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Closed-form expression for the Goos-Hänchen lateral displacement
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The Artmann formula provides an accurate determination of the Goos-Hänchen lateral displacement in terms
of the light wavelength, refractive index, and incidence angle. In the total reflection region, this formula is widely
used in the literature and confirmed by experiments. Nevertheless, for incidence at critical angle, it tends to
infinity and numerical calculations are needed to reproduce the experimental data. In this paper, we overcome the
divergence problem at critical angle and find, for Gaussian beams, a closed formula in terms of modified Bessel
functions of the first kind. The formula is in excellent agreement with numerical calculations and reproduces, for
incidence angles greater than critical ones, the Artmann formula. The closed form also allows one to understand
how the breaking of symmetry in the angular distribution is responsible for the difference between measurements
done by considering the maximum and the mean value of the beam intensity. The results obtained in this
study clearly show the Goos-Hänchen lateral displacement dependence on the angular distribution shape of the
incoming beam. Finally, we also present a brief comparison with experimental data and other analytical formulas
found in the literature.
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I. INTRODUCTION

When light is totally reflected, evanescent waves appear in
the medium of lower refraction index [1,2]. In this case, the
interference between the incident and the reflected waves is
responsible for the lateral displacement of the reflected light.
This displacement is called the Goos-Hänchen (GH) shift in
honor of the physicists who in 1947 [3] proposed and realized,
for transverse electric (TE) waves, an experiment to show
this phenomenon. They were able to observe this lateral shift
by a multiple reflection experimental device. One year later
[4], in order to theoretically explain the results obtained in
the GH experiment, Artmann proposed an analytical formula
based on the phase difference between the incident and the
reflected beams. His formula was in excellent agreement
with the experimental data obtained by Goos and Hänchen
and, more important, the new formula predicted a different
shift for transverse magnetic (TM) waves. In 1949 [5], new
measurements done by Goos and Hänchen confirmed the
polarization dependence suggested by Artmann.

To make our presentation self-contained, let us take a
look at the Artmann derivation dating back to 1949. For
an optical beam propagating through the dielectric layout
drawn in Fig. 1(a), the transversal displacement (dGH) can be
expressed in terms of the Artmann shift (δGH) by an appropriate
geometrical factor,

dGH = cos ϕ0 cos θ0

cos ψ0
δGH. (1)

For a multiple block dielectric structure, composed for ex-
ample by N triangular prisms, the final displacement will be
NdGH; see Fig. 1(c). The Fresnel coefficients of the reflected
waves at the down dielectric-air interface of the triangular
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prism of Fig. 1(a) are given by

{R[TE],R[TM]}

=
{

n cos ϕ −
√

1 − n2 sin2 ϕ

n cos ϕ +
√

1 − n2 sin2 ϕ
,
cos ϕ − n

√
1 − n2 sin2 ϕ

cos ϕ + n
√

1 − n2 sin2 ϕ

}
.

(2)

These coefficients gain an additional phase when n sin ϕ > 1.
This phase is different for TE and TM waves:{
φ

[TE]
GH ,φ

[TM]
GH

}
= −2

{
arctan

[√
n2 sin2 ϕ − 1

n cos ϕ

]
, arctan

[
n
√

n2 sin2 ϕ − 1

cos ϕ

]}
.

(3)

The first-order term in the Taylor expansion of these new
phases is responsible for the lateral displacements [6]. In order
to quantify these shifts, Artmann used the stationary condition{

∂

∂ϕ

[
nk(y∗ sin ϕ − z∗ cos ϕ) + φ

[TE,TM]
GH

]}
0

= 0 (4)

(k = 2π/λ), obtaining, for the reflected beam intensity, a
maximum which moves along

y∗ = −z∗ tan ϕ0 + δ
[TE,TM]
GH(Art) ,

with {
δ

[TE]
GH(Art),δ

[TM]
GH(Art)

}
= − 1

nk cos ϕ0

{
∂φ

[TE]
GH

∂ϕ
,
∂φ

[TM]
GH

∂ϕ

}
0

= 2 tan ϕ0

k
√

n2 sin2 ϕ0 − 1

{
1,

1

n2 sin2 ϕ0 − cos2 ϕ0

}
. (5)

