
PHYSICAL REVIEW A 93, 023807 (2016)

Pump-probe spectroscopy using quantum light with two-photon coincidence detection
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We propose a pump-probe signal, whereby the sample is excited by a classical pulse, and—after a variable
time delay—probed by a photon from an entangled pair, which is finally detected in coincidence with its twin.
This setup offers an improved time and frequency resolution compared to a classical pump-probe signal, and can
be used to enhance or suppress selected resonances.
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I. INTRODUCTION

Quantum light is gaining attention as a possible tool
in (nonlinear) spectroscopy, where its nonclassical quantum
fluctuations [1], its linear scaling behavior [2–4], and/or its
nonclassical bandwidth properties [5–8] may be exploited
to enhance frequency or time resolution beyond classically
achievable limits. Here, we focus on the latter case, where
it has been shown that the nonclassical bandwidth properties
of entangled photons allow the control of two-exciton states
in molecular aggregates [9,10] or of vibrational states in
molecules [11,12]. The two-photon wave function further
offers new control parameters for the manipulation of optical
signals [8].

Entangled photons have already been employed success-
fully in so-called linear biphoton spectroscopy, whereby they
are detected in coincidence [13–16]. This technique has been
shown to suppress background in noisy samples. In contrast
to direct two-photon absorption measurements [4], only one
of the two photons interacts with the sample. The idle photon
serves as a reference for the arrival of its twin, making use of the
strong correlations in the arrival time of the two photons, and
the other photon is detected in a monochromator, exploiting
the spectral correlations of the two photons [5,6]. As shown
in Ref. [17], the combined time-frequency entanglement of
the photons may be put to use in nonlinear spectroscopy by
enhancing the resolution and selecting specific pathways in
stimulated Raman spectroscopy. This article extends these
ideas to simulate a pump-probe measurement combined with
two-photon counting (TPC) detection. Utilizing a simple toy
model, we explore how the two-photon counting setup may
be used to filter the signal and enhance or suppress selected
features.

In Sec. II, we introduce the setup and derive formal
expressions for the TPC signal, as well as the classical pump-
probe signal. This will enable us to simulate the nonlinear
optical response of the two-state jump (TSJ) model in Sec. III.

II. THE SETUP AND SIGNAL

We consider a system consisting of the light field and
a material system, which is surrounded by a dissipative
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environment. Hence, the total Hamiltonian is given by

Htotal = Hsystem + Hbath + HBS + Hfield + Hint. (1)

The five terms represent the system, the bath, their interaction,
the field, and the field-matter interaction Hamiltonian in the
dipole approximation, respectively. Here, we work in the
interaction picture with respect to Hsystem + Hbath + HBS +
Hfield, such that the interaction Hamiltonian reads

Hint(t) = E(t)V †(t) + E†(t)V (t), (2)

where E(t) (E†(t)) denotes the positive-(negative-)frequency
component of the sum of all the fields considered, and V (t)
(V †(t)) is the sample de-excitation (excitation) operator. The
quantum field operator is given by

E(t) =
∫

dω√
2π

e−iωta(ω), (3)

with a(ω) being the photon annihilation operator at fre-
quency ω, which satisfies the bosonic commutation relation
[a(ω),a†(ω′)] = δ(ω − ω′). For clarity in our definition of
the electromagnetic field (3), we have omitted the field nor-
malization, which has been absorbed into the (de-)excitation
operators.

We consider the setup depicted in Fig. 1(a): A pair of
entangled photons that has been created, e.g., by parametric
down-conversion in a birefringent crystal hits a beam splitter.
One photon is sent through the sample, which has previously
been excited by a classical ultrafast laser pulse, and then
detected. The other photon serves as a reference (ancilla) and
is detected in coincidence. To provide a new window for the
signal, we exploit the quantum correlations shared between
the two photons.

