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Photon reflection by a quantum mirror: A wave-function approach
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We derive from first principles the momentum exchange between a photon and a quantum mirror upon
reflection, by considering the boundary conditions imposed by the mirror surface on the photon wave equation.
We show that the system generally ends up in an entangled state, unless the mirror position uncertainty is much
smaller than the photon wavelength, when the mirror behaves classically. Our treatment leads us directly to the
conclusion that the photon momentum has the known value �k. This implies that when the mirror is immersed
in a dielectric medium the photon radiation pressure is proportional to the medium refractive index n. Our work
thus contributes to the longstanding Abraham-Minkowski debate about the momentum of light in a medium.
We interpret the result by associating the Minkowski momentum (which is proportional to n) with the canonical
momentum of light, which appears naturally in quantum formulations.
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The advances in nanofabrication techniques have allowed
extensive research on mechanical systems whose masses
are small enough so that they can significantly exchange
momentum with electromagnetic fields—the so-called op-
tomechanical systems. An important class of those systems
are the optomechanical cavities, in which the mechanical
system is described by a harmonic oscillator that couples
with the light [1]. In some cases the cavity is composed by
mirrors, and since the mid-1990s there were proposals of
studying quantum properties of such mirrors, for instance,
quantum fluctuations [2] and the construction of superposition
states [3–7]. Also, recently there have been many theoretical
discussions on entanglement between vibration modes of
mirrors in a quantum regime and light [8–10], while it has been
experimentally reported for other mechanical systems [11,12].

The quantum mechanical treatment for a cavity quantum
mirror interacting with photons can be based on a Hamiltonian
formulation [13], with a second quantization approach for
light. But here we take a different path, by using a photon
wave-function approach to treat the reflection of a single
photon by a quantum mirror. Our treatment is constructed from
first principles and can be used to describe photons interacting
with quantum mirrors in a cavity as well as a single photon
reflection by a quantum mirror. The mirror imposes boundary
conditions for the photon wave function at its surface and
this naturally leads to the photon radiation pressure on the
mirror, which is associated with the photon phase change upon
reflection. We discuss the mirror-photon entanglement and its
dependence on the relation between the photon momentum
and the mirror momentum uncertainty. When the mirror is
immersed in a medium with refractive index n, we show
that the radiation pressure is proportional to n, which agrees
with experiments performed with classical mirrors [14,15]. We
analyze this effect based on the association of the Minkowski
momentum (which is proportional to n) with the canonical
momentum of light [16], contributing to the long-standing
Abraham-Minkowski debate about the momentum of light in
material media [17,18].
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We consider one photon in a paraxial beam state with
arbitrary polarization that reaches a perfectly conducting plane
surface (the mirror) and interacts with it during a finite time.
The mirror surface is considered to be larger than the pho-
ton beam diameter and its description is quantized in the
z direction, which corresponds to the direction orthogonal
to the surface plane. We consider the mirror initially in
an arbitrary quantum state. We want to know the state of
the system after the photon is completely reflected, while
considering that the photon-mirror interaction occurs in a
time scale much smaller than the one by the quantum mirror
free evolution—in such case the mirror wave function can
be considered stationary during the reflection process. Our
strategy to solve the problem is to make use of the linearity
of both Schrödinger’s and Maxwell’s equations, to find the
known solution of a monochromatic classical electromagnetic
field being reflected by a fixed infinite plane mirror, and to
construct the arbitrary solution from the superposition of those.
In order to do this, we are going to describe both the mirror
and the photon with wave functions.

The mirror wave function is the traditional quantum
mechanical wave function whose time evolution is described
by the Schrödinger equation. For a classical perfectly fixed
mirror, its quantum state can be approximated as a Dirac
delta wave function in the position space, having a momentum
uncertainty that tends to infinity. Therefore no matter how
much momentum it exchanges with a photon, its wave function
can only acquire a global phase. Since an arbitrary quantum
state for the mirror can be decomposed in the position
eigenfunctions and since the Schrödinger equation is linear,
if we know what the interaction does to every position
eigenfunction, we know what it does to an arbitrary mirror
state.