The different transversal shift for TE and TM waves was pre-
dicted by Artmann in 1949 [4]. The experimentally observed
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FIG. 1. Dielectric blocks geometry. Dielectric structure composed by N triangular prisms. The GH shift of the outgoing beam with respect
to the path predicted by geometrical optics is proportional to the number of triangular prisms, NdGH.

values,

{
d

[TE]
GH(Art),d

[TM]
GH(Art)

} = cos θ0 cos ϕ0

cos ψ0

{
δ

[TE]
GH(Art),δ

[TM]
GH(Art)

}
= −1

k

{
∂φ

[TE]
GH

∂θ
,
∂φ

[TM]
GH

∂θ

}
0

, (6)

confirmed Artmann’s prediction for incidence far enough from
the critical region [3,5,7–10].

The question now is how to remove the infinity at critical
angles,

ϕc = arcsin[1/n] ⇒ θc = arcsin[(1 −
√

n2 − 1)/
√

2],

and, consequently, the discrepancy between the Artmann
formula and the experimental data in the critical region [9].
Notwithstanding the great interest in the literature [11–15] (for
clear and detailed reviews on the GH shift see Refs. [16,17]),
the divergence problem of the Artmann formula was often
overcome by using numerical calculations [14,18,19] to fit
the experimental curves [7–10]. An analytical formula for the
amplification of the GH shift at critical angle was recently
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proposed [14] but it is only valid for incidence at critical angles
and does not explain the maximum obtained by numerical
calculation for angles greater than the critical one. In this
paper, we aim to obtain the analytical formula for the full
critical region. The possibility to have an analytical formula
represents a great advantage in studying the behavior of light at
the dielectric-air interface. For example, such a formula could
allow one to understand the reason for the amplification in the
critical region, to calculate the incidence which guarantees the
maximal shift, to study the breaking of symmetry in the angular
distribution, and, clearly, to avoid numerical calculations to
obtain, for different refractive indices, the GH displacement
plots in the critical region.

II. CLOSED-FORM EXPRESSION FOR GAUSSIAN BEAMS

The laser propagation can be described by assuming that the
beam has an ideal Gaussian intensity profile. So, we consider
an incident beam moving in the plane yz along the z axis
forming an angle θ0 with the z̃ axis, normal at the left air-
dielectric interface [see Fig. 1(a)],

Einc = E0

∫ +π/2

−π/2
dθg(θ − θ0) exp[ik(̃y sin θ + z̃ cos θ )],

(7)

with angular Gaussian distribution given by

g(θ − θ0) = kw0

2
√

π
exp[−(kw0)2(θ − θ0)2/4], (8)

where w0 is the radius of the 1/e2 irradiance contour at the
plane where the wave front is flat.

The idea which suggested how to remove the infinity is
very simple. The stationary phase condition given in Eq. (6)
clearly represents a limit case. For example, it does not take
into account the particular shape of the angular distribution
which characterizes the incoming optical beam. It gives a
good approximation for the GH shift when ∂φGH/∂θ can

be calculated in θ = θ0 and consequently factorized from the
integral containing the angular distribution. Thus, in looking
for a correct generalization of the stationary condition, we
have to calculate, as done for the numerical calculations which
reproduce the experimental data, the following integral:

d
[TE]
GH = −1

k

∫ +π/2

n sin ϕ = 1
dθg(θ − θ0)

∂φ
[TE]
GH

∂θ

/
∫ +π/2

−π/2
dθg(θ − θ0). (9)

Without loss of generality, for kw0 � 1 and θ0 � π/2 −
5/kw0, we can approximate the previous equation as follows:

d
[TE]
GH = 2 sin ϕ0 cos θ0

k cos ψ0

∫ +∞

n sin ϕ = 1
dθ

g(θ − θ0)√
n2 sin2 ϕ − 1

. (10)

The problem now is to analytically solve this integral. So, let
us expand around θ0 the argument of the square root which
appears in the denominator,

n2 sin2 ϕ − 1 ≈ n2 sin2 ϕ0 − 1 + n sin(2ϕ0) cos θ0

cos ψ0
(θ − θ0)

= n sin(2ϕ0) cos θ0

cos ψ0
(θ − θ0 − σ0), (11)

with

σ0 = (1 − n2 sin2 ϕ0) cos ψ0

n sin(2ϕ0) cos θ0
.