The two-photon counting signal is spectrally dispersed, and
our signal is given by the change to this two-photon counting
rate [18,19]

〈E†
2(ωr )E†

1(ω)E1(ω)E2(ωr )〉 (4)

due to the interaction with the sample. Here, ω/ωr denotes the
detected frequency of the respective beam, and the brackets
〈· · · 〉 represent the expectation value with respect to the
transmitted fields. As shown in Appendix A, the change of
the two-photon coincidence signal is given by

STPC(�) = 2

�
Im

∫
dt eiω(t−t0)tr{E†

2(ωr )E†
1(ω)V (t)E2(ωr )�(t)},

(5)
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FIG. 1. (a) The proposed TPC setup: the entangled photon pair in beams E1 and E2 are split on a beam splitter. A classical, actinic, ultrafast
pulse Ea excites the sample, and E1 is employed as a probe in a pump-probe measurement, while E2 is spectrally dispersed, and detected in
coincidence. (b) The level scheme for the two-state jump (TSJ) model considered in this work. The g-e transition is driven by the actinic pulse
(blue arrow). It is far off-resonant from the spectral range of the entangled photon wave packet (red arrows), which only couples to the e-f
transition. (c) Ladder diagram representing the pump-probe measurement.

where � denotes the set of control parameters of the fields (to
be specified later). �(t) represents the density matrix of the
combined matter + field system and is given by the Dyson
series

�(t) = T exp

[
− i

�

∫ t

t0

dτHint,−(τ )

]
�initial, (6)

and the initial density matrix

�initial = |g〉〈g| ⊗ �field, (7)

where �field is specified in Appendix B. Here, T is the time-
ordering operator, and Hint,− is the Liouville superoperator,
defined by Hint,−X = HintX − XHint. The trace in Eq. (5) is
taken with respect to the full (molecule + field) Hilbert space,
given by Htot.

To obtain the pump-probe signal in a three-level system, we
expand the exponential in Eq. (6) to third order. The first two
interactions are with the classical pump pulse, which is taken
to be impulsive, Ea(t) = Eaδ(t), and the third is with the probe.
Assuming E1 to be far off-resonant from the e-g transition, we
obtain only the single diagram shown in Fig. 1(c), which reads

STPC(�) = −2

�
Im

(
− i

�

)3

|Ea|2
∫ ∞

0
dt eiω(t−t0)

×
∫ t

0
dτ F (t − τ,τ )〈E†

2(ωr )E†
1(ω)E1(τ )E2(ωr )〉.

(8)

We have defined the matter correlation function,

F (t − τ,τ ) = 〈|μge|2|μef |2Gf e(t − τ )Gee(τ )〉env, (9)

where μge and μef denote the dipole moments connecting
ground state with the single exciton manifold, as well as single
with two-exciton manifold, respectively. 〈· · · 〉env denotes the
average with respect to environmental degrees of freedom,
obtained from tracing out the bath. Decomposing the field
operator spectrally,

E1(τ ) =
∫

dωb√
2π

e−iωb(τ−t0)E1(ω), (10)

we can carry out the time integrations in Eq. (8) to obtain

STPC(ω,ωr ; t0) = 2

�4
|Ea|2Re

∫
dωb√

2π
F̃ (ωb,ω; t0)

×〈E†
2(ωr )E†

1(ω)E1(ωb)E2(ωr )〉, (11)

with

F̃ (ωb,ω; t0) ≡
∫ ∞

0
dt

∫ t

0
dτ F (t − τ,τ ) eiω(t−t0)e−iωb(τ−t0).

(12)

Here, we also specified the control parameters we employ in
this article: the two frequencies ω and ωr , at which the two
photons are detected, and the time delay t0.

For comparison, we present the classical pump-probe signal
(i.e., change in transmission of a classical probe pulse), which
will serve as a reference for the two-photon counting signal.
The change in transmission is obtained by measuring the
intensity of a classical probe pulse

〈E†
pr (ω)Epr (ω)〉. (13)

Its change induced by the interaction with the sample is given
by [20]

SPP(t0,ω) = 2

�
ImE∗

pr (ω)〈V (ω)〉, (14)

where we have already replaced the field operator by the
classical field amplitude Epr , and taken it out of the expectation
value. By comparison with Eq. (8), we can see that we
may obtain the classical pump-probe signal by replacing the
field correlation function 〈E†

2(ωr )E†
1(ω)E1(ωb)E2(ωr )〉 with

the classical field envelope of the probe pulse. Hence, we
arrive at

SPP(t0,ω) = 2

�
Im

(
− i

�

)3

|Ea|2
∫ ∞

0
dt eiωt

∫ t

0
dτ

× E∗
pr (ω)Epr (τ )F (t − τ,τ ), (15)
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which can be recast in the frequency domain

SPP(t0,ω) = 2

�4
|Ea|2Re

∫
dωb√

2π
E∗

pr (ω)Epr (ωb)F̃ (ωb,ω; t0).

