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Large swings in the forward-backward super-radiant emission direction from a nearly inverted
ensemble of a three-level cascade system
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I show unambiguously that, in a slab geometry, the direction of emission of the super-radiant pulse from the
lower two levels’ transition in an ensemble of a three-level cascade homogeneously broadened atomic system,
which was initially prepared in a nearly fully inverted coherent state, exhibits high sensitivity to the value of
the initial atomic population for the case that the slab thickness is equal to nλ0/2 (n is an integer and λ0 is the
wavelength of the atomic transition). Specifically, I compute, in this regime, the swings in the ratio of the forward
over backward fluxes for both transitions as a function of the initial population of the highest energy level.
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I. INTRODUCTION

The proof of the existence of an anomalous forward-
backward asymmetry in the solutions of the super-radiant
problem [1] from an ensemble of identical homogeneously
broadened two-level atoms arranged in a slab geometry
has posed for the longest time a numerical computational
challenge and a physical puzzle to its origins. Recently,
using the expansion of the complete set of the Maxwell-
Bloch (MB) system of equations, in the basis formed by the
eigenfunctions of the one-dimensional (1D) Liénard-Wiechert
kernel [2,3], I obtained stable numerical solutions [4] to
this problem in the targeted regime of the initial population
of the excited state. I showed that the large swings in the
forward-backward super-radiant emission direction occur in
a narrow strip of the values of the slab thickness, namely
when equal to nλ0/2 (n is an integer >2 and λ0 is the
wavelength of the atomic transition). The two-level model
solved included the atom’s interaction with all modes of the
electromagnetic field (i.e., no single mode assumption for the
field is made) and makes no rotating wave approximation
(RWA) or slowly varying envelope approximation (SVEA) in
the expression of the Hamiltonian. Furthermore, the model
incorporates all the relaxation terms in the equations of
motion.

Although the two-level model includes all known physical
terms, the ability to test the theoretical model with experiments
is challenging due to experimentally having to overcome
the hurdle of preparing initially the two-level system into
a uniform coherent state throughout the sample—as the
exciting pulse used to put the system into a nearly inverted
state is strongly absorbed as it propagates in the slab (the
linear optics absorption length in this medium is equal to a
small fraction (≈ 1

7 ) of a wavelength in a homogeneously
broadened medium.) In order to avoid this experimental
difficulty, one may consider instead of the two-level atoms
system an ensemble of three-level cascade atoms [5–7], with
levels nearly equidistant (an example of such a system is
6S1/2, 6P1/2, 6 D3/2 in Cs), and prepare it in the desired
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initial coherent state of the lowest and highest energy levels
through ultrafast two-photons excitation. This method of
sample preparation was used by the Hartmann group in their
study of yoked super-radiance in Cs [8,9].

However, given the generally different dynamics of the
super-radiant emission in two- and three-level systems shown
in [10], a priori, there is no reason to believe that the coopera-
tive phenomena of forward-backward asymmetry observed in
the two-level atomic system would also replicate in three-level
atomic systems; and should this asymmetry indeed occur,
it will manifest itself in the upper and/or lower transitions’
super-radiant emissions.

The goal of this paper is to compute, for the cascade
three-level system, the initial conditions that will lead to
swings in the direction of super-radiant emission. The highly
accurate numerical calculations performed show that the
direction of emission of the super-radiant pulse originating
from the decay from the intermediate to the ground states of
the three-level atoms is extremely sensitive to the value of
the initial atomic excitation for slabs with thickness equal to
nλ0/2 (n is an integer and λ0 is the wavelength of the lower
atomic transition) in the regime of nearly complete inversion
(i.e., in the proximity of the value of the initial population of
the highest energy atomic level χ = 1). I find, for n = 3, that
the ratio of the forward to backward fluxes can flip from a
value of 0.1302 to a value of 5.511 for a change in the value
of χ from 0.9976 to 0.999 968.