By using this expansion, Eq. (10) can be rewritten as

d
[TE]
GH = w0

√
tan ϕ0 cos θ0

2nπ cos ψ0

∫ +∞

θ0 + σ0

dθ
exp[−(kw0)2(θ−θ0)2/4]√

θ − θ0 − σ0
.

(12)

By introducing the new integration variable ρ =
kw0(θ − θ0 − σ0)/2 and expanding the integrand in a
Taylor series, we find

d
[TE]
GH =

√
w0

k

tan ϕ0 cos θ0

nπ cos ψ0

∫ ∞

0
dρ exp

[
−

(
ρ + kw0σ0

2

)2]/√
ρ

=
√

w0

k

tan ϕ0 cos θ0

nπ cos ψ0
exp

[
−

(
kw0σ0

2

)2] ∞∑
m=0

(−kw0σ0)m

m!

∫ ∞

0
dρe−ρ2

ρm− 1
2

= 1

2

√
w0

k

tan ϕ0 cos θ0

nπ cos ψ0
exp

[
−

(
kw0σ0

2

)2] ∞∑
m=0

(−kw0σ0)m

m!
�

[
1 + 2m

4

]
. (13)

It is interesting to observe that, after algebraic manipulations, the series, appearing in the previous equation, can be expressed in
terms of the modified Bessel functions of the first kind,

Iα(x) =
∞∑

m=0

(x/2)2m+α

m!�[m + 1 + α]
.

Let us introduce the variable x = kw0σ0/2
√

2 and begin the calculation of

exp[−2x2]
∞∑

m=0

(−2
√

2x)m

m!
�

[
1 + 2m

4

]
.
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Observing that

exp[−x2]

21/4π

∞∑
m=0

(−2
√

2x)m

m!
�

[
1 + 2m

4

]
= �[ 1

4 ]

21/4π

{
1 + x4

3
+ x8

42
+ x12

1386
+ · · · +

√
2π

m!4m�
[
m + 3

4

]
�

[
1
4

]x4m + · · ·
}

−21/4�
[

3
4

]
π

{
2x + 2x5

5
+ x9

45
+ x13

1755
+ · · · + π/

√
2

m!4m�
[
m + 5

4

]
�

[
3
4

]x4m+1 + · · ·
}

= 21/4
∞∑

m=0

(x/2)2m

m!�
[
m + 3

4

] − x

21/4

∞∑
m=0

(x/2)2m

m!�
[
m + 5

4

]
=

√
|x|I−1/4(x2) − x√|x|I1/4(x2), (14)

and introducing the new function

S[x] = exp[−x2]
√

|x|[I−1/4(x2) − sgn(x)I1/4(x2)], (15)

we can finally give the new closed form for the GH shift in
terms of the modified Bessel function of the first kind, i.e.,

d
[TE]
GH =

√
π tan ϕ0 cos θ0

2
√

2n cos ψ0

S
[
kw0σ0

2
√

2

]√
w0

k
. (16)

The main goal of our derivation is to remove divergence.
Indeed, at a critical angle σ0 = 0, observing that

lim
x→0

S[x] = �
[

1
4

]
21/4π

,

we now find

d
[TE,cri]
GH =

√
cos θcri

cos ψcri

tan ϕcri

nπ

�
[

1
4

]
2

√
w0

k

≈ �[ 1
4 ]

2
√

nπ (n2 − 1)1/4

√
w0

k
, (17)

where the last approximation comes from the fact that in the
critical region cos θcri ≈ cos ψcri. Equation (17) clearly shows
that at critical incidence we find the amplification factor

√
kw0

with respect to the behavior proportional to λ predicted by
Artmann, Eq. (18).

