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Supraclassical measurement using single-atom control of an atomic ensemble
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We analyze the operation of a sensor based on atom interferometry, which can achieve supraclassical sensitivity
by exploiting quantum correlations in mixed states of many qubits. The interferometer is based on quantum gates
which use coherently controlled Rydberg interactions between a single atom (which acts as a control qubit) and an
atomic ensemble (which provides register qubits). In principle, our scheme can achieve precision scaling with the
size of the ensemble—which can extend to large numbers of atoms—while using only single-qubit operations on
the control and bulk operations on the ensemble. We investigate realistic implementation of the interferometer, and
our main aim is to develop an approach to quantum metrology that can achieve quantum-enhanced measurement
precision by exploiting coherent operations on large impure quantum states. We propose an experiment to
demonstrate the enhanced sensitivity of the protocol and to investigate a transition from classical to supraclassical
sensitivity which occurs when using highly mixed probe states.
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I. INTRODUCTION

A key new quantum technology is quantum metrology,
which encompasses techniques for measuring unknown phys-
ical parameters at the limits imposed by quantum mechanics
[1]. When physical parameters are estimated using traditional
interferometric techniques based on single-particle probe
states, the measurement precision is subject to the standard
quantum limit (SQL; also called the shot-noise limit), for
which precision scales as 1/

√
ν, where ν is the number

of repeated measurements. A large amount of research has
focused on achieving precision beyond the SQL using non-
classical probe states [2]. In particular, it is well known that
path-entangled NOON states, which are states of the form
(|N0〉 + |0N〉)/√2 in the Fock basis [3], can be used to attain
the Heisenberg limit, for which the precision after ν repetitions
scales as 1/

√
νN (the ultimate limit to measurement precision

at fixed total particle number N ). Equivalently, N -qubit
Greenberger-Horne-Zeilinger (GHZ) probe states can be used
to achieve the Heisenberg limit in a quantum circuit in analogy
to an interferometric setup [4]. However, attempts to achieve
the Heisenberg limit using various experimental platforms are
hindered by the difficulties of generating large NOON or GHZ
states with near-perfect purity. For example, the largest NOON
states reported so far in optical interferometry comprised
five photons [5]. Recent theoretical work has also shown
that particle losses make quadratic enhancement of precision
impossible to achieve, as the probe-state particle number
increases to large values [6]. Larger NOON states have been
demonstrated for ensemble-spin systems in nuclear magnetic
resonance (NMR) experiments, although the scalability of
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these systems is limited by molecules with fixed numbers of
spins [7].

A new perspective on the resources required to achieve a
quantum advantage for measurement precision is provided by
two theoretical works which investigate mixed-state models
of quantum metrology [8,9]. Reference [8] compares quantum
probes, which can be prepared using unitary circuits, from
initial qubits, which are mixed, uncorrelated, and identical. For
a given number of qubits and fixed purity, it was found that cir-
cuits generating quantum correlations can achieve a quadratic
enhancement in the measurement precision (compared to the
use of the initial qubits as separate probes). This result remains
true even when the qubits are highly mixed and the relevant
circuit generates no entanglement, which demonstrates that
pure-state entanglement is not a prerequisite for quantum
enhancements in metrology. Considerable evidence was also
found of an important role for quantum discord [10], which
does remain when the qubits are highly mixed. More recently,
a model of quantum metrology inspired by the one-qubit
quantum-computation model DQC1 [11] was analyzed in Ref.
[9]. This model uses input states comprising one pure qubit
together with a register of fully mixed qubits. Surprisingly,
the SQL is achieved in this model even though the amount of
coherence is vanishing when the register is arbitrarily large.
The SQL is then exceeded using an additional qubit which
provides only a small amount of additional purity and which
leads to some nonclassical correlations between probe qubits.

In this paper, we study theoretically a realistic imple-
mentation of a new scheme for high-precision measurement
(beyond the SQL) using a cold-atom architecture which can
practically access a large resource of readily available mixed
qubits. The scheme is related to those in Refs. [8,9], and the
specific implementation we consider is based on quantum
correlations between a single “clean” (nearly pure) control
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qubit and a register of partially mixed register qubits, using a
platform similar to the one described in Ref. [12]. Correlations
between the control and the mixed register are generated via
a conditional quantum gate using a scheme first presented in
Ref. [13]. Our cold-atom architecture allows for ultraprecise
measurement of important physical quantities including the
strength of the local gravitational or magnetic field, or an
applied oscillating electric field which irradiates the atoms, and
crucially it can scale to a large number of register qubits while
maintaining coherent operation. In particular, the number of
register qubits can be substantially larger than that achieved
in experiments based on NMR, but with a purity approaching
that of photonic or ion-based systems.

We proceed as follows: In Sec. II we explain the protocol
and the achievable sensitivity. Next, in Sec. III we provide a
detailed analysis of the implementation of the protocol, taking
into account all major experimental imperfections, which are
Poissonian fluctuations of the number of register atoms, atom
losses from dipole traps, spatial distributions of the trapped
atoms, and intraregister interactions. Finally, in Sec. IV, we
propose an application of our scheme to the measurement of
gravity using state-dependent gravitational potentials.

