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Negative refraction without absorption via quantum coherence
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Negative refraction of a probe field is studied in a dense gas consisting of cascade-type four-level atoms. By
coupling the magnetic component of the probe field to a � scheme with initially prepared coherence in the two
lower levels, strong negative permeability with minimal absorption can be obtained. The permittivity of the gas
to the electric component of the probe field can be made negative by taking into account the local field effect of
the dense atoms. Strong negative refraction with zero absorption can be achieved in a wide range of parameters
in our scheme. A possible experimental realization is also discussed.
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I. INTRODUCTION

The linear response of materials to electromagnetic waves is
determined by two frequency-dependent parameters: electric
permittivity (ε) and magnetic permeability (μ). Veselago [1]
showed that a material with both ε < 0 and μ < 0 can reveal a
negative index of refraction. Such negative refraction materials
promise many surprising and counterintuitive features such as
the reversals of both Doppler shift and Cerenkov radiation [1],
negative Goos-Hänchen shift [2], amplification of evanescent
waves [3], and subwavelength focusing [4]. More interestingly,
it may become possible to make a “perfect lens” in which
imaging resolution is not limited by the diffraction limit by use
of a slab of negative refractive materials [5]. Until now, most
of the approaches to the realization of negative refractive index
materials are limited to artificial structures such as metamate-
rials [6–12] and photonic crystal structures [13–15]. In such
negative refractive materials, negative refraction commonly
suffers from resonant absorption especially towards higher
frequencies, which limits many possible applications [5,16].
On the other hand, requiring the periodical array of electric
and magnetic resonators may lead to the extreme difficulty
of manufacturing two- or three -dimensional materials with
negative refractive index in the optical regime [17–19].

Atomic gases can macroscopically extend in all spatial
directions and an atom has naturally both electric and magnetic
transitions between different states. Thus, atomic gases are
naturally three-dimensional materials with both electric and
magnetic susceptabilities. Recently, an alternative approach of
the realization of negative refraction in dense atomic gases
have been proposed [20]. In an atomic gas, the magnetic
susceptibility is usually smaller than the electric susceptibility
by four orders of amplitude. Thommen and Mandel [21]
proposed to make a significant change of the permeability from
a magnetic moment induced by coupled electric transitions.
More recently, many atomic schemes [22–25] have been
studied to show negative refraction via electromagnetically
induced chirality [22]. More importantly, suppressed ab-
sorption as well as negative refraction in atomic gases has
been suggested [25–29] by means of electromagnetic induced
transparency [30] and gain mechanisims.

In this paper, we propose an idea to achieve negative
refraction without absorption in a dense atomic gas via atomic

coherence [31]. In our scheme, the electric component and the
magnetic component of a probe field interact with different
atomic transitions, respectively. Initial atomic coherence is
prepared to stimulate strong negative permeability with min-
imal absorption, therefore the scheme does not require an
external strong driving field to induce chirality in the medium.
Negative permittivity is obtained by taking into account the
local field effect due to the dense atoms. First, we derive from
the master equation the steady-state solution of the response of
the atoms in the presence of a weak probe field. Then we give
explicit expressions of both the real part and the imaginary
part of the refractive index due to the local field effect of the
dense atoms and the interaction between the atom gas and the
probe field. Finally, we study for a wide range of parameters to
show the feasibility of negative refraction with zero absorption
in our scheme.

This paper is organized as follows. In Sec. II, we present the
model and derive the analytical results for negative refraction.
In Sec. III, we study the numerical results for negative
refraction by varying different parameters for the purpose
of realistic implementation and we show negative refraction
with figure of merit (FOM) � 1, where FOM is defined as
|Re[n]|/|Im[n]| to quantify the performance of our scheme.
In Sec. IV, we draw a conclusion of the model studied in this
paper.

II. THE MODEL

A. The scheme

In our scheme, we consider the atoms with four cascade
levels involved as shown in Fig. 1. The ground state consists
of a level doublet |a〉 and |b〉 which have the same parity. The
level |c〉 has same parity with the levels |a〉 and |b〉 and the
transition from |c〉 to |a〉 (|b〉) is electric-dipole forbidden but
magnetic-dipole allowed with the magnetic-dipole moment
μca (μcb). The level |d〉 has the opposite parity with the level
|c〉 and the transition from |d〉 to |c〉 is electric-dipole allowed
with the electric-dipole moment ddc. The energy of each state
|i〉 is �ωi(i = a,b,c,d) and the corresponding decay rates of
the levels to other external levels are γa,γb,γc,γd , respectively.