We can also estimate from which incidence angle it is
correct to use the Artmann formula. For kw0σ0 < −2π , due
to the presence of the Gaussian integrand g(θ − θ0), the lower
limit of integration in Eq. (12) can be changed to −∞ and, by
using

lim
x→−∞

√
|x|S[x] =

√
2

π
,

we find

d
[TE]
GH(kw0σ0 	 −1) −→

√
tan ϕ0 cos θ0√

2n cos ψ0

2
√

2

kw0(−σ0)

w0

k
= d

[TE]
GH(Art).

(18)

Observing that in the critical region −σ0 ≈ nδϕ = δθ , we
obtain the incidence angle starting from which we can use
the Artmann formula

θ0(Art) � θcri + 2π

kw0
= θcri + λ

w0
. (19)

It is interesting to observe that this angle does not depend
on the refractive index. It only depends on the ratio be-
tween w0 and λ. For example, for a Gaussian He-Ne laser
(λ = 633 nm) with w0 = 1 mm, we find δϕArt ≈ 0.036◦; see
Figs. 2(c) and 2(d).

From the new analytical formula (16), we can also deter-
mine the incidence angle for which the GH shift is maximized.
To do it, let us observe that the maximum of S[x] is found at

xmax = −0.38.

As was done for the Artmann limit, by using θ0 = θcri + δθmax

in σ0, we obtain

−0.38 = kw0σ0

2
√

2
≈ −kw0nδϕmax

2
√

2

≈ −kw0δθmax

2
√

2
⇒ δθmax ≈ 1

kw0
.

This shows that, as predicted by numerical and experimental
data, the maximum is not found at the critical incidence but at
angles greater than the critical one,

θmax = θcri + 1

kw0
. (20)

This angle is independent of the refractive index of the
dielectric block.

The results obtained for the GH shift in the case of TE
waves are immediately extended to TM waves by observing
that

d
[TM]
GH = d

[TE]
GH

n2 sin2 ϕ0 − cos2 ϕ0
. (21)

At critical angles, for TM waves we find an amplification with
respect to TE waves,

d
[TM,cri]
GH = n2d

[TE,cri]
GH . (22)

Note that for the angle in which it is found the maximal shift
is the same for TE and TM waves.

In Fig. 2, we plot the analytical curves (solid blue lines) for
the GH shift for TE and TM waves with λ = 0.633 nm and
w0 = 0.5, 1.0, 2.0 mm. The analytical curves show an excellent
agreement with the numerical data (gray dots) obtained by
calculating the GH shift of the maximum, with respect to the
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FIG. 2. GH shift for Gaussian optical beams. The GH shift of the intensity’s maximum and mean value is plotted, for TE and TM waves,
as a function of the incidence angle θ0 for Gaussian beams with λ = 0.633 nm and different beam waist w0 = 0.5, 1.0, 2.0 mm. The analytical
expressions for the maximum, given in Eqs. (16) and (21) and represented by solid blue lines, and for the mean value, given in Eqs. (27) and
(30) and represented by dashed red lines, are in excellent agreement with the numerical data (gray dots). The difference between these curves
clearly shows the breaking of symmetry in the critical region, θ0 ∈ [θcri − λ

w0
,θcri + λ

w0
].

Snell path z̃ = ỹ tan θ0, directly from the outgoing beam

E
[TE,TM]
out = E0

∫ +π/2

−π/2
dθT [TE,TM]g(θ − θ0) exp[ik(̃z sin θ + ỹ cos θ )], (23)

with

{T [TE],T [TE]} = 4n cos θ cos ψ

{
R[TE]

(cos θ + n cos ψ)2
,

R[TM]

(n cos θ + cos ψ)2

}
. (24)
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III. BREAKING OF SYMMETRY AND MEAN VALUE ANALYSIS

Once we have obtained the integral expression for the outgoing beam, we can calculate its mean value shift,

〈
d

[TE]
GH

〉 =
∫ +∞
−∞ dz̃ z̃ cos θ0

∣∣E[TE,TM]
out

∣∣2∫ +∞
−∞ dz̃

∣∣E[TE,TM]
out

∣∣2 − ỹ sin θ0. (25)

By using the z̃ integration to obtain an angular δ function and using this δ function to integrate one of the angular integration
variables, we get

〈
d

[TE]
GH

〉 =
1

2ik

∫ +π/2
n sin ϕ=1 dθ

g(θ − θ0) exp
{
i
[
φ

[TE,TM]
GH − kỹ sin θ0(θ − θ0)