(16)

Comparison of Eqs. (11) and (16) reveals that the classical
pump-probe signal has precisely the same matter information
as the TPC signal. However, as we will show in the following,
the four-point correlation function in Eq. (8) offers a novel
window for filtering the signal, which can enhance desired
features compared to those in Eq. (15).

III. SIMULATIONS OF CLASSICAL AND QUANTUM
PUMP-PROBE SIGNALS USING THE STOCHASTIC

LIOUVILLE EQUATIONS

We do not treat the bath explicitly, but rather average
our final expressions over bath realizations to obtain an
effective master equation for the system evolution. This level
of theory is known as the stochastic Liouville equation [21].
Here, we employ the two-state jump (TSJ) model: A ground
state g is dipole coupled to an electronic excited state e,

which is connected to two spin states ↑ and ↓ undergoing
relaxation [22]. We additionally consider a two-exciton state f ,
which is dipole coupled to both |e,↑〉 and |e,↓〉 [see Fig. 1(b)].
The electronic states are damped by a dephasing rate γ . We
only consider the low-temperature limit of this model, where
only the decay process from ↑ to ↓ is allowed [23]. The decay
process is entirely incoherent, such that the description may
be restricted to the two spin populations |↑〉〈↑| =̂ (1,0)T and
|↓〉〈↓| =̂ (0,1)T . The propagator in the e population is then
given by [23]

Gee(t) = 	(t)

(
e−kt 0

1 − e−kt 1

)
, (17)

where k denotes the decay rate of the spin relaxation. The
coherence between f and e reads

Gf e(t) = 	(t)

(
e−(k+iω−)t 0

k
k+2iδ

[e−iω+t − e−(k+iω−)t ] e−iω+t

)
, (18)

with δ the energy difference between the two spin states, and
ω± = ωf e ± δ. Note that, since we monitor the f -e transition,
the detected frequency will increase in time, from ω− to ω+.
The field correlation function (9) is then given by

F (t2,t1) = 〈〈Id||μge|2|μef |2Gf e(t2)Gee(t1)|↑〉〉

= |μge|2|μef |2e−γ (t1+2t2)

(
e−iω+t2 + 2iδ

k + 2iδ
e−kt1 [e−(k+iω−)t2 − e−iω+t2 ]

)
, (19)

where 〈〈Id| denotes the identity operator. Its counterpart in frequency domain is then given by

F̃ (ωb,ω; t0) = |μge|2|μef |2
(

e−i(ω−ωb)t0

ωb − ω+ − iγ

[
1

ω − ωb + 2iγ
− 1

ω − ω+ + iγ

]

+ 2iδ

k + 2iδ

e−i(ω−ωb)t0

ωb − ω− − iγ

[
1

ω − ωb + i(k + 2γ )
− 1

ω − ω− + i(k + γ )

]

− 2iδ

k + 2iδ

e−i(ω−ωb)t0

ωb − ω+ − i(k + γ )

[
1

ω − ωb + i(k + 2γ )
− 1

ω − ω+ + iγ

])
. (20)

The field correlation function in Eq. (11), which will be used
below, is derived in Appendix B.

In the following, we use these results to first simulate
the classical pump-probe signal and then the two-photon
counting signal with entangled photons. For the former case,
we consider a classical probe pulse in our simulations with a
Gaussian envelope,

Epr (ω) = 1√
2πσ 2

exp[−(ω − ω0)2/2σ 2]. (21)

We chose the following system parameters: ωf e =
11 000 cm−1, δ = 200 cm−1, k = 120 cm−1, and γ =
100 cm−1.

Figure 2 depicts the classical pump-probe signal vs the
dispersed frequency ω and the time delay t0, where we have
normalized each plot to its maximal peak.