The transition |d〉 to |c〉 is coupled by the electric component
of a probe field with the frequency ωp. The transitions |c〉
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FIG. 1. Atomic level configuration.

to |a〉 and |c〉 to |b〉 are both coupled by the magnetic
component of the probe field. The probe field is detuned
from the transitions |c〉 → |a〉,|c〉 → |b〉 and |d〉 → |c〉 by
�ca = ωc − ωa − ωp,�cb = ωc − ωb − ωp, and �dc = ωd −
ωc − ωp, respectively.

We assume that the atoms are initially prepared at a rate rp

in a coherent superposition of states, which is described by the
density matrix

ρ(0) = ρ
(0)
dd |d〉〈d| + ρ(0)

cc |c〉〈c| + ρ
(0)
bb |b〉〈b| + ρ(0)

aa |a〉〈a|
+ ρ

(0)
ab |a〉〈b| + ρ

(0)
ba |b〉〈a|. (1)

Here the off-diagonal elements ρ
(0)
ab and ρ

(0)
ba represent the

atomic coherence that can lead to the quantum interference
between two transition paths from the ground state doublet
to the excited state |c〉 and the cancellation of photon
absorption [31]. The preparation of the coherence states can
be accomplished by coherent pulse excitation [32], Raman-
induced coherence [33], and adiabatic population conversion
using two coherent pulses with time delay [34].

Suppose that the electric and the magnetic component of
the probe field are linearly polarized along x axis and y axis,
respectively, and have the form E(t) = ξE cos(ωP t)ex,B(t) =
ξB cos(ωP t)ey, where ξE and ξB are the amplitudes of the two
components. In the interaction picture with dipole approxima-
tion and the rotating-wave approximation, the Hamiltonian of
the system reads

H = ��cd |d〉〈d| − ��ca |a〉 〈a| − ��cb |b〉 〈b|
− �

2
(	Eeiϕ3 |d〉〈c| + 	B2e

iϕ2 |c〉〈b|

+	B1e
iϕ1 |c〉〈a| + H.c.), (2)

where 	B1 = |μca|ξB/�,	B2 = |μcb|ξB/� and 	E =
|ddc|ξE/� are magnitudes of Rabi frequencies of the probe
field for different atomic transitions. ϕi are the corresponding
phases of the electric and magnetic dipole moments defined
as μca = |μca|eiϕ1 ,μcb = |μcb|eiϕ2 and ddc = |ddc|eiϕ3 .

B. The steady-state solution

The equation of motion for the density matrix of the atoms
takes the following form:

∂ρ

∂t
= − i

�
[H,ρ] − 1

2
{�,ρ} + rpρ(0), (3)

where the decay matrix � is defined by 〈i|�|j 〉 = δij γi . In our
scheme, the populations in the excited states (|c〉 , |d〉) are very
small and therefore the collective decay is not important. If the
probe field strength is weak compared to the atomic decay, then
it is sufficient only to consider the linear response of the atom
to the probe field. Therefore, the off-diagonal matrix elements
of the density matrix for the atoms are kept to the lowest order
in either the electric amplitude ξE or the magnetic amplitude
ξB and the diagonal matrix elements are kept to the zeroth
order. Under this approximation, the steady-state solution of
the relevant density matrix elements is given as

ρca = − i

2

	B1e
iϕ1

(i�ca + γca)

[
rp

γc

ρ(0)
cc − rp

γa

ρ(0)
aa

]

+ i

2

	B2e
iϕ2

(i�ca + γca)

rpρ
(0)
ba

(iωba + γba)

ρcb = − i

2

	B2e
iϕ2

(i�cb + γcb)

[
rp

γc

ρ(0)
cc − rp

γb

ρ
(0)
bb

]

+ i

2

	B1e
iϕ1

(i�cb + γcb)

rpρ
(0)
ab

(−iωba + γba)
,

ρdc = − i

2

	Eeiϕ3

(i�dc + γdc)