]}
×∂θ

[
g(θ − θ0) exp

{
i
[
φ

[TE,TM]
GH − kỹ sin θ0(θ − θ0)

]}]∗∫ +π/2
−π/2 dθg2(θ − θ0)

+ H.c. − ỹ sin θ0

= −1

k

∫ +π/2

n sin ϕ=1
dθg2(θ − θ0)

∂φ
[TE]
GH

∂θ

/∫ +π/2

−π/2
dθg2(θ − θ0) ≈ 2

√
2π

kw0

2 sin ϕ0 cos θ0

k cos ψ0

∫ +∞

n sin ϕ=1
dθ

g2(θ − θ0)√
n2 sin2 ϕ − 1

=
√

2w0

√
tan ϕ0 cos θ0

2nπ cos ψ0

∫ +∞

θ0+σ0

dθ
exp[−(kw0)2(θ − θ0)2/2]√

θ − θ0 − σ0
. (26)

Now, without repeating the mathematical discussion presented
in the previous section, we observe that this equation is
obtained by taking the substitution

w0 →
√

2w0

in Eq. (12). Consequently, the result obtained in Eq. (16) is
immediately generalized for the mean value analysis:

〈
d

[TE]
GH

〉 =
√

π tan ϕ0 cos θ0

2
√

2n cos ψ0

S
[
kw0σ0

2

]√√
2w0

k
. (27)

For incidence at the critical angle, we find an amplification
with respect to Eq. (17),〈

d
[TE,cri]
GH

〉 = 21/4d
[TE,cri]
GH , (28)

and in the Artmann limit we recover the standard formula,

〈
d

[TE]
GH(kw0σ0 	 −1)

〉 −→
√

tan ϕ0 cos θ0√
2n cos ψ0

2

kw0(−σ0)

√
2w0

k

= d
[TE]
GH(Art). (29)

The relation between TE and TM waves is the same encoun-
tered in the previous section; i.e.,

〈
d

[TM]
GH

〉 =
〈
d

[TE]
GH

〉
n2 sin2 ϕ0 − cos2 ϕ0

. (30)

In Fig. 2, we plot the analytical curves (red dashed lines) for
the mean value GH shift for TE and TM waves with λ =
0.633 nm and w0 = 0.5, 1.0, 2.0 mm. The analytical curves
show an excellent agreement with the numerical data (gray
dots). The difference between the blue solid lines and the red
dashed ones is a clear evidence of the breaking of symmetry
in the angular distribution. For the incoming optical beam,
due to the symmetry of the angular distribution the maximum
and the mean values coincide. For the transmitted beam, due
to the presence of R[TE,TM] in the transmission coefficient,

the angular distribution is no longer a symmetric distribution.
The breaking of symmetry is clearly dependent on the beam
size w0; for decreasing values of w0 the size of the angular
Gaussian distribution increases and consequently the breaking
of symmetry caused by the transmission coefficient is more
evident.

IV. DEPENDENCE ON THE SHAPE OF
THE ANGULAR DISTRIBUTION

In the previous section, we showed the difference between
maximum and mean value analyses and we saw how, for an
incidence angle greater enough than the critical one to avoid
the infinity, we recover the Artmann formula (6) which does
not distinguish between the two cases. In the critical region,
another important point comes from the dependence of the
Goos-Hänchen shift on the shape of the angular distribution.
To illustrate this additional dependence, we compare the results
obtained in Sec. II for Gaussian optical beams in the case of an
incoming beam whose spatial behavior is determined by the
Fourier transform of a box angular distribution,

b(θ − θ0) =
{

kw0

2
√

π
for θ − θ0 ∈ [− √

π

kw0
,

√
π

kw0

]
,

0 otherwise.
(31)

The choice of a box function is only because of its simple
integration. Thus, what we aim to present in this section can
be seen as a toy model to understand how the shape of the
angular distribution influences the GH shift curves.