The center frequency ω0 is fixed at the transition frequency
ωf e, and we vary the probe bandwidth. Figure 2(a) shows the
signal for σ = 1 000 cm−1. Two peaks at ωf e ± δ correspond
to the detected frequency, when the system is either in the
upper state (at ωf e − δ) or in the lower state (ωf e + δ).

Due to the spectrally dispersed detection of the signal, the
resonance widths are given by the line width γ , and not
the much broader probe pulse bandwidth σ . For very short
time delays t0, both resonances increase, until the probe pulse
has fully passed through the sample. Then the resonance at
10 800 cm−1, i.e., the state |e,↑〉, starts to decay rapidly,
while the resonance at 11 200 cm−1 peaks at longer delay
times due to its initial population by the upper state. For
longer delays, both resonance decay due to the additional
dephasing. With decreasing bandwidth [Figs. 2(b)–2(f)], the
temporal resolution decreases as well. This can be seen from
the fact that the primary resonance at ωf e − δ loses relative
intensity, and may no longer be observed for σ � 400 cm−1.
Furthermore, the two resonances merge into a single resonance
at the unperturbed transition frequency ωf e, since the fast
decay process connecting the two resonances may no longer
be resolved (motional narrowing) [21].

We now discuss how the frequency correlations between the
entangled photons may filter the classical pump-probe signal.

The two-photon counting signal with entangled photons
offers several control parameters: The dispersed frequency ω
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FIG. 2. The classical pump-probe signal, Eq. (16), displayed vs the time delay to the pump pulse t0 (in fs), and the dispersed frequency
ω (in cm−1) with a probe bandwidth of (a) σ = 1 000 cm−1 (i.e., 5.6 fs), (b) 800 cm−1, (c) 600 cm−1, (d) 400 cm−1, (e) 200 cm−1, and
(f) 50 cm−1 (111 fs). The center frequency of the probe beam is fixed at ω0 = 11 000 cm−1.

of beam 1, the pump frequency ωp, and its bandwidth σp

loosely correspond to the classical control parameters, i.e., the
central frequency ω0 and bandwidth σ . In addition, we may
vary the entanglement time T and the detected frequency of
the reference beam ωr .

Figure 3 shows STPC(ω,ωr ; t0) vs the dispersed frequency
ω and the time delay t0. The pump bandwidth is set to
σp = 1 000 cm−1 (corresponding to a 5.6-fs pulse) in the

top row and to 2 000 cm−1 in the bottom row. The central
frequency of the photon beams is fixed on resonance with the
electronic transition, i.e., ωp/2 = ωf e. In the four panels, we
vary the entanglement time T and the reference frequency
ωr . In the left column [Figs. 3(a) and 3(c)], the reference
frequency ωr is set to 10 400 cm−1, close to the lower-energy
resonance ωf e − δ. Because of the frequency correlations of
the entangled photon pair, this setup enhances the low-energy
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FIG. 3. Two-photon counting frequency-dispersed signal of entangled photons STPC(ω,ωr ; t0), Eq. (11), with (a) ωr = 11 400 cm−1, T =
90 fs, and σp = 1 000 cm−1, (b) ωr = 10 400 cm−1, T = 90 fs, and σp = 1 000 cm−1, (c) ωr = 11 400 cm−1, T = 358 fs, and σp = 2 000 cm−1,
and (d) ωr = 10 400 cm−1, T = 358 fs, and σp = 2 000 cm−1. The center frequency of the entangled photons is fixed at ω1 = ω2 = 11 000 cm−1.

resonance and suppresses the high-energy one. Similarly, in
the right column [Figs. 3(b) and 3(d)], the reference frequency
is changed to 11 400 cm−1, thus enhancing ωf e + δ and
suppressing the other one.