II. THE PROTOCOL

In this section, we describe our protocol in a generic
fashion, following Fig. 1(a). We assume a single “clean” qubit
called the control, upon which we can perform high-fidelity
single-qubit operations and high-efficiency measurements. In
addition, we assume a register of NR qubits which are not
individually addressable, but upon which it is possible to make
bulk operations. The control and register qubits are initialized
in the state

ρC,R =
(

1 + pC,R

2

)
|0〉〈0| +

(
1 − pC,R

2

)
|1〉〈1|, (1)

where the subscript C applies to the control qubit and R to
the register qubits, and where 0 � pC,R � 1 corresponds to
noise in each control or register qubit. The initial state ρIni of
the whole system is therefore the product state of the single
control qubit and the NR register qubits:

ρIni = ρC ⊗ (ρR)⊗NR . (2)

After initialization, a Hadamard gate puts the control qubit
into the state

ρC = 1

2
(|0〉〈0| + |1〉〈1|) + pC

2
(|0〉〈1| + |1〉〈0|). (3)

The preparation of the “probe” state is completed by a
controlled-NOT (CNOT), which flips the register qubits condi-
tional on the control qubit. Following this gate, the global state
of the probe is

ρ =
∑

xn

(1 + pR)NR−n (1 − pR)n

2NR

×
(

1 + pC

2
|g+

n 〉〈g+
n | + 1 − pC

2
|g−

n 〉〈g−
n |

)
. (4)

Above |g±
n 〉 = (|0 xn〉 ± |1 xc

n〉)/
√

2, where n is the number
of 1s in xn, the complementary string xc

n is the NOT of xn, and
the sum is taken over bit strings xn of length NR .

Next, the probe evolves under interaction with an unknown
field for a time t . This interaction is assumed to be unitary
and to act on each qubit independently; i.e., u⊗NR

ω . The
unitary transformation has the form uω = exp(−i ωHt), with
controllable interaction time t , Hamiltonian H = |1〉〈1|, and
unknown coupling parameter ω (which we wish to estimate).
This interaction causes evolution of the probe state within
orthogonal two-dimensional subspaces, for which

u⊗NR

ω |g±
n 〉 = cos

[(
NR

2
− n

)
ωt

]
|g±

n 〉

+ i sin

[(
NR

2
− n

)
ωt

]
|g∓

n 〉. (5)

To extract information about ω the first two steps are applied
in reverse, preparing the system for the measurement stage.
The measurement outcomes have probabilities

Pk,n =
(

NR

n

)
(1 + pR)NR−n(1 − pR)n

2NR

× 1 + (−1)kpC

2
cos [(NR − 2n)ωt], (6)

where Pk,n is the probability of measuring n register qubits in
state |1〉 along with the control qubit in state |k〉, k ∈ {0,1}.

Information about the sensitivity for estimating ω can be
extracted from the probability distributions above. Formally
this can be done by computing the Fisher information, F (ω) =∑

k,n (∂ωPk,n)2/Pk,n, which is defined for arbitrary probability
distributions Pk,n. F(ω) gives the precision for estimating the
unknown ω using an efficient and unbiased statistical estimator
as �ω = 1/

√
νF (corresponding to statistical estimation that

saturates the Cramér-Rao bound), where ν is the number of
repeated measurements. In this paper, we define the sensitivity
as

δω

ω
= 1

ω
√

νF (ω)
. (7)

For our protocol, the Fisher information for the case pC = 1
is given by

F = [(
1 − p2

R

)
NR + p2

RN2
R

]
t2, (8)

and there is no dependence on ω. It can also be verified that
the protocol here is optimal in the sense of Ref. [14]. When
the register is fully pure (pR = 1), we recover the Heisenberg
limit for precision �ω � 1/

√
νNRt (recall that the control

itself does not interact with the field). When instead the register
qubits are fully mixed at the input (pR = 0) we find that �ω �
1/

√
νNRt , which is the SQL. Hence any finite purity yields

a supraclassical sensitivity [9], and a large qubit ensemble is
seen to become a powerful resource for parameter estimation
when supplemented with the coherence originating from one
clean qubit.