Following the mathematical discussion presented in Sec. II,
we have

d
[TE]
GH,box = −1

k

∫ +π/2

n sin ϕ=1
dθb(θ − θ0)

∂φ
[TE]
GH

∂θ

/
∫ +π/2

−π/2
dθb(θ − θ0) = 2 sin ϕ0 cos θ0

k cos ψ0

∫ +π/2

n sin ϕ=1
dθb(θ − θ0)

/
023801-6
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√
n2 sin2 ϕ−1 = w0

√
tan ϕ0 cos θ0

2nπ cos ψ0

∫ θ0+
√

π

kw0

θ0+max[−
√

π

kw0
,σ0]

dθ

/
√

θ − θ0 − σ0 = w0

√
2 tan ϕ0 cos θ0

nπ cos ψ0

×
⎛⎝√ √

π

kw0
− σ0 −

√
max

[
−

√
π

kw0
,σ0

]
− σ0

⎞⎠. (32)

At the critical angle, σ0 = 0, we find

d
[TE,cri]
GH,box = w0

√
2 tan ϕ0 cos θ0

nπ cos ψ0

√ √
π

kw0
= 2

√
2
√

π

�[ 1
4 ]

d
[TE,cri]
GH,gaus

≈ 1.04d
[TE,cri]
GH,gaus, (33)

and in the limit −kw0σ0 � 1, we recover the Artmann formula

d
[TE]
GH,box(kw0σ0 	 −1) −→ w0

√
2 tan ϕ0 cos θ0

nπ cos ψ0

√
π

kw0
√−σ0

= d
[TE]
GH(Art), (34)

which does not depend on the shape of the angular
distribution.

In Fig. 3, we show the difference between box (dashed green
lines) and Gaussian (blue solid lines) angular distributions.
The analysis of the box angular distribution suggests that,
depending on the angular zone investigated, we can use a
simplified angular distribution to obtain a first indication on
the experimental data.

V. CONCLUSIONS

In this paper, we have shown the validity of the GH shift’s
Artmann formula for incidence angles greater than

θcri + λ

w0

[
ϕcri + n

λ

w0

]
.

In this region, the GH shift does not depend on the shape
of the angular distribution and, due to the symmetry of the
outgoing beam, does not distinguish between the maximum
and the mean value intensity measurements.

In the critical region,

θcri − λ

w0
� θ � θcri + λ

w0
,

we have found for Gaussian optical beams a closed-form
expression for the GH lateral displacement. In this region, due
to the breaking of symmetry, we have to distinguish between
the maximum and mean value intensity measurements. For TE
waves, we have obtained{

d
[TE]
GH,gaus,

〈
d

[TE]
GH,gaus

〉}
=

√
π tan ϕ0 cos θ0

2
√

2n cos ψ0

{
S

[
kw0σ0

2
√

2

]
,21/4S

[
kw0σ0

2

]}√
w0

k
,

(35)

with the new function

S[x] = exp[−x2]
√

|x|[I−1/4(x2) − sgn(x)I1/4(x2)]

given in terms of the Bessel function of the first kind. The new
formulas remove the divergence at the critical angle, where we
now find{
d

[TE,cri]
GH,gaus,

〈
d

[TE,cri]
GH,gaus

〉}= �
[

1
4

]
2
√

nπ (n2 − 1)1/4
{1,21/4}

√
w0

k
. (36)

The formulas for the TM wave are immediately obtained from
the TE ones:{

d
[TM]
GH,gaus,

〈
d

[TE]
GH,gaus

〉} = {
d

[TM]
GH,gaus,

〈
d

[TE]
GH,gaus

〉}/
(n2 sin2 ϕ0 − cos2 ϕ0). (37)

In 1970 [20], Horowitz and Tamir, by using a Fresnel
approximation to analytically solve the integral determining
the propagation of the transmitted beam, found, for the TE
and TM lateral displacement, a closed expression in terms of
parabolic-cylinder (Weber) functions. In the critical region, the
Horowitz-Tamir formula, translated in our notation,

(w,k0,k) → (w0,k,nk) and θ → ϕ0,

simplifies to

δ
[TE,TM]
GH(HoTa) ≈ A

[TE,TM]
0

25/4 cos ϕ0
Re[eiπ/4D−1/2(γ0)] exp

(
γ 2

0

/
4
)√w0

nk
,

(38)

with

γ0 = inkw0
sin ϕ0 − sin ϕcri√

2 cos ϕ0

and{
A

[TE]
0 ,A

[TM]
0

} = 4 sin ϕ0√
(sin ϕ0 + sin ϕcri) cos ϕcri

×
{

1,
n2 cos2 ϕcri

cos2 ϕ0 + n4(sin2 ϕ0 − sin2 ϕcri)

}
.