We use the Bialynicki-Birula–Sipe wave-function descrip-
tion for the photon [19–22]. This photon wave function is a
complex vector function of the spatial and time coordinates
that completely describes the quantum state of a photon. It can
be decomposed in the eigenstates of the helicity operator σ̂ in
the following way:

�(r,t) = �+(r,t) + �−(r,t), (1)
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where

�±(r,t) =
√

ε0

2
E±(r,t) ± i

√
1

2μ0
B±(r,t). (2)

ε0 represents the electric permittivity and μ0 the magnetic
permeability of free space. We have σ̂�± = ±�± and the
condition ∇ · � = 0 is imposed. The helicity eigenstates
are associated with photons with circular polarizations and
the photon electric and magnetic fields are given by E =
Re[

√
2/ε0�(r,t)] = E+ + E− and B = Im[

√
2μ0σ̂�(r,t)] =

B+ + B−. By introducing the term J(r,t) accounting for the
induced current in the medium due to the presence of the
photon field, Maxwell’s equations for the electromagnetic field
in a medium can be recovered with the use of the photon wave
equation [22],

i
∂�(r,t)

∂t
= cσ̂∇ × �(r,t) − i

J(r,t)√
2ε0

. (3)

This Maxwell wave equation determines the photon evolution,
just like the Schrödinger equation does for a quantum massive
particle. We note that to apply the second quantization
procedure to the electromagnetic field in the presence of matter
is an extremely difficult task [23–26]. The boundary conditions
imposed by the interface between different media and the
interaction of the electromagnetic field with dispersive and
absorptive media makes the quantization process to be very
complicated. In this sense, the use of the Maxwell wave equa-
tion greatly simplifies the treatment in relation to the second
quantization method when there is no absorption or emission
of photons in the problem to be treated. This is the case in the
present problem of the photon reflection by a quantum mirror.
Since the photon equation is equivalent to the Maxwell’s
equations, a boundary conditions problem for a photon
interacting with different media has the same solution as the
one for a classical electromagnetic field. It is worth mentioning
that the photon wave-function formalism can be useful even
when there is the absorption and generation of photons in
a scattering process, as in the generation of entangled twin
photons with parametric down conversion [22,27].

Let zm = z0 be the plane of the mirror interface, with
the region zm > z0 being a perfect conductor, as shown in
Fig. 1. It can be shown that the electromagnetic field inside the
conductor falls to zero rapidly and there is no field propagation
inside the conductor [28]. When the penetration depth is
much smaller than the field wavelength, the field component
parallel to the interface is approximately zero at its surface.
Hence, by solving Maxwell’s equations with this condition,
we find that if there is a field E±(r,t) = ûk±E0ke

i(k·r−ωt) in
the zm < z0 region, called the incident field, then there must
be a field E′∓(r,t) = −ûk′∓E0ke

i(k′ ·r−ωt)e2i(k·ẑm)z0 , called the
reflected field, in the same region. This guarantees that, at
the interface, the component of the electric field parallel to
it is zero. Here k′ = k − 2(k · ẑm)ẑm, where ẑm is the unit
vector perpendicular to the surface of reflection and pointing
inward the conductor, and ûk± are the circular polarization
unit vectors. Given the reference frames (x,y,z) and (x ′,y ′,z′)
indicated in Fig. 1, we define ûk± = (x̂ ± iŷ)/

√
2 and ûk′± =

(x̂′ ± iŷ′)/
√

2. Hence, in the same spatial configuration, the
boundary conditions demand that if the incident photon in this

FIG. 1. An electromagnetic field with wave vector k is reflected
by a perfect mirror, resulting in a reflected wave with wave vector
k′ = k − 2(k · ẑm)ẑm.

space is described by the wave function,

�±(r,t) = ûk±Aei(k·r−ωt), (4)

in the region zm � z0, then in that same region there must be
a reflected part of the the wave function given by

� ′∓(r,t) = −ûk′∓Aei(k′ ·r−ωt)e2i(k·ẑm)z0 , (5)

with k′ = k − 2(k · ẑm)ẑm. From now on, we represent the
state of a photon with wave vector k and helicity ± in the Dirac
notation as |k±〉. The reflection implies that for every |k±〉
component of the field, there must be another component |k′∓〉
with the same amplitude and a phase difference −e2i(k·ẑm)z0 in
order to satisfy the boundary conditions. Of course, the wave
function must be zero for zm > z0.