This paper is organized as follows: In Sec. II, I review
the system of coupled Maxwell-Bloch partial differential
equations that govern the dynamics of the three-level system;
in Sec. III, I summarize the important properties of the basis
functions that would permit one to reduce the mathematical
system of partial differential equations into an infinite set
of ordinary differential equations; in Sec. IV, I relate the
expansion coefficients of the electric field to those of the
atomic off-diagonal atomic matrix elements; in Sec. V, I
summarize the numerical results obtained for the ratio of the
forward to backward fluxes in the different ranges of the
initial excitation and show that the unique feature for the
forward-backward emission asymmetry exists for the lower
transition emission for the case that the slab thickness is equal
to nλ0/2. In the Appendix, I give the explicit expressions
of the coupled ordinary differential equations in time that
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govern the dynamical development of the atomic density
matrix expansion coefficients.

II. THE MAXWELL-BLOCH SYSTEM

In this section, I review the expressions for the set of
Maxwell-Bloch equations for the cascade three-level system.

I define the normalized lengths for a slab of thickness 2 z0

as follows: Z = z/z0, u0 = k0z0, where k0 = 2π/λ0, and λ0

is the wavelength of the atomic transition.
The designation of the different atomic levels is such that

Ec > Eb > Ea . I assume that the transition between level c

and level b is dipolar and that the transition between level b

and level a is also dipolar; furthermore, I am assuming that the
two transition dipoles are equal to ℘. Finally, in the present
model, the dipolar transition, between level c and level a, is
assumed to be forbidden.

The normalized electric fields corresponding to the two
transitions are given, respectively, by ψcb = ℘εcb/�C, and
ψba = ℘εba/�C where εcb and εba are the transition fields and
C is the parameter of interatomic cooperativity C = 4πN℘2

�V
(N

is the number of atoms, V is the slab volume, and ℘ is the
reduced dipole moment of the atomic transition. The isolated
atom decay rate is given by γ1 = 4

3 ℘2 k3
0 /�).

The Bloch equations for the system are [10]

∂ρaa

∂T
= �baρbb − iψbaρ

∗
ba + iψ∗

baρba, (1)

∂ρbb

∂T
= −�baρbb + �cbρcc + iψbaρ

∗
ba

− iψ∗
baρba − iψcbρ

∗
cb + iψ∗

cbρcb, (2)

∂ρcc

∂T
= −�cbρcc + iψcbρ

∗
cb − iψ∗

cbρcb, (3)

∂ρcb

∂T
= −(γcb + i�cb)ρcb − iψL

cb(ρcc − ρbb) − iψL∗
ba ρca,

(4)

∂ρba

∂T
= −(γba + i�ba)ρba − iψL

ba(ρbb − ρaa) + iψL∗
cb ρca,

(5)

∂ρca

∂T
= −(γca + i�cb + i�ba)ρca − iψL

baρcb + iψL
cbρba,

(6)

where the superscript L refers to the local field (as opposed
to the Maxwell field which is not superscripted), the �’s are
the normalized decay constants, which will be assumed in the
numerical calculations to be (= 0.05 a) where a is the constant
in the expressions of the γ ’s, the transverse decay times, due
to collisions; and T is the retarded time normalized to the
cooperativity parameter.

The transverse decay rates are given by the expressions [11]

γcb = a(ρcc + ρbb), (7a)

γba = a(ρbb + ρaa), (7b)

γca = 0. (7c)

The Maxwell and local fields are related through [11]

ψL
cb = ψcb + 1

3ρcb, (8a)

ψL
ba = ψba + 1

3ρba. (8b)

For small samples (i.e., the transit time of light across the
sample thickness is much smaller than the typical system
relaxation times) Maxwell equations for the normalized
transition fields are given, respectively, by

ψcb(Z, T ) = iu0

∫ 1

−1
dZ′ρcb(Z,T ) exp(iu0|Z − Z′|), (9)

ψba(Z, T ) = iu0

∫ 1

−1
dZ′ρba(Z,T ) exp(iu0|Z − Z′|). (10)

III. BASIS FUNCTIONS

The basis functions are chosen to be the eigenfunctions of
the integral equation:

sϕs(Z) = u0

2

∫ 1

−1
dZ′ exp(iu0|Z − Z′|)ϕs(Z

′), (11)

where the kernel of this integral equation is the Liénard-
Wiechert Green’s function in one-space dimension.