From a practical perspective, measurement of all the qubits
in a large register is, in general, challenging, and considerable
simplification of our proposal is achieved by restricting the
measurement to the state of the control qubit only. On the
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FIG. 1. (a) The protocol: The control qubit is prepared at a high purity in state |0〉 followed by a Hadamard gate (HC), and a CNOT gate
prepares the probe state. Next the interaction uω is applied, driving the evolution of the probe state. The CNOT is reapplied, and finally, the
control atom’s state is measured. (b) Level schemes: Four-level schemes for the control and register atoms. The control atom is coupled to
the Rydberg state |RC〉 via a laser pulse. Register atoms must be coupled by three lasers, far detuned from the intermediate |e〉 but Raman
resonant with the (unperturbed) Rydberg levels. |0〉 → |e〉 and |1〉 → |e〉 drive a π pulse between the |0〉 and the |1〉 states only when the
electromagnetically induced transparency condition is lifted by the strong Rydberg-Rydberg interaction due to the control atom in state |RC〉.
(c) Implementation: In the experiment, the tight control trap will contain only a single atom, while the larger register trap will be populated by
an average of 25 atoms. The atomic positions sample the density distribution for the traps as described in the text. (d) Gravity measurement:
Implementation of a gravity measurement may be accomplished by using independently controlled and state-dependent optical potentials,
which allow the register trap to be divided along the z axis (g lies along z).

other hand, the control qubit itself might suffer a small loss of
purity so that pC < 1. The measurement probabilities for the
control qubit are now given by

P0 =
∑

n

P0,n and P1 =
∑

n

P1,n. (9)

Fisher information derived from P0 and P1 is in general lower
than that from Eq. (8) and depends on the value of the unknown
ω. An adaptive process is therefore required to implement
offsets ω 	→ ω + ωad over a series of measurements, to tune
the circuit to the region of greatest sensitivity. Returning to Eq.
(9), the effect of pC < 1 is seen to reduce the fringe visibility.
For the special case where pC = 1, F (ω) is maximized at
ωt = πa (where a is an integer), where it attains the Fisher
information, Eq. (8). This, however, relies on the possibility
for perfect extinction of P0 or P1 and corresponds to stationary
points for P0 and P1. In general pC < 1, and the device is not
sensitive to the precise value of ω at these points (F = 0);
instead, F is maximized at points close to ωt = πa, where the
gradients of P0 and P1 are steepest.

Finally, just like NOON and GHZ states, the probe states
created in our protocol, Eq. (4), are extremely fragile with
respect to loss: the removal of a single qubit from the probe
state, before or while it interacts with the unknown external
field, destroys all coherence in the GHZ-state components.
Consequently, the loss of a single qubit causes P0 and P1 not
to depend on the value of ω, and all useful information is
destroyed.

III. IMPLEMENTATION

A. Experimental setup

In this section we discuss implementation of our protocol
from Sec. II using a cold-atom-based platform. As shown in
Fig. 1(c), in our proposed implementation, 87Rb atoms are
trapped in two individually addressable and tightly confining
optical dipole traps, one containing a single control atom and
the other the register atoms [12,13]. These can be realized
from a single laser beam using spatial light modulators [15]
or acousto-optic deflectors. These sort of traps offer many
advantages for the scheme including readily reconfigurable
potentials as well as micron-scale separation between control
and register qubits. Cold atoms are able to sense electric,
magnetic, or gravitational fields. For example, if we wish to
sense magnetic fields directed along the z axis with strength Bz

(in gauss) then we choose to take the qubit states as convenient
sublevels of the F = 1 and F = 2 magnetic sublevels so
that the evolution, uω = e−iωHt , has ω = 3μB(m + m′)Bz/8,
where μB = 2π × 1.4 MHz/G is the Bohr magneton, m

and m′ refer to the chosen sublevels in F = 1 and F = 2,
respectively, and we used the fact that the Landé g factor for
F = 1 and F = 2 are ∓3/8. In this section, we take uω to be
generic.

The implementation of the CNOT gates to prepare the probe
state is based upon the proposal in Ref. [13], which uses
electromagnetically induced transparency and Rydberg block-
ade. Controlled gates based around the strong interactions
between Rydberg atoms are ideal for quantum metrology, as
the strong and laser-tuned long-ranged interactions allow for
great control contrast and a high gating fidelity.
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Note that our approach here to building conditional gates
has some drawbacks: when working with large register sizes,
a high atomic density may lead to large collisional phase shifts
which demand additional experimental complexity to mitigate
(for example, suppressing the collisional interactions by tuning
a magnetic field close to a Feshbach resonance). In optical
traps, the density should be limited to around 1012 cm−3 to
avoid excessive trap losses due to light-induced collisions.
We include discussion of the limitations imposed by density-
dependent losses below.

Trapping potentials suitable for this scheme are provided
by a pair of far-detuned optical traps (FORTs) at 825 nm,
propagating along the x axis, as shown in Figs. 1(c) and
1d), and focused to a waist of w0 = 1.0 μm for the control
atom. The chosen trap depth is 1 mK: at a temperature of
100 μK the atom is confined to a volume with radial and axial
widths of 0.08 and 0.30 μm, respectively. For the register, it is
necessary to restrict the density of the atoms without allowing
the atoms to travel much farther than the rmax = 6 μm range of
the Rydberg-Rydberg interaction (see below). We can achieve
a reasonable trap using an elliptical beam profile with waists
of wz,0 = 1.2 μm and wy,0 = 10 μm, where wz,0 is the beam
waist measured along the gravitational axis (or z axis in the
figure), and wy,0 is the waist along the axis y, as in Fig. 1. The
traps are separated by 2 μm. The ensemble atoms also have a
temperature of 100 μK so the atoms are confined in an oblate-
ellipsoid shape with widths of sx = 1.73 μm, sy = 1.58 μm,
and sz = 0.19 μm along the x, y, and z axis, respectively, for
a density of 1.24 × NR × 1011 cm−3.