At the critical angle, ϕ0 = ϕcri implies γcri = 0. Observing that

D−1/2(0) = �
[

1
4

]
23/4

√
π

and
{
A[TE]

cri ,A[TM]
cri

}
= 2

√
2

(n2 − 1)1/4
{1,n2}, (39)

we find {
d

[TE,cri]
GH(HoTa),d

[TM,cri]
GH(HoTa)

}
= cos θcri cos ϕcri

cos ψcri

{
δ

[TE,cri]
GH(HoTa),δ

[TM,cri]
GH(HoTa)

}
= �

[
1
4

]
2
√

nπ (n2 − 1)1/4
{1,n2}

√
w0

k
. (40)

The results obtained by Horowitz and Tamir by using the
Weber functions are in perfect agreement with our results
found by using the modified Bessel functions; see Eqs. (36)
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FIG. 3. Dependence of the GH shift on the angular distribution shape. In the critical region, θ0 ∈ [θcri − λ

w0
,θcri + λ

w0
], the GH shift is

dependent on the shape of the angular distribution. As an example, we plot the intensity maximum for Gaussian (solid blue lines) and box
(dashed green lines) angular distributions. In the Artmann zone, where the plane-wave limit is valid, no difference is found.

and (37). It is also interesting to note that the Horowitz-
Tamir maximum lateral displacement is found by numerical
calculations at

− iγmax = 0.77 ⇒ nkw0
sin(ϕcri + δϕmax) − sin ϕcri√

2 cos(ϕcri + δϕmax)

= 0.77 ⇒ nδϕmax ≈ 1/kw0, (41)

once again in perfect agreement with the maximum displace-
ment given in Eq. (20). The formulations based on the Weber

and modified Bessel functions give an analytical expression for
the lateral displacement of the beam intensity maximum. In
our analysis is also obtained the analytical formula for its mean
value often measured in optical experiments. Clearly, starting
from Horwitz and Tamir’s work it is possible to generalize
their formula for the mean value case.

In an interesting paper dated 1986 [21], Cheng and Tang
compared the Horowitz-Tamir formula with experimental
data [8]. The Horowitz-Tamir formula as well the formula
presented in this paper do not contain any axial corrections.
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This means that the camera in the experiment has to be moved
close to the interface from which the outgoing beam appears.
Axial dependence [22] requires a more complicated study for
analytical approximations together with a weak measurement
analysis [23]. The effect of the axial dependence appears
before the critical region. This effect, for example, could
be responsible for the difference observed between analytical
expressions and experimental data shown in Ref. [21].

The wave-packet approach is surely essential in obtaining
the GH shift. Nevertheless, other parameters also play an
important role in completing its description towards the
full correspondence with experimental reality. Notably, the
coherence is an important aspect of real optical systems
because real laser beams are always partially coherent. This
aspect was introduced in the GH theory by Wang et al. [24].
They investigated, by numerical calculations, the shift of the
reflected beam in the presence of partial coherence. The
interesting result was that as the spatial coherence of the
beam decreases its GH shift reduces. A formal expression
for the GH shift of partially coherent beams in terms of the
Mercer expansion recently appeared in the literature [25]. The
partial coherence as well the axial dependence have to be
included in joint analytical expression with experimental data
and the GH shift can be used to determine the coherence of

the incoming beam [25] as well the axial angular deviations
[23].

The analysis done for a box angular distribution clearly
shows the dependence on the distribution shape. This stim-
ulates further investigation to obtain the analytical formula
for the GH shift of other optical beams often used in laser
experiments, such as Hermite and Laguerre beams.

We hope the study presented in this paper could be useful
in understanding the effects of the breaking of symmetry in
the angular distribution and in avoiding numerical calculation
to test experimental data in the critical region.
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