This integral equation’s eigenfunctions belong to one of
two families (odd, even).

The expressions of the normalized eigenfunctions are,
respectively,

ϕ̃o
m(Z) = 1√

No
m

sin
(
vo

mZ
)
, (12a)

ϕ̃e
m(Z) = 1√

Ne
m

cos
(
ve

mZ
)
, (12b)

where the normalization constants are

No
s = 1 − cos2

(
vo

s

)
iu0

, (13a)

Ne
s = 1 − sin2

(
ve

s

)
iu0

, (13b)

and the wave vectors (v0
s ,v

e
s ) are solutions of the transcendental

equations

cot
(
v0

s

) = i
u0

vo
s

, (14a)

tan
(
ve

s

) = −i
u0

ve
s

. (14b)

The integral equation eigenvalues are given by

o,e
s = iu2

0

u2
0 − (

v
o,e
s

)2 . (15)

The integral equation eigenfunctions obey pseudo-
orthonormal relations and form a complete set of basis
functions for all functions over the interval: −1 � Z � 1 [5].
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FIG. 1. The trace of the density matrix is plotted as a function
of the normalized position in the slab for T = Tf ; u0 = 3π

2 ; χ =
0.999 999 9.

Using the reduction technique familiar from the Fourier
series methodology, the set of partial differential equations
forming the Maxwell-Bloch system for this atomic config-
uration, as given in Sec. II [10], is then reduced using
the above basis to an infinite set of ordinary differential
equations (ODEs) in normalized time for the dynamical
variables expansion components. This set of derived coupled
first-order ODEs is subsequently solved by standard numerical
techniques.

In the next section, I shall define the expansion coefficients
of the electric field and for the different atomic density matrix
elements, and derive the identities that relate the expansion
coefficients of the Maxwell fields with those of the atomic
off-diagonal matrix elements.

IV. THE EXPANSION COEFFICIENTS OF THE
DYNAMICAL VARIABLES

The expansion coefficients of the different dynamical
variables are defined through

ψcb(Z,T ) =
∑

s

eo
cb, s(T )ϕ̃o

s (Z) +
∑

s

ee
cb, s(T )ϕ̃e

s (Z), (16a)

ψba(Z,T ) =
∑

s

eo
ba, s(T )ϕ̃o

s (Z) +
∑

s

ee
ba, s(T )ϕ̃e

s (Z), (16b)

ρxy(Z,T ) =
∑

s

ro
xy, s(T )ϕ̃o

s (Z) +
∑

s

re
xy, s(T )ϕ̃e

s (Z), (16c)

where the subscript xy stands for aa,bb,cc,ca,cb,ba, and the
normalized time T = Ctret.

Combining Eqs. (9) and (10) with Eq. (11), one obtains the
following relations between the expansion coefficients of the
electric Maxwell fields and those of the off-diagonal atomic
density matrix elements:

e
o,e
cb, s(T ) = i 2 sr

o,e
cb, s(T ), (17a)

e
o,e
ba, s(T ) = i 2 sr

o,e
ba, s(T ). (17b)

The expansion coefficients for the local fields (the electric
fields that should be used in Bloch equations) are related to
those of the Maxwell fields through [11,12]

ε
o,e
cb,s = e

o,e
cb, s + 1

3 r
o,e
cb, s , (18a)

ε
o,e
ba,s = e

o,e
ba, s + 1

3 r
o,e
ba, s , (18b)

(a) (b)

(c) (d)

FIG. 2. The magnitude of the normalized lower transition field at the front end (solid line) and the back end (dashed line) of the slab are
plotted as a function of the normalized time (u0 = 3π

2 ). (a) χ = 0.9; (b) χ = 0.9976; (c) χ = 0.999 968; (d) χ = 0.999 999 9.
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where the ε’s refer to the expansion coefficients of the local
fields.