[
rp

γd

ρ
(0)
dd − rp

γc

ρ(0)
cc

]
,

ρaa = rp

γa

ρ(0)
aa , ρbb = rp

γb

ρ
(0)
bb , ρcc = rp

γc

ρ(0)
cc ,

ρdd = rp

γd

ρ
(0)
dd , ρab = rp

(−iωba + γba)
ρ

(0)
ab . (4)

Here the off-diagonal elements ρca and ρcb are due to the over-
all effect of the probe field and the initial atomic coherence.
The full master equations of the density matrix elements are
given in Appendix and the results of the steady-state solution
are derived under the weak probe field approximation. Since
	E � 	B1,	B2, we consider 	E ∼ 0.1γd as the condition
for the weak probe field approximation. Using the relevant
parameters provided below, this condition gives the amplitude
of the weak probe field an upper bound value of ∼1 V/m.

C. The refractive index of the atom gas due to atomic coherence

The complex electric polarization and magnetization of a
single atom are given by p = dcdρdce

−iωpt + c.c. and m =
(μacρca + μbcρcb)e−iωpt + c.c., respectively. The positive fre-
quency part of the electric polarization relates to the positive
frequency part of the probe electric field as

dcdρdc = αeε0ξE/2, (5)

where αe is the electric susceptibility of an atom and ε0 is
the dielectric constant of vacuum. Similarly, for the magnetic
polarization, the relation is given by

μ0(μacρca + μbcρcb) = αmξB/2, (6)
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where αm is the magnetic susceptibility of an atom and μ0

is the susceptibility of vacuum. On substituting Eq. (4) into
this formula, the corresponding linear response coefficients
are given by

αe = − i|dcd |2
�ε0(i�dc + γdc)

[
rp

γd

ρ
(0)
dd − rp

γc

ρ(0)
cc

]
, (7)

αm

μ0
= i

�

{
− |μca|2

(i�ca + γca)

[
rp

γc

ρ(0)
cc − rp

γa

ρ(0)
aa

]

+ |μac||μcb|ei(ϕ2−ϕ1)

(i�ca + γca)

rpρ
(0)
ba

(iωba + γba)

}

+ i

�

{
− |μcb|2

(i�cb + γcb)

[
rp

γc

ρ(0)
cc − rp

γb

ρ
(0)
bb

]

+ |μca||μbc|ei(ϕ1−ϕ2)

(i�cb + γcb)

rpρ
(0)
ab

(γba − iωba)

}
. (8)

As can be seen from the above equations, the phases of the Rabi
frequencies can be absorbed into the phase of ρ

(0)
ab . Without loss

of generality, we may choose ϕ1 − ϕ2 = 0.
According to the Clausius-Mossotti relations, by taking

into account the local field effect in dense medium [35], the
complex-valued relative permittivity and relative permeability
of the atomic gas are given by

ε = εr + iεi = 1 + 2
3Nαe

1 − 1
3Nαe

, (9)

μ = μr + iμi = 1 + 2
3Nαm

1 − 1
3Nαm

, (10)

where N is the density of atoms and εr (μr ) and εi (μi) are
the real and imaginary parts of the permittivity (permeability),
respectively. To see the effect of local field, we obtain the
expression of μr and μi as

μr = 1 + 1
3 Re[Nαm] − 2

9 |Nαm|2(
1 − 1

3 Re[Nαm]
)2 + (

1
3 Im[Nαm]

)2 , (11)

μi = Im[Nαm](
1 − 1

3 Re[Nαm]
)2 + (

1
3 Im[Nαm]

)2 . (12)

It is clear from the above equations that 1 + 1
3 Re[Nαm] −

2
9 |Nαm|2 < 0 is the condition of generating negative perme-
ability. For a moderate value of atomic density, Re[Nαm] < 0
and |Nαm| > 1 is required to realize negative μr . As can
be seen from Eq. (8), a negative real part of magnetic
susceptibility can be realized via the initial atomic coherence
with proper phases.