The qubits are encoded in the 5S1/2 ground-state hyperfine
sublevels, with F = 1 being assigned to |0〉 and F = 2 to |1〉.
To implement the gates, the traps are illuminated with focused
laser beams, which couple the four relevant states of the atoms
as shown in Fig. 1(b). It is of crucial importance that the
beams which generate rotations are of uniform intensity for all
target atoms; this can be achieved by “flat-top” profile beam-
shaping techniques [16]. To initialize the atoms we follow
the protocol given in Ref. [12], where a Rydberg-atom-based
DQC1 implementation was proposed. In contrast to the DQC1
protocol in Ref. [12], in which a requirement is the preparation
of each register qubit in the mixed state 11/2, here we need
only to prepare the atoms in state |0〉 with as high a purity as is
attainable, and this can be performed using optical pumping.

B. Noise sources and practical limitations

We now discuss the practical limitations which affect
the implementation of our protocol and our strategies to
mitigate the effects. The trap lifetime limits the duration over
which the evolution in the unknown field can extend, while
atom-number fluctuations of the register-trap loading affect the
overall contrast and shape of the fringes. Another important
consideration is the achievable fidelity of the gate operations,
which are limited by the laser performance (line width) and the
uniformity of the intensity profile over the register ensemble.

1. Atom losses

The most severe constraint on the protocol is imposed by
atom losses. As noted in Sec. II, the probe state is extremely
fragile with respect to atom loss or environmental disturbance:

the removal of a single qubit from the register in a run of the
experiment destroys all information about the parameter ω,
so that measurement of the control qubit yields either of two
outcomes with equal probability. Therefore, averaging over ν

runs, atom losses lead to a reduced fringe contrast, in line with
the probability that a single atom is lost from the experiment.
The improvement in sensitivity with register size is limited
by the commensurate increasing probability of losing an atom
during the time between the controlled gate operations, and
there are therefore strong constraints on both the register size
and the experimental time scales.

Our proposed implementation assumes that optical dipole
traps are used for the atoms. Consequently, limitations are
caused by trap losses due to imperfect vacuum (which can
allow for trap lifetimes of ≈1 min at pressures ≈1 × 10−11 mb)
and, also, by spontaneous Raman transitions, which effectively
make an unwanted measurement of the state of the system. In
addition, a density-dependent two-atom loss rate for an optical
dipole trap is given by γ2 = −β

∫
n(r)2dV , where n(r) is the

atomic density as a function of the position r , and the value
of the constant β strongly depends on the trap laser. For the
Gaussian density distribution of the register,

γ2 = −βNR(NR − 1)

8π3/2sxsysz

. (10)

The time scale for trap-laser-induced Raman transitions has
been reported as being as long as τsp = 3.3 s [17], and in
the same experiments −β

∫
n(r)2 < 0.02 s−1, from which we

obtain an estimate of β = 0.25 × 10−12 cm3 s−1 and we may
estimate γ2 = 6.47 s−1 for the ensemble trap with NR = 25
atoms. Using these quantities, we estimate that the probability
of not losing a single register atom is dominated by the two-
body loss, so that Pno loss = exp(−NRtγ2). For this reason,
we have chosen a register size of NR = 25 atoms, which,
compared to the classical interferometry, allows a significant
improvement in the sensitivity with a probe evolution time of
375 μs and Pno loss ≈ 0.94.

2. Atom-number fluctuations

The register size will be subject to number fluctuations
due to the trap-loading process, which leads to a dephasing
of experimental fringe patterns. As an example, consider the
simplified case with pC =1 and pR =1, where the number of
atoms in the ensemble is sampled from the Poisson distribution
with mean NR: in this case the fringes recovered at each run
will sample from

1

2
± e−NR

2

∞∑
m=0

Nm
R

m!
cos(mωt). (11)

The fringes and the corresponding Fisher information must
be obtained from the probabilities Pk,n, which depend upon
pC, pR , and NR .

The effects of register-size fluctuations are illustrated in
Fig. 2, which shows the interference fringes and correspond-
ing sensitivity for the case where ω = 2π × 5.33 kHz and
t ≈ 375 μs with a reduced register purity, before and after
the fluctuations are accounted for [Figs. 2(a) and 2(b) and
Figs. 2(c) and 2(d), respectively]. Although the envelope
of the fringes is narrowed by the fluctuations in register
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FIG. 2. Dephasing of interference fringes due to the reduced register purity and register-size fluctuations. (a) Interference fringes in σZ as
t is scanned with NR = 25, pC = 1, and pR = 0.95 (dashed black line) and pR = 0 [dot-dashed (red) line]. The solid black line represents
the fringe for each of 25 perfectly pure qubits (for comparison to a perfect classical interferometer). (b) Sensitivity obtained via the Fisher
information for the fringes obtained in (a), using the same colors. (c) Interference fringes corresponding to the inclusion of Poissonian
fluctuations in NR , which lead to further dephasing of the fringes. (d) Sensitivity obtained from the fringes in (c).

size, supraclassical precision is possible: for a mean register
size of NR = 25, the sensitivity (extracted from the Fisher
information) achieved is equal to that of an SQL device
(operating with 25 pure single qubits) when the purity of
the register is as low as pR = 0.09. We conclude that the
performance will not be seriously hampered by fluctuations in
register size as long as the interferometer is operated when ωt

is close to an integer multiple of 2π .