The remaining control parameter—the entanglement time
T —is varied in the two rows in Fig. 3. The upper row
[Figs. 3(a) and 3(b)] depicts the signal obtained from entangled
photons with T = 90 fs, and the bottom row [Figs. 3(c)
and 3(d)] with T = 358 fs. The longer entanglement time
can select a very narrow frequency window from the total
signal and to investigate the relaxation dynamics of this part
of the signal separately. In Fig. 3(d), we identify a buildup
of the maximal signal and its ensuing decay. Figure 3(c)
can only resolve the decay of the signal. However, we also
observe that even though we increased the pump bandwidth
compared to Figs. 3(a) and 3(b) (to σp = 2 000 cm−1) the
larger entanglement time results in the loss of time resolution:
Even though the maximum in Fig. 3(d) can be attributed to the
intermediate decay |↑〉 → |↓〉, the signal is widely stretched
along the t0 axis, and the real time constants cannot be read
off in this plot.

Figure 4 depicts slices of Figs. 3(a) and 3(b) for different
time delays t0. For comparison, we show the classical pump-
probe with bandwidth σ = 1 000 cm−1 in the left column,

and with 100 cm−1 in the right column. The TPC signals are
normalized with respect to the maximum value of the signal
at t0 = 3 fs and ωr = 11 400 cm−1. The classical signal is
normalized to its peak value at zero time delay, and the TPC
signals to the signal with ωr = 11 400 cm−1 at zero delay. As
discussed before, the panels show that a broadband classical
probe pulse (left column) cannot excite specific states, such
that the two resonances merge into one band. A narrowband
probe (right column), on the other hand, cannot resolve the
fast relaxation at all and only shows the unperturbed resonance
at ωf e. TPC spectroscopy, however, can target the relaxation
dynamics of the individual states.

IV. CONCLUSIONS

We have shown that TPC spectroscopy with entangled
photons provides a spectroscopic tool and demonstrated how it
may be used to simplify congested spectra. This feature may be
understood by investigating the field correlation functions in
Fig. 5(b): We depict the ωr − ωb plot of the entangled photon
field correlation function that creates the signal. Clearly, we
observe strong positive frequency correlations, and by tuning
ωr , we may select a specific frequency window, from which
the signal is created. Conversely, the classical product of field
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FIG. 4. (a) TPC signals with σp = 2 000 cm−1 and T = 90 fs, ωr = 10 400 cm−1 (blue, dashed) and 11 400 cm−1 (red, dot-dashed) as
well as the classical pump-probe signal (black, solid) with σ = 1 000 cm−1 are plotted vs the dispersed frequency ω with a time delay set to
t0 = 3 fs. (b) Same for t0 = 30 fs, (c) 60 fs, (d) 90 fs. (e)–(h) Same as for (a)–(d), but with classical bandwidth σ = 100 cm−1. The classical
signal is normalized, such that its maximum value at t0 = 0 is equal to one. Similarly, the TPC signal are normalized to the maximum value of
the signal with ωr = 11 400 cm−1 at t0 = 0.

amplitudes in Fig. 5(a) shows no such correlations and cannot
be used to filter the signal.

Our results add a different angle to the already demonstrated
enhanced signal-to-noise ratio of TPC spectroscopy in noisy
samples [16].
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APPENDIX A: DERIVATION OF TPC SIGNAL

To evaluate the change of the two-photon counting signal
caused by the interaction with the sample, we start with the
full signal,

S ′
TPC(�) =

∫
dt

∫
dt ′ eiω(t−t ′)tr

{
E

†
2(ωr )E†

1(t)E1(t ′)E2(ωr )

× T exp

[
− i

�

∫ ∞

−∞
dτHint,−(τ )

]
�initial

}
, (A1)
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of the coherent correlation function, Eq. (B5), of degenerate, entangled photon pairs with σp = 400 cm−1, T = 900 fs.

where, in the second line, we have rewritten the field operators
E

†
1(ω)E1(ω) in their time representation. Note that the two

interactions at t and t ′ are not time ordered, but only the
Dyson series of the interaction Hamiltonian. The Dyson series
is propagated to infinity, which may seem contradictory at first

glance. However, the interaction Hamiltonian can only create
a contribution to the measured coincidence rate, if the last
interaction predates either t or t ′.