For real relative permittivity and relative permeability, the
negative refraction n = −√

εrμr when both εr < 0 and μr <

0 [1]. In general, for complex-valued ε and μ, the real part and
the imaginary part of the refractive index are expressed as [36]

nr = − 1√
2

√
|ε||μ| + μrεr − μiεi, (13)

ni = − 1√
2

μiεr + μrεi√|ε||μ| + μrεr − μiεi

. (14)

To show negative refractive index, the condition εr |μ| +
μr |ε| < 0 should be satisfied [36]. To get nonabsorption,
i.e., ni = 0, the special case considered in Ref. [1] is set
εi = 0 and μi = 0. For a general case, we have the condition
μiεr + μrεi = 0 or μi/εi = −μr/εr . Since μr < 0 and εr < 0
for negative refraction, the ratio μi/εi < 0. This means that
the magnetic component of the probe field is amplified
while the electrical field is absorbed or vice versa. In the
limit under consideration, εi ≈ 1/|Nαe|, absorption of the
magnetic field must be greatly depressed and the very small
amount of gain must be created for the generation of negative
refraction without absorption. In the following, we will show
that this situation can be realized via quantum coherence and
destructive quantum interference.

III. RESULTS AND DISCUSSIONS

In this section, we present numerical results to show
negative refraction with zero absorption in the dense atom
gas studied above. In particular, we consider the density of the
atoms to be large enough such that |Nαe| � 1. We then have
εr ≈ −2 and the electric loss term εi ∼ 1/N according to the
Clausius-Mossotti relation [35]. For the magnetic component
of the probe field, we show that negative μr as well as zero
μi can be controlled via the atomic coherence [31]. Since
the relative permittivity is largely unaffected due to the dense
atoms, we focus on how to tune the relative permeability with
a wide range of parameters.

A. Negative refraction with zero absorption

First, we consider an atomic density of 8 × 1017 cm−3. The
decay rates are γa = γb = 2γ, γd = 5γ , and γc = 0.1γ , where
the typical value of γ is taken to be 107 Hz. The magnetic
dipole moments are chosen have the relation |μca| = |μcb| =
μm, where μm = c

√
3�ε0γBλ3/8π2. The electric dipole mo-

ment |ddc| =
√

3�ε0γEλ3/8π2. Here λ is the wavelength of
the probe field which is taken to be 5 μm. The spontaneous
emission rates γE and γB of levels |d〉 and |c〉 are chosen
the typical values of 0.1γ and 0.1/(137)2γ , respectively. In
Eqs. (8), all the detuning parameters can be written in the
forms �ca = � + ωba/2 and �cb = � − ωba/2 by defining
the detuning � = (�cb + �ca)/2, and the doublet spacing
�ωba is set to be �γba , which can be adjusted by use of a
static magnetic field.

We initially pump the atoms with a rate of rp = 2γ with
populations ρ

(0)
dd = 0,ρ(0)

cc = 0.01, ρ(0)
aa = ρ

(0)
bb = |ρ(0)

ab | = (1 −
ρ

(0)
dd − ρ(0)

cc )/2, and ρ
(0)
ab = |ρba|eiπ2.

In Figs. 2 and 3, we plot the electric susceptibility,
the magnetic susceptibility, the relative permittivity, and the
relative permeability of the atomic gas described above.
The electric susceptibility curves are due to the interaction
of the probe field with two-level atoms. The magnetic
susceptibility curves are due to the interaction of the probe field
with coherent prepared three-level atoms [37] which cancels
the absorption. With the large density of atoms, the local field
effect dominates, and therefore we have εr ≈ −2 and εi ≈ 0.
For the relative permeability, the curves shown in Fig. 3(b) are
the overall effects of the local field of the dense atoms and
quantum interference of the coherent states.
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FIG. 2. (a) Real part (solid curve) and imaginary part (dashed
curve) of the electric susceptibility. (b) Real part (solid curve) and
imaginary part (dashed curve) of the relative permittivity.
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FIG. 3. (a) Real part (solid curve) and imaginary part (dashed
curve) of the magnetic susceptibility. (b) Real part (solid curve) and
imaginary part (dashed curve) of the relative permeability.
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FIG. 4. Real part (solid curve) and imaginary part (dashed curve)
of the refractive index, and FOM (dot-dashed curve) with the
parameters in Fig. 2.