Up to now we have been dealing with plane waves, which
extend themselves with the same amplitude through all times
and all space, but in our problem the interaction takes place
during a finite time and in a restricted region of the mirror.
So in order to talk about before and after the reflection of the
photon and to consider that the mirror surface is larger than the
beam diameter, we make use of the superposition principle and
allow the state of the photon to be a superposition of different
wave vectors, therefore confining it in space and time. For an
incident photon in a beam state,

|ψ〉 =
∫

ψ(k)(ck+|k+〉 + ck−|k−〉) d3k, (6)

with |ck+|2 + |ck−|2 = 1 for every k and
∫ |ψ(k)|2d3k = 1,

our treatment implies that, apart from a global phase, the
reflected photon state must be

|ψ ′〉 =
∫

ψ(k)(ck−|k′+〉 + ck+|k′−〉)e2i(k·ẑm)z0 d3k. (7)

We are finally ready to include the wave function for the z

position of the quantum mirror in the description. Equations (6)
and (7) correspond to the situation of a fixed mirror at the
position zm = z0, that is, its state is described by the wave
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function 〈zm|z0〉 = δ(zm − z0). Hence, for a mirror in an
arbitrary state |φ〉 with wave function φ(zm) = 〈zm|φ〉, the
composite state of the system before the interaction is

|�〉 =
∫

ψ(k)(ck+|k+〉 + ck−|k−〉) d3k

⊗
∫

φ(zm)|zm〉 dzm, (8)

which leads us to the state after the reflection,

|� ′〉 =
∫∫

ψ(k)φ(zm)e2i(k·ẑm)zm

× (ck−|k′+〉 + ck+|k′−〉)|zm〉 d3k dzm. (9)

The state described in Eq. (9) has a different phase factor for
each ket |k±〉|zm〉 of the composite system state. This phase
depends on the eigenvalues k and zm, which means that this
is a nonseparable, or entangled, state. So in general there are
nonclassical correlations between the photon and the quantum
mirror after the photon reflection.

We can also write the state of Eq. (9) in the linear
momentum basis for the mirror {|pm〉}, given that 〈pm|zm〉 =
(2π�)−

1
2 e−ipmzm/�. We are led to

|� ′〉 =
∫∫

ψ(k) φ̃(pm − 2�(k · ẑm))

× (ck−|k′+〉 + ck+|k′−〉)|pm〉 d3k dpm, (10)

where

φ̃(pm) = 〈pm|φ〉 = (2π�)−
1
2

∫
φ(zm)e−ipmzm/�dzm. (11)

From the above equations it is clear that every component |k±〉
pushes the mirror by transferring a momentum 2�(k · ẑm) to
it. This is the exact necessary amount to conserve momentum,
since the reflection simply inverts every photon wave-vector
component in the zm direction. It is interesting to note that we
arrived at this result of the momentum transfer from the photon
to the mirror simply by imposing boundary conditions on the
photon reflection. No specification of the photon momentum
was made. In other words, we can conclude that the photon
momentum is given by the expression �k simply by computing
the momentum transfer to the mirror upon reflection and
imposing momentum conservation.

We can analyze some classical limits of the quantum state
of Eqs. (9) and (10). In the case when the mirror position
wave function approximates a delta function, Eq. (9) reduces
to Eq. (7) for the reflected photon, with the mirror state
unaltered by the photon reflection. In the view of Eq. (10), this
approximation is valid when the mirror momentum uncertainty
is much larger than the momentum gained by the reflection of
each k component of the photon state. Since �pm�zm ∼ �,
this is equivalent to the mirror position uncertainty being much
smaller than the wavelengths that compose the photon state.
For an optical photon with average wavelength λ ∼ 500 nm,
it means that the mirror should have a position uncertainty at
least around �x ∼ 10−7m for significant entanglement effects
to appear. It is important to note that the momentum transfer
from the photon to the quantum mirror can be increased by a

factor of Q if the quantum mirror is one of the mirrors of a
cavity with a quality factor Q. This is because the photon is
reflected on average Q times by the quantum mirror before
leaving the cavity. Entanglement effects may arise in that
way with, for instance, �x ∼ 10−13m, with Q ∼ 106. If the
mirror is in the ground state of a quantum harmonic oscillator,
the relation between its mass m0, its resonance frequency
ω0, and its position uncertainty is �x = √

�/2m0ω0 [29].
In that sense, m0ω0 gets smaller as �x grows larger, hence
entanglement effects arise whenever m0ω0 ∼ 10−8kg/s or
smaller. A look at Table II of [1] shows us that the suspended
mirrors with smallest m0ω0 have it of order 10−6kg/s along
with Q ∼ 106 [30], which is a bit far from the regime needed.
So it is still not possible to effectively entangle spatial modes
of a photon and a mirror upon reflection.