Expanding the exponential in the Dyson series to leading
order yields

S ′
TPC(�) = tr{E†

2(ωr )E†
1(ω)E1(ω)E2(ωr )�initial} − i

�

∫
dt

∫
dt ′

∫ ∞

−∞
dτ eiω(t−t ′)

× tr

{
E

†
2(ωr )E2(ωr )E†

1(t)E1(t ′)T Hint,−(τ ) exp

[
− i

�

∫ τ

−∞
dτ ′Hint,−(τ ′)

]
�initial

}
. (A2)

The first term in this expansion represents the two-photon counting rate in the absence of any interaction with the sample system
and may therefore be neglected. Our signal—the change of the count rate due to the interaction with the sample—is given by the
second term, which can be rewritten as

STPC(�) = − i

�

∫
dt

∫
dt ′

∫ ∞

−∞
dτ eiω(t−t ′)tr{E†

2(ωr )E2(ωr )T [E†
1(t)E1(t ′),Hint(τ )]�(τ )}. (A3)

The commutator may be evaluated to

[E†
1(t)E1(t ′),Hint(τ )] = E

†
1(t)[E1(t ′),E†

1(τ )V (τ )] + [E†
1(t),E1(τ )V †(τ )]E1(t ′) (A4)

= E
†
1(t)V (τ )δ(t ′ − τ ) − V †(τ )δ(t − τ )E1(t ′), (A5)

which allows us to write the final signal as

STPC(�) = − i

�

∫
dt

∫
eiω(t−t ′)tr{E†

2(ωr )E2(ωr )[E†
1(t)V (t ′)�(t ′) − E1(t ′)V †(t)�(t)]}, (A6)

and the two terms can be combined to Eq. (5).

APPENDIX B: THE ENTANGLED-PHOTON
CORRELATION FUNCTION

This appendix summarizes the light field created by
parametric down-conversion. We start with the form [7]

�field = UPDC|0〉〈0|U †
PDC, (B1)

where the transformation U is created by the effective down-
conversion Hamiltonian

UPDC = exp

[
− i

�
HPDC

]
, (B2)

with HPDC =
∫

dωa

∫
dωb �(ωa,ωb)a†

1(ωa)a†
2(ωb) − H.c.

(B3)
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We only work in the weak down-conversion limit, in which
we can approximate the exponential by

UPDC ≈ I − i

�
HPDC + · · · . (B4)

In this situation, the four-point field correlation functions we
need to evaluate take a particularly simple form

〈E†
1(ωr )E†

2(ω)E2(ωb)E1(ωr )〉

=
(

− i

�

)4

�∗(ωr,ω)�(ωr,ωb). (B5)

The two-photon amplitude

The so-called two-photon amplitude is given by

�(ωa,ωb) = αAp(ωa + ωb) exp{−γ [
k(ωa,ωb)L]2},
(B6)

where Ap denotes the normalized envelope of the pump pulse,
which we chose to be a Gaussian around the central pump
frequency ωp, i.e.,

Ap(ω) = 1√
2πσp

e−(ω−ωp)2/(2σ 2
p ). (B7)

α is a constant containing the second-order susceptibility
of the crystal, the quantization area of the fields, the di-

electric constant, and the crystal length. The second term
exp[−γ (
kL)2] is the so-called phase-matching function
with 
k(ωa,ωb) = kp(ωa + ωb) − k1(ωa) − k2(ωb) being the
phase mismatch between the wave vectors of the involved
field. γ = 0.04822 is a numerical constant to fit the spectrum
to observed bandwidths [7]. In type II down-conversion, the
phase mismatch may be approximated linearly around the
central frequencies of the two beams,


k(ωa,ωb) = (ωa − ωp/2)T1 + (ωb − ωp/2)T2. (B8)

The two time scales T1 and T2 are determined by the differences
between the group velocities of the down-converted photons in
beams 1 and 2, and the one of the pump pulse times the length
of the crystal [6]. We consider the following parameters:

T1 = −0.00007(T/fs) cm, (B9)
T2 = 0.00025(T/fs) cm, (B10)

which have been parametrized with respect to the so-called
entanglement time T = T2 − T1 (in fs) [24]. We finally note
that in contrast to most applications of these entangled photons,
our simulations work in the regime of positive frequency
correlations [19]. Here, the bandwidth of the pump pulse is
much larger than the inverse entanglement time, σp � 1/T .
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