In Fig. 4, we plot both the real part and the imaginary part
of the refractive index of the atoms according the Eqs. (13)
and (14). We find that negative refraction can be achieved in a
wide range of detuning with small absorption. Moreover, there
are two values of detuning with zero absorption (at points A
and B in the figure) which is due to the quantum interference
of the atomic coherence [31]. To see how well the performance
of the atom gas for negative refraction, we also plot a curve of
FOM. We observe that there are two windows of FOM � 1
located around the zero-absorption detunings.
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FIG. 5. (a) Real part (solid curve), imaginary part (dashed curve),
and FOM (dot-dashed curve) of the refractive index for |μcb| =
0.8μm. (b) Real part (solid curve), imaginary part (dashed curve), and
FOM (dot-dashed curve) of the refractive index for |μcb| = 0.6μm.
The other parameters are the same as in Fig. 2.
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B. Unequal magnetic dipole moments

For a real atomic gas, the magnetic dipole moments of the
two transitions may not be the same. Therefore, we study the
effect of the unequal dipole moments. We take |μca| = μm and
vary the value of |μcb|.

In Fig. 5, we plot the curves of the relative permeabilities
and the refractive indexes for two different values of |μcb| =
0.8μm and |μcb| = 0.6μm. We observe that negative refraction
and zero absorption can be achieved even if |μca| 	= μcb. As
a comparison to Fig. 4, we see that with increasing unequal
dipole moments that the left position of the zero absorption
window (point A) is shifted closer to the center while the right
position of the zero absorption window (point B) is shifted
away from the center. The solutions of Im[Nαm] = 0 are
determined by the values of |μcb| and |μca| from Eq. (8).
Therefore, the solutions of ni = 0 are the same as those of
Im[Nαm] = 0 (εi = 0 is considered in the large density limit)
from Eqs. (12) and (14), which depend on the values of |μcb|
and |μca|.

C. Effects of the atomic decay rates

We consider the effects when we change the decay rates
from the doublet levels |a〉 and |b〉. We use the same parameters
as in Sec. III A except that γa and γb. We plot the results of the
refractive indexes for γa = γb = 2.5γ and γa = γb = 1.25γ .

In Fig. 6, the separation of the two zero-absorption windows
is increased with larger decay rates as can be seen from
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(b)

FIG. 6. (a) Real part (solid curve), imaginary part (dashed curve),
and FOM (dot-dashed curve) of the refractive index for γa = γb =
2.5γ . (b) Real part (solid curve), imaginary part (dashed curve), and
FOM (dot-dashed curve) of the refractive index for γa = γb = 1.25γ .
The other parameters are the same as in Fig. 2.
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FIG. 7. (a) Real part (solid curve), imaginary part (dashed curve),
and FOM (dot-dashed curve) of the refractive index for ωab = 3γ .
(b) Real part (solid curve), imaginary part (dashed curve), and FOM
(dot-dashed curve) of the refractive index for ωab = γ . The other
parameters are the same as in Fig. 2.

points A and B. It can also be observed from the curves of
FOM that the width of each window increases with increasing
decay rates. Therefore, our theoretical model works well with
different possible decay rates.

D. Effects of the doublet splitting

We study the effects of the doublet splitting on the
preparation of negative refractive index by varying the value
of the doublet splitting ωab. We consider two different values
of ωab = 3γ and ωab = γ as shown in Fig. 7. It can be seen
from the curves that negative refraction with zero absorption
is feasible with different values of ωab. As a comparison
with Fig. 4, we see that smaller ωab results in smaller
separation between two zero-absorption windows. Therefore,
by controlling the doublet splitting, we can tune the refractive
index as well as control the positions of detuning for zero
absorption (points A and B) of the atomic gas.

E. Effects of the atomic coherence

Now we examine the effects of the atomic coherence on the
negative refractive index and FOM. We consider the atomic
coherence with different phases and different populations for
illustrations. Specifically, we consider two cases: One with
ρ

(0)
ab = |ρ(0)

ab |ei5π/4 and the other one with ρ(0)
cc = 0.015 and

ρ(0)
aa = ρ

(0)
bb = |ρ(0)

ab | = 0.4925. The other parameters are the
same as given in Sec. III A.
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FIG. 8. Real part (solid curve) and imaginary part (dashed curve)
of (a) the relative permeability; (b) the magnetic susceptibility; (c)
the refractive index. ρ

(0)
ab = |ρ(0)

ab |ei5π/4. The other parameters are the
same as in Fig. 2.