3. Intraregister interaction and gate errors

We now proceed to numerical studies of the performance of
our protocol. Detailed modeling is needed to determine the gate
fidelity and to find optimal values for experimental parameters.
Unfortunately, modeling of the full protocol requires solving
a master equation for NR + 1 four-level atoms, and this is
impractical for NR = 25. Instead, we first study a complete
simulation for systems of up to three register atoms, ignoring
the Poisson loading statistics, a simplified case for which we
can solve the equations of motion, before discussing the NR =
25 case using simplified modeling. Although experiments
involving three register atoms would not make represent a com-
petitive quantum-enhanced sensor, they would be sufficient to
analyze the effects of interactions between ensemble atoms
and can be rapidly implemented and rigorously understood
in state-of-the-art experiments (unlike larger systems). Of
particular importance is understanding the effects of varying
Rydberg-Rydberg interaction strengths due to the atomic
density distribution, which potentially modulates the gate
performance, especially for register atoms located far from
the control atom, as well as confirming whether the effects of
intraregister interactions are negligible in the gating operation.

We evaluated the performance of the Rydberg-based in-
terferometer by numerically simulating the whole protocol,
comprised of two CNOT gates and a given applied phase shift,
which is the parameter we want to estimate. The details for
our simulation are as follows (further details are also given in
Appendix A): As mentioned earlier, the gate scheme is based
on the proposal in Ref. [13], with the atomic level scheme and
wavelengths involved represented in Fig. 1(b). We consider
each atom as a four-level system, consisting of hyperfine levels
of the ground state with 5S1/2, F = 1 being |0〉 and F = 2
being |1〉, the excited 5P3/2 state |e〉, and a Rydberg state
|RC,R〉. As in Ref. [13], we choose to shape the laser pulses

such that

2(t) =
√

8�e

3τ
sin2

(
πt

τ

)
and 3 = 10

√
4�e

3τ
, (12)

with �e = 2π × 1000 MHz and τ = 0.5 μs, which guaran-
tees that the pulse area of the Raman transition is π , that the
gate time is much shorter than the lifetime of the Rydberg states
(≈1 ms), and that a high-fidelity gate performance is obtained.

Efficient Rydberg blockading is achieved when the
Rydberg-Rydberg interaction between control and ensemble
is much stronger than the Rabi frequencies involved in the
gating step. When this condition is fulfilled, the fidelity of the
gate does not depend on small perturbations of the interaction
strengths [13]. We therefore adopt a simplified treatment of
the Rydberg-Rydberg interactions, so that we only consider
the strongest interaction channel between two atoms excited
to the nSn′S state, as discussed in [18]. The levels considered
and the definitions of parameters are discussed in Appendix B.

When the atoms are sufficiently close, the interaction
scales as r−3, turning over to an r−6 beyond a certain
range r3

max = 2Cdd/�def , where Cdd is the reduced matrix
element as defined in Eq. (B2) and �def is the energy defect
between two coupled channels. Exciting the control atoms
with n = 74 and the ensemble atoms with n′ = 73, we have
Cdd = 2.92 × 104 MHz μm3 and �def = −196 MHz for the
control-ensemble interaction, yielding a range rmax = 8.1 μm,
and Cdd = 2.84 × 104 MHz μm3,�def = −613 MHz for the
ensemble-ensemble interactions; the interactions are r−3 in
character for a distance of about 5.7 μm.

With the trap parameters as described in Sec. III A, we
ran a Monte Carlo simulation of the experiment. For each of
the two applications of the gate, we picked atom positions at
random from the appropriate atomic density distributions and
then computed the strength of the interaction terms Vij (ri,j )
between atoms, ri,j being the displacement vector between
atom i and atom j . We then computed the time evolution of
the system density matrix due to the full Hamiltonian. Between
the gates, the atoms undergo evolution due to the applied field.
Finally, we applied a Hadamard gate to the control atom and
traced over the register atoms, to yield the density matrix for
the control atoms we wish to sample, thereby obtaining values
for P0 and P1. We considered a number of repetitions ν = 49.
For each of the two gates, we had 49 possible locations of
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FIG. 3. Results of the full density-matrix model of the protocol
with NR = 1, 2, or 3 atoms. Interferometer “output” with a finite
laser line width, for NR = 1 atoms (a), NR = 2 atoms (b), and NR =
3 atoms (c). As described in the text, we obtained each point by
sampling the atomic density distribution for the position of control and
ensemble atoms ν = 49 times, yielding P0,1(ω) and hence 〈σZ〉 for
each run. Due to the finite range of the Rydberg-Rydberg interaction,
the gates have a range of fidelities, which means that there is a spread
of P0,1(ω) obtained at any given value of ω. In each plot the purity
of the control and register qubits is pC = pR = 0.95 and we plot
the average of the expectation values 〈σZ〉 obtained as a function of
δω/ω0. Lines are fits to the output, from which we find that increasing
the line width from 10 to 100 kHz degrades the interferometer contrast
from 0.928 to 0.908 in (a), from 0.896 to 0.886 in (b), and from 0.865
to 0.834 in (c).