Using Eqs. (18a) and (18b), Bloch equations can be written
entirely as an infinite set of coupled ordinary differential
equations in the expansion coefficients of the different atomic
density matrix elements (i.e., the explicit dependence on the
electric fields expansion coefficients has been eliminated).
These sets of coupled differential equations are given in the
Appendix.

The following initial conditions are used for the expansion
coefficients at initial time ( T = 0), for the case considered of
two-photon coherent excitation:

re
cc,s(T = 0) = χ

∫ 1

−1
dZϕ̃e

s (Z) = 2χ√
Ne

s

sin
(
ve

s

)
ve

s

, (19a)

re
aa,s(T = 0) = (1 − χ)

∫ 1

−1
dZϕ̃e

s (Z) = 2(1 − χ )√
Ne

s

sin
(
ve

s

)
ve

s

,

(19b)

ro
ca,s(T = 0) =

√
χ (1 − χ )

∫ 1

−1
dZ

sin
(
vo

s Z
)

√
No

s

exp (iκZ)

=
√

χ (1 − χ)

i
√

No
s

[
sin

(
κ + vo

s

)
(
κ + ve

s

) − sin
(
κ − vo

s

)
(
κ − vo

s

)
]
,

(19c)

re
ca,s(T = 0) =

√
χ (1 − χ )

∫ 1

−1
dZ

cos
(
ve

s Z
)

√
Ne

s

exp (iκZ)

=
√

χ (1 − χ)√
Ne

s

[
sin

(
κ + ve

s

)
(
κ + ve

s

) + sin
(
κ − ve

s

)
(
κ − ve

s

)
]
,

(19d)

where κ = 2. (These quantities correspond to the initial
conditions

ρcc(Z,T = 0) = χ, ρbb(Z,T = 0) = 0,

ρaa(Z,T = 0) = (1 − χ ),

ρca(Z,T = 0) =
√

χ (1 − χ) exp (iκZ).

The values of all other density matrix elements expansion
coefficients at T = 0 are set equal to zero.

V. NUMERICAL RESULTS

The normalized electric fields (Rabi frequencies) as a
function of the normalized time at the front-end and the
backward-end planes for an arbitrary initial value of the
population difference are given by

ψcb(Z = ±1,T ) = 2i

[∑
s

e
sr

e
cb, s(T )

cos
(
ve

s

)
√

Ne
s

±
∑

s

o
s r

o
cb, s(T )

sin
(
vo

s

)
√

No
s

]
, (20a)

(a)

(b)

(c)

FIG. 3. For u0 = 3π

2 , the ratio of the lower transition forward
flux over the backward flux is plotted as a function of χ , the initial
population of the upper state for the intervals (a) 0.9 � χ � 0.9976;
(b) 0.9976 � χ � 0.999 968; (c) 0.999 968 � χ � 0.999 999 9.

ψba(Z = ±1,T ) = 2i

[∑
s

e
sr

e
ba, s(T )

cos
(
ve

s

)
√

Ne
s

±
∑

s

o
s r

o
ba, s(T )

sin
(
vo

s

)
√

No
s

]
. (20b)

In the subsequent numerical computations, I approximate
the infinite dimensional basis functions by the finite functions
space spanned by the first 16 even and 16 odd eigenfunctions,
and I took the normalized-time window to be the interval
T ∈ [0, Tf = 200].

In order to illustrate the accuracy of the above algorithm,
using the above finite dimensional basis and the selected time
window, I computed the sum of the three density matrix
diagonal elements as a function of the normalized distance
at T = Tf .