Another disentangled state limit occurs if the photon prop-
agates as a nearly monochromatic beam along the direction
k0 (but nonmonochromatic enough so that the interaction is
still much faster than any evolution due to the free mirror
Hamiltonian). In a rough approximation, the final state of
Eq. (10) is then almost disentangled and the mirror momentum
wave function is displaced by 2�(k · ẑm):

|� ′〉 ≈
∫

ψ(k) (ck0−|k′+〉 + ck0+|k′−〉) d3k

⊗
∫

φ̃(pm − 2�(k0 · ẑm))|pm〉 dpm. (12)

Intermediate regimes account for mirror position uncer-
tainty of the order of the average wavelength of nonmonochro-
matic light, and those generally result in a nonseparable state,
as explicit in Eq. (10). Following the discussions of the above
paragraphs, such regimes can in principle be achieved by
engineering cavities with larger quality factors tuned to smaller
light wavelengths. But since a high quality factor is associated
with highly monochromatic light allowed in the cavity, present
technology seems to be in a deadlock to try to probe this kind
of entanglement. It is important to note, though, that if a cavity
with the quantum mirror is in one arm of an interferometer, as
proposed in [5], entanglement between the photon and the
mirror could be generated due to the superposition of the
single photon propagating on each arm of the interferometer.
The quantum superposition of the path in which the photon
interacts with the mirror and transfers momentum to it with
the path in which the photon does not interact and does not
transfer momentum to the mirror may result in an entangled
state. But an experimental realization of this proposal has not
yet been accomplished.

Now we address the historical Abraham-Minkowski de-
bate, which concerns how the linear momentum carried
by light behaves when it propagates through a dielectric
medium [17,18]. The two apparently contrary views, due to
Max Abraham and Hermann Minkowski, respectively, identify
the momentum of the electromagnetic field either inversely or
directly proportional to the refractive index of the medium.
But it is important to note that when both the electromagnetic
and material energy-momentum tensors are taken into account,
the experimental predictions of Abraham’s and Minkowski’s
formulations are equivalent [17,31,32]. Recently Barnett
showed how the Abraham and Minkowski momenta can
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be associated with the kinetic and canonical momentum of
the field, respectively [16,18]. It is clear that, according to
Eq. (10), the momentum gained by every component |pm〉
of the mirror is proportional to the wave-vector component
k. If ûk is the unitary vector along the direction of k, then
we can write k = n(ω/c)ûk, where n is the refractive index
of the medium in which the photon is propagating. Clearly,
this corresponds to the Minkowski momentum for the photon,
which is directly proportional to n. This behavior was observed
in the experiments with classical light being reflected by
classical mirrors immersed in dielectric media [14,15], and
we present a fully quantum justification here. The answer
to why the Minkowski momentum appears in this case lies
in the fact that quantum mechanics is a Hamiltonian theory,
based on canonical relations between position and momentum.
The phase acquired upon reflection by the photon in Eq. (7),
which is dependent on the mirror position, is shared by both
the mirror and photon in Eq. (9). The canonical commutation
relations in quantum mechanics define translation operators
with the same form as these phase factors [29], hence turning
those phase factors into momentum kicks, made explicit on
each component of Eq. (10). It is natural then that our system
will reveal the canonical momentum of the photon, which
corresponds to the Minkowski momentum.

In summary, we have treated a single-photon reflection by
a quantum mirror using the photon wave-function formalism.
This allowed us to treat the problem using boundary conditions
on the photon wave equation instead of using the second
quantization formalism for light. By computing the momentum
transferred from the photon to the mirror, we concluded that
a photon with wave vector k must have momentum �k in
order to achieve momentum conservation in the system, as
expected. We also showed that in the case that the photon
is not monochromatic and its average wavelength is of the
order of the mirror position uncertainty, entanglement between
them might appear with the reflection process. Finally we
addressed a contribution to the Abraham-Minkowski debate by
showing, with a quantum treatment from first principles, that
the momentum transferred from a photon to a mirror immersed
in a dielectric medium upon reflection is proportional to the
medium refractive index. This result associates the photon
momentum with the Minkowski momentum. This is natural
given that the Minkowski momentum is associated with the
canonical momentum of light, which is the momentum that
should appear in a quantum treatment.

This work was supported by the Brazilian agencies CNPq
and CAPES.
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