In the first case, when the phase between the atomic levels
|a〉 and |b〉 is changed, we see from Fig. 8(a) that μr < 0
and μi ≈ 0 are achieved simultaneously for a wider range
of detunings compared with Fig. 3. This is due to the fact
that either |Re[Nαm]| or |Im[Nαm]| is much greater than 1
for a wide range of detuning as shown in Fig. 8(b). In this
case, although strong absorption happens due to the atomic
coherence for a single atom, the relative permeability can
be negative by taking into account the local field effect.
Therefore, we obtain a wide window of zero absorption for
negative refraction by tuning the phase of the atomic coherence
[see Fig. 8(c)].

In the other case, when the population on level |c〉 is slightly
changed, we observe that a wider zero-absorption window (see
Fig. 9(c) points A and B) is obtained compared to the case in
Fig. 4. We also plot the magnetic susceptibility in Fig. 9(b). It
is shown that stronger emission compared to that in Fig. 2 is
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FIG. 9. Real part (solid curve) and imaginary part (dashed curve)
of (a) the relative permeability; (b) the magnetic susceptibility; (c)
the refractive index. ρ(0)

aa = ρ
(0)
bb = |ρ(0)

ab | = 0.4925 and ρ(0)
cc = 0.015.

The other parameters are the same as in Fig. 2.

obtained due to the increase of the population on the excited
atomic level |c〉.

Therefore, we find the refractive index is very sensitive
to the atomic coherence since Re[Nαm] and Im[Nαm] can
be modified greatly by even a slight change on the atomic
coherence. This can be used to control the negative refraction
and minimize the absorption of the probe field.

Moreover, if fixing all the parameters except with the phase
of the initial atomic coherence state, the maximum negative
real part of the permeability can be obtained by optimizing
the phase of the atomic state. This is done by maximizing
figure of merit with a large real part but a small imaginary part
of the refractive index.

F. Effects of the atomic density

In this subsection, we show that the negative refraction as
well as zero absorption can be realized with a wide range of
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(a)

(b)

FIG. 10. (a) Real part and (b) imaginary part of the refractive
index against the atomic density and detuning. The other parameters
are the same as in Fig. 2.

atomic densities. As can be seen from Eqs. (11) and (12), for
large N such that |Nαm| � 1, the local field effect becomes
dominant. While for smaller N such that |Nαm| ∼ 1 the overall
effect of the local field and the atomic coherence determines
the refractive index of the atom gas.

In Fig. 10, we plot the real part and the imaginary part
of the refractive index as a function of the atomic density N

and the detuning �/γ . We observe that negative refraction
is possible with different atomic densities. Zero value even
negative values of the imaginary part of the refractive index
can be achieved by exploiting the atomic coherence. Around
the parameters of zero imaginary part and negative real part,
very large FOM can be obtained which makes the atom gas a
good candidate for left-hand side materials.

Similarly, since Nαe, Nαm ∝ N,rp, the same effect of the
atomic density N applies to that of the pumping rate rp.

G. Possible experimental realization

It may be challenge to find the exact four-level scheme
as shown in Fig. 1 which has neighboring magnetic dipole
transition and electric dipole transition with similar spacing
in the range of infrared wavelengths. However, a revised five-
level scheme in metastable neon gas as shown in Fig. 11 may
be suitable for experimental realization. According to Eq. (7),

FIG. 11. Five-level scheme in neon gas with Zeeman splittings
[38].

the linear responses of the electric field and the magnetic field
are independent of each other and the weak probe field does not
alter the initial population on the atomic levels. Therefore, the
electric dipole transition and the magnetic dipole transition are
not required to be next to each other, as is in the case of the five-
level scheme in metastable neon gas. In Fig. 11, the electric
transition |3〉 → |4〉 and the magnetic transition |1〉 → |2〉 are
in the infrared range at a wavelength around 5 μm. A static
magnetic field is applied to the atomic gas to split the ground
state |1〉 into |1a〉 and |1b〉. Two strong incoherent pumping
beams are used to create steady-state population on levels |2〉
and |3〉 to mimic the results in Eq. (4). Therefore, negative
refraction without absorption via quantum coherence may be
feasible with the revised scheme in Fig. 11.