In Fig. 1, I show the numerical results of these computations
for the following value: χ = 0.999 999 9. (This is the case with
the largest deviation of the numerical results from the exact
value 1; giving an upper limit on the errors equal to less than
two parts per thousand.)
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FIG. 4. For u0 = 7π

4 , the ratio of the lower transtion forward
flux over the backward flux is plotted as a function of χ , the
initial population of the upper state for the interval 0.9976 � χ �
0.999 968.

In Fig. 2, I plot the normalized electric field for the lower
transition at the end planes of the slab, for u0 = 3π

2 , for
the respective values χ = 0.9, χ = 0.9976, χ = 0.999 968,
and χ = 0.999 999 9. One notes the swings in the dominant
emission direction of the super-radiant pulse. Furthermore,
one notes the decrease in the variation required in the value of

(a)

(b)

(c)

FIG. 5. For u0 = 3π

2 , the ratio of the upper transition forward
flux over the backward flux is plotted as a function of χ , the initial
population of the upper state for the interval (a) 0.9 � χ � 0.9976;
(b) 0.9976 � χ � 0.999 968; (c) 0.999 968 � χ � 0.999 999 9.

the initial population in order to affect a flip in the emission
direction to occur for χ → 1.

In Fig. 3, I plot the ratio of the forward to backward time
integrated normalized field intensities (the fluxes) for the lower
transition emission in the intervals separating the values of the
initial population of Fig. 2. Note, for instance, that this ratio
goes from the value 0.130 for χ = 0.9976 to the value 5.51
for χ = 0.999 968.

To illustrate the exceptionality of the flip-flop observed
in the ratio of the forward to backward fluxes of the lower
transition emission, for u0 = nπ

2 , I plot in Fig. 4 this same
ratio for the same interval as that shown in Fig. 3(b) but now
for u0 = 7π

4 . One notes that the change in the value of the
ratio of the fluxes varies in this later case by less than 25%
throughout the whole interval.

In Fig. 5, I plot the ratio of the fluxes for the upper transition
emission for the same ranges as in Fig. 3. One notices that the
large swings observed in Fig. 3 are absent in this case, from
which one makes the observation that qualitatively the lower
transition emission in the cascade three-level system is the one
that bears more resemblance to the super-radiance emission in
the two-level model.

In the above calculations, I showed that for the lower
transition super-radiant signal, the ratio of the forward flux over
the backward flux changes drastically, in an initially nearly
inverted ensemble of three-level cascade atoms prepared in
a coherent state of the lowest and highest levels, for small
changes in the initial population of the highest level. These
substantial changes in the ratio of the forward to backward flux
by nearly two orders of magnitudes occur if the slab thickness
is a multiple of the half-wavelength of the atomic transition.
The physical effect observed here is akin to constructive
and destructive interferences in the fields amplitude having
their root in the existence of two eigenvalues of the Liénard-
Wiechert 1D kernel having equal real parts in the case that

(a)

(b)

FIG. 6. The loci in the complex plane of the eigenvalues of
the 1D Liénard-Wiechert kernel. (“o” refers to the odd family of
eigenfunctions, “e” refers to the even families of eigenfunctions) (a)
u0 = 3π

2 ; (b) u0 = 7π

4 .
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the thickness of the sample is a multiple of half the transition
wavelength. I show in Fig. 6 the loci of the eigenvalues for the
two values of the thickness considered in Figs. 3 and 4, and
note that only in Fig. 6(a) there is degeneracy in the real part
of the dominant eigenvalues.

The existence of the forward-backward asymmetry in only
the lower transition reflects the general property, studied in
detail in [10], where we showed that the behavior of only the
lower transition in the cascade system is akin to those observed
in the two-level system.

