.doi.org/10.1038/nphoton.2010.122
http://dx.doi.org/10.1038/nphoton.2010.122
http://dx.doi.org/10.1038/nphoton.2010.122
http://dx.doi.org/10.1038/nphoton.2010.122
http://dx.doi.org/10.1103/PhysRev.127.1918
http://dx.doi.org/10.1103/PhysRev.127.1918
http://dx.doi.org/10.1103/PhysRev.127.1918
http://dx.doi.org/10.1103/PhysRev.127.1918
http://dx.doi.org/10.1038/nphys541
http://dx.doi.org/10.1038/nphys541
http://dx.doi.org/10.1038/nphys541
http://dx.doi.org/10.1038/nphys541
http://dx.doi.org/10.1088/2040-8978/12/9/093001
http://dx.doi.org/10.1088/2040-8978/12/9/093001
http://dx.doi.org/10.1088/2040-8978/12/9/093001
http://dx.doi.org/10.1088/2040-8978/12/9/093001
http://dx.doi.org/10.1103/PhysRevA.84.033819
http://dx.doi.org/10.1103/PhysRevA.84.033819
http://dx.doi.org/10.1103/PhysRevA.84.033819
http://dx.doi.org/10.1103/PhysRevA.84.033819
http://dx.doi.org/10.1364/OE.16.015923
http://dx.doi.org/10.1364/OE.16.015923
http://dx.doi.org/10.1364/OE.16.015923
http://dx.doi.org/10.1364/OE.16.015923
http://dx.doi.org/10.1364/OL.14.000630
http://dx.doi.org/10.1364/OL.14.000630
http://dx.doi.org/10.1364/OL.14.000630
http://dx.doi.org/10.1364/OL.14.000630
http://dx.doi.org/10.1364/OL.24.000001
http://dx.doi.org/10.1364/OL.24.000001
http://dx.doi.org/10.1364/OL.24.000001
http://dx.doi.org/10.1364/OL.24.000001
http://dx.doi.org/10.1063/1.339536
http://dx.doi.org/10.1063/1.339536
http://dx.doi.org/10.1063/1.339536
http://dx.doi.org/10.1063/1.339536