IV. CONCLUSION

In conclusion, we have proposed a novel scheme for the
realization of negative refraction with zero absorption in
an atomic gas consisting of cascade-type four-level atoms
via atomic coherence. Zero absorption is achieved by using
quantum inference of the initially prepared atomic coherence.

We exploited the master equation to obtain the steady-state
solution of the response of the atoms in the presence of a
weak probe field. We derived analytical expressions of both
the electric permittivity and the magnetic permeability by
taking into account of the local field effect. The real parts
of the electric permittivity and the magnetic permeability
of the atomic gas can be made negative simultaneously to
achieve negative refraction. Vanishing imaginary part of the
electric permittivity is obtained due to the local field effect
of the dense atoms according to Clausius-Mossotti relation.
Vanishing imaginary part of the magnetic permeability is
obtained due to absorption cancellation in the presence of the
atomic coherence. We studied a wide range of parameters of
the atomic gas to show negative refraction. We also discussed
a possible scheme for experimental realization.
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APPENDIX: FULL MASTER EQUATION

In this Appendix, we first obtain the full master equation
by considering all orders of the probe field and then we derive
the steady-state solution Eq. (4) in the main article under the
approximation 	B1,	B2,	E � γj ,rp,�ij (i,j = a,b,c,d.).

According to the master equation, the complete equations
of each matrix element are given by

ρ̇aa = −γaρaa + rpρ(0)
aa + i

	B1

2
(e−iϕ1ρca − H.c.), (A1)

ρ̇bb = −γbρbb + rpρ
(0)
bb + i

	B2

2
(e−iϕ2ρcb − H.c.), (A2)

ρ̇cc = −γcρcc + rpρ(0)
cc − i

	B1

2
(e−iϕ1ρca − H.c.)

− i
	B2

2
(e−iϕ2ρcb−H.c.)−i

	E

2
(eiϕ3ρcd−H.c.), (A3)

ρ̇dd = −γdρdd + rpρ
(0)
dd + i

	E

2
(eiϕ3ρcd − H.c.), (A4)

ρ̇ca = −(i�ca + γca)ρca + i
	B1

2
eiϕ1 (ρaa − ρcc)

+ i
	B2

2
eiϕ2ρba + i

	E

2
e−iϕ3ρda, (A5)

ρ̇cb = −(i�cb + γcb)ρcb + i
	B2

2
eiϕ2 (ρbb − ρcc)

+ i
	B1

2
eiϕ1ρab + i

	E

2
e−iϕ3ρdb, (A6)

ρ̇dc = −(i�dc + γdc)ρdc + i
	E

2
eiϕ3 (ρcc − ρdd )

− i
	B1

2
e−iϕ1ρda − i

	B2

2
e−iϕ2ρdb, (A7)

ρ̇da = −(i�dc + i�ca + γda)ρda + i
	E

2
eiϕ3ρca

− i
	B1

2
eiϕ1ρdc, (A8)

ρ̇db = −(i�dc + i�cb + γdb)ρdb + i
	E

2
eiϕ3ρcb

− i
	B2

2
eiϕ2ρdc, (A9)

ρ̇ab = (iωba − γba)ρab + rpρ
(0)
ab − i

	B2

2
eiϕ2ρac

+ i
	B1

2
e−iϕ1ρcb. (A10)

On solving Eqs. (A8)–(A10), we obtain the steady-state results
for ρda, ρdb, and ρab as

ρda = i	Eeiϕ3ρca/2

i�dc + i�ca + γda

− i	B1e
iϕ1ρdc/2

i�dc + i�ca + γda

, (A11)

ρdb = i	Eeiϕ3ρcb/2

i�dc + i�cb + γdb

− i	B2e
iϕ2ρdc/2

i�dc + i�cb + γdb

, (A12)

ρab = rp

γba − iωba

ρ
(0)
ab − i	B2e

iϕ2/2

γba − iωba

ρac + i	B1e
−iϕ1/2

γba − iωba

ρcb.