APPENDIX

Using the pseudo-orthogonal property of the eigenfunctions of the non-Hermitian kernel of the 1D Liénard-Wiechert kernel
[3], Eqs. (17a) and (17b) and Bloch equations [Eqs. (1)–(6)], it is straightforward to derive the set of coupled ordinary different
equations describing the dynamics of the different expansion coefficients, namely,

dro
aa,n

dT
= �bar

o
bb,n − i

∑
p,q

{[
E2(n,p,q)εo

ba,pre∗
ba,q + F2(n,p,q)εe

ba,pro∗
ba,q

]−[
E1(n,p,q)εo∗

ba,pre
ba,q + F1(n,p,q)εe∗

ba,pro
ba,q

]}
,

(A1)

dre
aa,n

dT
= �bar

e
bb,n − i

∑
p,q

{[
H1(n,p,q)εo

ba,pro∗
ba,q + H2(n,p,q)εe

ba,pre∗
ba,q

]−[
G1(n,p,q)εo∗

ba,pro
ba,q + G2(n,p,q)εe∗

ba,pre
ba,q

]}
,

(A2)

dro
bb,n

dT
= − �bar

o
bb,n + �cbr

o
cc,n + i

∑
p,q

{[
E2(n,p,q)εo

ba,pre∗
ba,q + F2(n,p,q)εe

ba,pro∗
ba,q

]

− [
E1(n,p,q)εo∗

ba,pre
ba,q + F1(n,p,q)εe ∗

ba,pro
ba,q

] − [
E2(n,p,q)εo

cb,pre∗
cb,q + F2(n,p,q)εe

cb,pro∗
cb,q

]
+ [

E1(n,p,q)εo∗
cb,pre

cb,q + F1(n,p,q)εe∗
cb,pro

cb,q

]}
, (A3)

dre
bb,n

dT
= − �bar

e
bb,n + �cbr

e
cc,n + i

∑
p,q

{[
H1(n,p,q)εo

ba,pro∗
ba,q + H2(n,p,q)εe

ba,pre ∗
ba,q

]

− [
G1(n,p,q)εo∗

ba,pro
ba,q + G2(n,p,q)εe∗

ba,pre
ba,q

] − [
H1(n,p,q)εo

cb,pro∗
cb,q + H2(n,p,q)εe

cb,pre∗
cb,q

]
+ [

G1(n,p,q)εo∗
cb,pro

cb,q + G2(n,p,q)εe∗
cb,pre

cb,q

]}
, (A4)

dro
cc,n

dT
= −�cbr

o
cc,n + i

∑
p,q

{[
E2(n,p,q)εo

cb,pre∗
cb,q + F2(n,p,q)εe

cb,pro ∗
cb,q

]−[
E1(n,p,q)εo∗

cb,pre
cb,q + F1(n,p,q)εe∗

cb,pro
cb,q

]}
,

(A5)

dre
cc,n

dT
= −�cbr

e
cc,n + i

∑
p,q

{[
H1(n,p,q)εo

cb,pro∗
cb,q + H2(n,p,q)εe

cb,pre ∗
cb,q

]−[
G1(n,p,q)εo∗

cb,pro
cb,q + G2(n,p,q)εe∗

cb,pre
cb,q

]}
,

(A6)

dro
cb,n

dT
= −i �cbr

o
cb,n − a

∑
p,q

[
A(n,p,q)

(
ro
bb,p + ro

cc,p

)
re
cb,q + B(n,p,q)

(
re
bb,p + re

cc,p

)
ro
cb,q

]

− i
∑
p,q

{[
A(n,p,q)εo

cb,p

(
re
cc,q − re

bb,q

) + B(n,p,q)εe
cb,p

(
ro
cc,q − ro

bb,q

)]
+ [

E1(n,p,q)εo∗
ba,pre

ca,q + F1(n,p,q)εe∗
ba,pro

ca,q

]}, (A7)

dre
cb,n

dT
= −i �cbr

e
cb,n − a

∑
p,q

[
C(n,p,q)

(
ro
bb,p + ro

cc,p

)
ro
cb,q + D(n,p,q)

(
re
bb,p + re

cc,p

)
re
cb,q

]