each atom and obtained the expectation values of the operator
σZ corresponding to measuring the state of the control atom.
The measurement was implemented by drawing, at random,
the final measurement outcome from the binomial distribution
values P0 and P1. We also took into account the effect of the
laser line width, which reduces the fidelity of the gate.

The results of our simulations are shown in Fig. 3. We
found that (for our choices of trap sizes and Rydberg levels)
the performance of the protocol is dominated by the statistical
uncertainty due to sampling the fringes P (ω) only ν times.
We therefore find that, for an appropriate choice of Rabi
frequencies, the effects of register-register interactions are
negligible and that the most significant cause of error in
the gate is due to the small value of the Rydberg-Rydberg
interaction strength when the distance between the control and
the register atom is large, such that VC,k  �2

3/4� fails.
That the register-register interactions have small effects is a
surprising result described fully in Ref. [13] and discussed
more fully below in the context of systems where NR ≈ 25.

Regarding requirements for the laser line width, typical
laboratory setups can obtain laser line widths of ≈100 kHz
with standard laser locking techniques. For our proposal much
lower line widths will be required, as their effects become
significant for a larger number of atoms in the probe. In
Fig. 3, we show the interferometer output for cases where
the appropriate laser line width γdph takes the values γdph =
10.0 kHz and γdph = 100 kHz. In fact, by evaluating the fringe
contrast for varying γdph, we find that the contrast decays
exponentially according to pC exp(−0.250 kHz/γdph), which
implies that for fringes with contrast greater than 90%, the
laser line width should be limited to below 10 kHz (which
should be considered very demanding).

We conclude this section with a discussion of the gate
operation as more register atoms are added to the system,
addressing the decreasing gate fidelity as NR increases. Previ-
ously we have argued that register-register atom interactions
are (or can be controlled such that they are) unimportant,
and we now justify this in two ways: First, Müller et al.
[13] show that the register-register interaction degrades the
gate fidelity due to the laser coupling of “gray” states which
evolve a phase as the gate proceeds. In Fig. 4(a) we show
the effects on the fidelity in the worst-case scenario, when
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FIG. 4. (a) Simulated effects of gate imperfections due to strong register-register interactions or weak control-register interactions. Open
circles represent the falling gate contrast as more register atoms are added for a 10-kHz laser line width; filled diamonds, for a 100-kHz laser
line width. An exponential fit allows us to extrapolate to a worst-case scenario, where for NR = 25 atoms the contrast has fallen to 0.75.
Register-register interactions degrade the fidelity of the gate. The dashed black line shows that the fidelity falls when 3/2 = 10, and the
dot-dashed line, when 3/2 = 15, as calculated using the analytic form given in [13]. (b) Interferometer output with NR = 25 atoms when ω

is scanned. The purity of the control qubit and register qubits is 0.95, t = 375 μs, and we scan the frequency over the range ±δω = 0.15−3ω0,
where ω0 = 2π × 5326 Hz. Points show the results of ν = 49 repetitions at each value of δω/ω0 obtained by including the falling gate fidelity
in (a) and including the atom losses due to light-induced collisions. The solid black line shows the fringes in the limit ν −→ ∞, but not taking
into account atom losses, and the dashed line shows the fringes produced with perfect gate fidelity.
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all atoms experience Vj,k  �2
3/4�. We find that as long

as 3/2 > 15 the gate fidelity can be controlled: one must
raise the coupling laser Rabi frequency 3 as high as possible.
There are limits: apart from the technical considerations,
the control-register interaction strength should obey VC,k 
�2

3/4�. Second, we note that, when the above conditions
are fulfilled, the inclusion of register-register interactions in
our simulation actually always improves the gate fidelity.
This is because the most significant degrading effect is due
to the finiteness of the control-register interaction: in some
instances, due to the spread in the spatial distribution of the
atoms in the register trap, this interaction may become so weak
that the electromagnetically induced transparency condition
is not lifted and the CNOT flip is inhibited. In such cases,
register-register interactions actually boost effectiveness by
supplementing the control-register interaction [13].