(A13)

On substituting ρda, ρdb and ρab into Eqs. (A5)–(A7), we
obtain a set of equations for ρca, ρcb, and ρdc at the steady
state.

A1ρca = B1ρbc + C1ρdc + D1, (A14)

A2ρcb = B2ρac + C2ρdc + D2, (A15)

A3ρdc = B3ρca + C3ρcb + D3, (A16)

where the coefficients Aj ,Bj ,Cj ,Dj are given by

A1 = γca − i�ca + 	2
B2/4

γba + iωba

+ 	2
E/4

γda + i�dc + i�ca

,

A2 = γcb + i�cb + 	2
B1/4

γba − iωba

+ 	2
E/4

γdb + i�dc + i�cb

,

A3 = γdc + i�dc + 	2
B1/4

γda + i�dc + i�ca

+ 	2
B2/4

γdb + i�dc + i�cb

,

B1 = 	B1	B2e
i(ϕ1+ϕ2)/4

γba + iωba

, B2 = 	B1	B2e
i(ϕ1+ϕ2)/4

γba − iωba

,

B3 = 	E	B1e
i(ϕ3−ϕ1)/4

γda + i�dc + i�ca

, C1 = 	E	B1e
i(ϕ1−ϕ3)/4

γda + i�dc + i�ca

,

C2 = 	E	B2e
i(ϕ2−ϕ3)/4

γdb + i�dc + i�cb

, C3 = 	E	B2e
i(ϕ3−ϕ2)/4

γdb + i�dc + i�cb

,

D1 = i
	B1e

iϕ1

2
(ρaa − ρcc) + i

	B2e
iϕ2rp/2

γba + iωba

ρ
(0)
ba ,

D2 = i
	B2e

iϕ2

2
(ρbb − ρcc) + i

	B1e
iϕ1rp/2

γba − iωba

ρ
(0)
ab ,

D3 = i
	Eeiϕ3

2
(ρcc − ρdd ). (A17)

On solving Eq. (A16) and substituting the result of ρdc into
Eqs. (A14) and (A15), we obtain

(
A1 − B3C1

A3

)
ρca = B1ρbc + C3C1

A3
ρcb + D1 + D3C1

A3
,

(A18)
(

A2 − C3C2

A3

)
ρcb = B2ρac + B3C2

A3
ρca + D2 + D3C2

A3
.

(A19)

Equations (A18) and (A19) are exact coupled equations
between the matrix elements ρca and ρcb at steady state.
Using the relation 	B1, 	B2, 	E � γj ,rp, and �ij , we find

that C3C1
A3

∼ 	2
E

γ 2
d

B1 � B1,
D3C1
A3

∼ 	2
E

γ 2
d

D1 � D1, and B3C1
A3

∼
	2

E	2
B1

γ 3
d

� A1. Similarly, B3C2
A3

� B2,
D3C2
A3

� D2, and C3C2
A3

�
A2. Although the electric Rabi frequency, 	E , is two orders
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larger than the magnetic Rabi frequencies, 	B1,	B2, the
magnetic dipole contribution that comes from the electric
coupling is negligible. Furthermore, since Bj � Aj , we can
neglect the coupling between the off-diagonal matrix elements
ρca, ρcb, and ρdc. Therefore, the solutions of Eqs. (A14)–(A16)
are given by

ρca = D1

A1
, ρcb = D2

A2
, ρdc = D3

A3
. (A20)

The above results show that up to the first order in 	E,

	B1 ,	B2 , there is no chirality in this scheme. On substituting
the results in the Eq. (A20) into the Eqs. (A1)–(A4) and

keeping up the first order in 	B1, 	B2, 	E , we obtain the
results of the diagonal matrix elements at the steady state as

ρaa ≈ rpρ(0)
aa

γa

, ρbb ≈ rpρ
(0)
bb

γb

,

ρdd ≈ rpρ
(0)
dd

γd

, ρcc ≈ rpρ(0)
cc

γc

. (A21)

On substituting these results into the Eq. (A20) and keeping
up to the first order in 	B1, 	B2, 	E , we obtain the results of
the off-diagonal matrix elements at the steady state in Eq. (4).
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