− i
∑
p,q

{[
C(n,p,q)εo

cb,p

(
ro
cc,q − ro

bb,q

) + D(n,p,q)εe
cb,p

(
re
cc,q − re

bb,q

)]
+ [

G1(n,p,q)εo∗
ba,pro

ca,q + G2(n,p,q)εe∗
ba,pre

ca,q

]}
, (A8)
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dro
ba,n

dT
= −i �bar

o
ba,n − a

∑
p,q

[
A(n,p,q)

(
ro
bb,p + ro

cc,p

)
re
ba,q + B(n,p,q)

(
re
bb,p + re

cc,p

)
ro
ba,q

]

− i
∑
p,q

{[
A(n,p,q)εo

ba,p

(
re
bb,q − re

aa,q

) + B(n,p,q)εe
ba,p

(
ro
bb,q − ro

aa,q

)]

− [
E1(n,p,q)εo∗

cb,pre
cb,q + F1(n,p,q)εe∗

cb,pro
cb,q

]}
, (A9)

dre
ba,n

dT
= −i �bar

e
ba,n − a

∑
p,q

[
C(n,p,q)

(
ro
bb,p + ro

cc,p

)
ro
ba,q + D(n,p,q)

(
re
bb,p + re

cc,p

)
re
ba,q

]

− i
∑
p,q

{[
C(n,p,q)εo

ba,p

(
ro
bb,q − ro

aa,q

) + D(n,p,q)εe
ba,p

(
re
bb,q − re

aa,q

)]

+ [
G1(n,p,q)εo∗

cb,pro
cb,q + G2(n,p,q)εe∗

cb,pre
cb,q

]}
, (A10)

dro
ca,n

dT
= −i (�cb + �ba)ro

ca,n − i
∑
p,q

[
A(n,p,q)

(
εo
ba,pre

cb,q − εo
cb,pre

ba,q

) + B(n,p,q)
(
εe
ba,pro

cb,q − εe
cb,pro

ba,q

)]
, (A11)

dre
ca,n

dT
= −i (�cb + �ba)re

ca,n − i
∑
p,q

[
C(n,p,q)

(
εo
ba,pro

cb,q − εo
cb,pro

ba,q

) + D(n,p,q)
(
εe
ba,pre

cb,q − εe
cb,pre

ba,q

)]
, (A12)

where �cb and �ba are the normalized detuning of the
transition fields from the atomic transition frequencies; a is
the resonance collision broadening width (assumed in the
numerical calculations equal to 0.5764 [11,12]). The coupling
constants are overlap integrals of various basis functions given
by [13]

A(s,m,n) =
∫ 1

−1
dZϕ̃o

s (Z)ϕ̃o
m(Z)ϕ̃e

n(Z), (A13)

D(s,m,n) =
∫ 1

−1
dZϕ̃e

s (Z)ϕ̃e
m(Z)ϕ̃e

n(Z), (A14)

E1(s,m,n) =
∫ 1

−1
dZϕ̃o

s (Z)ϕ̃o∗
m (Z)ϕ̃e

n(Z), (A15)

E2(s,m,n) =
∫ 1

−1
dZϕ̃o

s (Z)ϕ̃o
m(Z)ϕ̃e∗

n (Z), (A16)

G2(s,m,n) =
∫ 1

−1
dZϕ̃e

s (Z)ϕ̃e∗
m (Z)ϕ̃e

n(Z), (A17)

and

B(s, m, n) = A(s,n,m), (A18)

C(s, m, n) = A(n, m, s), (A19)

F1(m, n, s) = E2(s, n, m), (A20)

F2(s, m, n) = E1(s, n, m), (A21)

G1(s, m, n) = E1(n, m, s), (A22)

H1(s, m, n) = E1(m, n, s), (A23)

H2(s, m, n) = G2(s, n, m). (A24)

It is worth pointing out that the method that I am using
requires numerical calculations only for finding, for the given
geometry, the values of the characteristic wave vectors, and
at the last step—the integration of the ODEs. All parameters
appearing in the ODEs are obtained in closed form.
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