We therefore model larger atom systems by assuming (a)
that we may neglect the register-register interaction as per
the discussion above and (b) that the imperfect CNOT gate is
accurately described by |0〉〈0| ⊗ I + |1〉〈1| ⊗ Uk, where

Uk = akσX + bkσY + ckσZ (13)

and |a|2 + |b|2 + |c|2 = 1. Condition (b) follows from the
neglect of the register-register interactions, in which case
the electromagnetically induced transparency blocking effect
works with a high fidelity. We have checked that condition (b)
is valid in our full simulations of one to three register atoms
(as noted above, register-register interactions mostly improve
the gate). Neglecting the interactions means we now have a
simpler problem to solve, namely, we need only compute the
gate applied to register atoms individually and then construct
the density matrix for the whole system. For each atom we
can extract the Uk and use this information to calculate the
multiatom gate. We apply a CNOT gate to up to nine atoms,
with positions picked at random from the atomic density
distribution, and then a second gate, with new positions,
and setting the laser line width to 10 kHz. We repeat this
ν = 49 times. Between the gates, the atoms evolve for a time
1/ω0, such that systems with odd NR have 〈σZ〉 ≈ −pC . This
procedure captures the fringe contrast, and for perfect gates
the consecutive CNOT gates should yield a fringe contrast
of ≈pC . The results are summarized in Fig. 4(a), where the
contrast is plotted with increasing NR . Taking an exponentially
decaying contrast as the worst-case result of this analysis, we
find that for NR = 25 atoms, the fringe contrast will drop to
0.84. Effectively, the gate imperfections considered here affect
only the contrast of the fringes.

To further expand upon the model above, we summarize
our findings as follows: we have found that imperfect gates
have c ≈ 0.1 and a − ib = 0.95e−iθ , so to a very good
approximation, the gate imposes only an additional phase θ

on the phase evolution. Hence, in Eq. (6), the cosine terms
are modified as follows: cos[(NR − 2n)ωt + ∑

g,j θ
(g)
j ], where

θ
(g)
j is the extra phase pickup for the j th atom due to gate

g, g = 1,2, which tends to decrease the contrast of the fringes.
Because the cosines evolve more rapidly as NR increases, the
measured fringes dephase more strongly with NR .

Now we are in a position to model an actual experiment with
a nominal NR = 25 atoms, and as noted above, the lifetime

of the atoms in the trap will decrease with increasing NR and
a single atom lost destroys all the phase information we wish
to measure. For each of the ν = 49 instances of the simulated
experiment, we pick NR from a Poisson distribution with a
mean of 25 atoms and then find the σZ , where we adjust
the control purity according to Fig. 4(a), and at random we
lose an atom according to the probability (NR dependent)
that a light-induced two-body loss will occur—thus taking
σZ = 0 for each case where an atom is lost. The results
of this analysis are displayed in Fig. 4(b), where we show
how the fringes would look, accounting for atom losses and
poor gate fidelity but neglecting register-register interactions.
Obtaining the Fisher information from this experiment, we find
that the sensitivity is SQ = δω/ω0 = 4.24 × 10−3, whereas
for a perfect classical device SC = δω/ω0 = 15.8 × 10−3, the
quantum-correlated device outperforming the classical device
by a factor of SC/SQ = 3.73.

IV. DISCUSSION

A. Gravity measurements

Finally, we discuss the application of our protocol to
the measurement of the local gravitational field. We assume
that the register contains NR = 25 atoms and that it follows
Poissonian loading. The register atoms are loaded in a state-
dependent trap: the ensemble trap can be engineered so that the
atoms are guided by two state-dependent trapping potentials,
which allow for atoms to shift vertically conditional on their
internal state [19,20]. During the initialization and probe-state
preparation, the two potentials are overlapping. Subsequently,
the two state-dependent traps are displaced along the z axis [as
illustrated in Figs. 1(c) and 1(d)] by an amount δz relative to
each other. We assume that we can adiabatically shift the two
state-dependent potentials which confine the register atoms
by 2.5 μm, as this can be efficiently done with no significant
heating or atom losses, while preserving the qubit state with
a high fidelity, as shown in Refs. [19] and [21]. This enables
splitting of the atom wave function vertically by a distance δz,
and a δφ = mgδzt/� phase difference is induced by letting the
probe evolve for a time t .

In the case of rubidium, the value of m above is mRb =
1.45 × 10−25 kg, and the phase parameter evolves at ≈2π ×
2145 s−1 per μm separation, thus amounting to ω = 2π ×
5326 s−1 for δz = 2.5 μm. We thus consider the case of 25 + 1
atoms prepared in a probe state as in Eq. (4), with pC = 0.95
and variable values for pR . Since the evolution time is strongly
limited by trap losses due to light-induced collisions, the probe
state is left to evolve under gravity for 375 μs, and hence
the system is probed after two fringe periods. We have also
assumed that the traps are shifted slowly enough to retain
the atoms without a loss of coherence or an increase in
temperature. We may estimate this speed by noting that for
a trap frequency of f and a confinement length of σ , we need
to move the traps no faster than δz/σf ≈ 300 μs as we move
the atoms into place.

B. Conclusions

In this paper, we have analyzed an interferometric protocol
using cold atoms in which the purity of the probe state does
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not need to be close to 1, in order to gain sensitivity beyond
the SQL which limits classical devices. We find that under
reasonable experimental conditions NR = 25, pC = 0.95, and
pR = 0.95, clear interference fringes can be obtained such that
the performance (measured by the sensitivity) of a classical
counterpart using NR independent qubits can be surpassed by
a factor of 3.73. The sensitivity of the protocol improves over
the SQL with the number of correlated particles as ∼√

NR .
We have shown that a high sensitivity is obtained even though
the fringe patterns are subject to dephasing due to finite purity
and fluctuations in the number of register atoms, and we have
derived the purity needed to surpass the classical sensitivity in
this cold-atom-based experiment.

The experimental implementation we propose allows for a
great range of tunability of the purities of both the control
and the ensemble atoms, as described in [12], making it
possible to explore the regimes between “classical” and “fully
quantum” and, thereby, gain an understanding of the role of
quantum correlations in quantum-enhanced sensing. Finally,
we make a comment about the situations in which such a
supersensitive device would be advantageous in practical use:
Although strongly limited by two-body losses, our scheme
could be of utility in situations where rapid sampling of a
field is required (cooling and trap-loading requirements are far
simpler compared to BEC setups, for example). The sensitivity
of a classical interferometer with N atoms and an interaction
time t is limited to 1/t

√
N , which shows that lengthening

t is the cheapest way of improving the device. However,
for situations where rapid sampling is required, t will be
compromised—and, in fact, so too will N , due to shortening
of the time taken to load a large number of ultracold atoms
into a magneto-optical trap—precisely the situation in which
our proposed scheme operates.
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APPENDIX A: SOLVING THE MASTER EQUATION FOR
UP TO THREE REGISTER ATOMS

The single-atom Hamiltonian is

Hk =�e|e〉k〈e| + 1
22(|0〉k〈e| + |1〉k〈e|)

+ 1
23|e〉k〈x| + H.c., (A1)

and we can construct a multiatom Hamiltonian using an
appropriate basis and including interaction terms as

HT =
NR∑
k=1

I 2(k−1) ⊗ Hk ⊗ I 2(NR−k) +
∑
i �=j

H Int
ij , (A2)

where I 2k is the identity matrix of dimension 2k × 2k, and
H Int

ij describes the Rydberg-Rydberg interaction via

H Int
ij = Vijσ

i
x,xσ

j
x,x . (A3)

The master equation for the system is ρ̇ = i�[H,ρ] + �,
where � includes radiative damping; for decays from the
excited 5P state |e〉, it takes the form

� =
NR+1∑
k=1

∑
i=0,1

1

2
γe

(
2σ k

i,eρσ k
e,i − σ k

e,eρ − ρσ k
e,e

)
, (A4)

where γe = 6.065 MHz is the radiative decay rate for the 5P3/2

state of 87Rb and σ k
i,j is the projector for atom k for states i and

j . Damping from the excited Rydberg states is characterized
by a much longer lifetime, typically on the millisecond scale,
and we may safely neglect the effect for microsecond gate
operations. However, we do note that including the decays
from Rydberg states is more delicate: the atoms are effectively
lost from the system, so we will need to trace over any lost
atom(s) in obtaining our final result. Finally, it is possible to
include the finite line width of the laser beams in our analysis.
This is accomplished by the addition of dephasing terms in the
master equation, of the form

� =
NR+1∑
k=1

∑
i=1,e,x

1

2
γdph

(
2σ k

i,iρσ k
i,i − σ k

i,iρ − ρσ k
i,i

)
, (A5)

with γdph being the appropriate laser line width, and it should
be noted that the sum runs over the atoms and the states |1〉, |e〉,
and |4〉.

APPENDIX B: STRONGEST-PAIRS APPROXIMATION

We adopt a simplified treatment of Rydberg-Rydberg
interactions, so that we consider only the strongest inter-
actions between two atoms excited to the nSn′S state and
separated by a distance r . For control-ensemble interactions,
n′ = n − 1, whereas the ensemble atoms have n′ = n. The
interaction involves a coupling to a state n′Pn′′P state
whose energy is close to that of the nSn′S state, differing
by an amount �def . For control-ensemble interactions, n′′ =
n − 1, and for ensemble-ensemble interactions, n′′ = n − 2.
The energy shift of the doubly excited nSn′S state is
given by

VC,k = 1

2

(
�def − sgn(�def)

√
�2

For + 4C2
dd/r6

k

)
, (B1)

where

Cdd =
(

e

4πε0

)2

〈nSn′P |r|nSn′P 〉〈n′Sn′′P |r|n′Sn′′P 〉.
(B2)
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Zoller, Phys. Rev. Lett. 102, 170502 (2009).
[14] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439

(1994).

[15] S. Bergamini, B. Darquié, M. Jones, L. Jacubowiez, A.
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