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We investigate competition between two phase transitions of the second kind induced by the self-attractive
nonlinearity, viz., self-trapping of the leaky modes, and spontaneous symmetry breaking (SSB) of both fully
trapped and leaky states. We use a one-dimensional mean-field model, which combines the cubic nonlinearity
and a double-well-potential (DWP) structure with an elevated floor, which supports leaky modes (quasi-bound
states) in the linear limit. The setting can be implemented in nonlinear optics and Bose–Einstein condensates.
The order in which the SSB and self-trapping transitions take place with the growth of the nonlinearity strength
depends on the height of the central barrier of the DWP: the SSB happens first if the barrier is relatively high,
while self-trapping comes first if the barrier is lower. The SSB of the leaky modes is characterized by specific
asymmetry of their radiation tails, which, in addition, feature a resonant dependence on the relation between the
total size of the system and radiation wavelength. As a result of the SSB, the instability of symmetric modes
initiates spontaneous Josephson oscillations. Collisions of freely moving solitons with the DWP structure admit
trapping of an incident soliton into a state of persistent shuttle motion, due to emission of radiation. The study is
carried out numerically, and basic results are explained by means of analytical considerations.
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I. INTRODUCTION

Usually, the ground state (g.s.) of quantum-mechanical
systems exactly follows the symmetry of the underlying
Hamiltonian [1], while excited states may realize different
representations of the same symmetry (another situation is
exemplified by the Jahn–Teller effect in molecules, which
makes the g.s. of the electron subsystem spatially asymmetric,
thus breaking the symmetry of the respective Hamiltonian [2]).
In particular, for the double-well potential (DWP), which is
dealt with in the present work, the g.s. wave function is
spatially even, while the first excited state is odd. This is
not necessarily true in many-body settings. In that context,
the mean-field description of atomic Bose–Einstein conden-
sates (BECs) is provided by the Gross–Pitaevskii equation
(GPE) [3], which includes the cubic term accounting for
attractive forces between colliding atoms. Essentially the same
is the nonlinear Schrödinger equation (NLSE) modeling the
propagation of optical signals in Kerr-nonlinear media [4]. If
the self-focusing nonlinearity is strong enough, it gives rise
to the phase transition in the form of spontaneous symmetry
breaking (SSB) of the g.s. [5]. In its simplest manifestation,
which is provided by the DWP, the SSB implies that one well
traps a larger atomic density or field power than the other.
This effect also implies the breakup of the basic principle
of quantum mechanics, according to which the g.s. cannot
be degenerate, because the SSB gives rise to a pair of two
mutually symmetric ground states in the DWP, with the
maximum of the wave function found in either potential well
(as mentioned above, the Jahn–Teller effect gives rise to a
qualitatively similar situation). The same DWP setting admits
a symmetric state coexisting with the asymmetric ones but,
above the SSB point, the symmetric wave function no longer
represents the g.s., being unstable against symmetry-breaking
perturbations. In the course of the spontaneous transition from

the unstable symmetric state to a stable asymmetric one, the
choice between the two mutually degenerate asymmetric states
is determined by random perturbations, which push the system
to build the maximum of the wave function in the left or
right potential well. The SSB is a ubiquitous phenomenon,
with well-known manifestations in nonlinear optics, BECs,
superfluidity, superconductivity, ferromagnetism, etc. [5].

The concept of the SSB in nonlinear systems of the
nonlinear Schrödinger (NLS) type was, plausibly, introduced
for the first time in 1979 by Davies [6], who addressed a
nonlinear extension of the Schrödinger equation for a pair of
quantum particles with an isotropic interaction potential. In
this context, the SSB was predicted as the breaking of the
rotational symmetry in the g.s. Another early work, which
predicted the SSB in a relatively simple form, addressed the
self-trapping model, based on a system of linearly coupled
ordinary differential equations including the self-attractive
cubic terms [7].

In the effectively one-dimensional geometry, the SSB can
be studied in the framework of the scaled NLSE or GPE with
potential H (x) of the DWP type, for the amplitude of the
electromagnetic wave, or the single-particle wave function,
ψ(x,z):

i
∂ψ

∂z
= −1

2

∂2ψ

∂x2
− |ψ |2ψ + H (x)ψ, (1)

where z is the propagation distance in optics, or time in the
GPE. This equation can be reduced to a system of coupled
ordinary differential equations for two amplitudes, u1,2(z), by
means of the tight-binding approximation [8], which replaces
ψ(x,z) by a linear superposition of two stationary wave
functions, φ, corresponding to the states trapped separately in
either potential well, with their centers located at x = ±a [9]:

ψ(x,z) = u1(z)φ(x − a) + u2(z)φ(x + a). (2)
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The analysis of the SSB in BEC and similar models based
on Eq. (1) was initiated in Refs. [10] and [11]. In this case, in
the framework of the mean-field approximation, the symmetry
breaking is the phase transition of the second kind (alias the su-
percritical bifurcation, which does not admit hysteresis [12]).
Furthermore, GPE (1) was extended by adding an extra
(free) spatial coordinate, which transforms the DWP into a
two-dimensional dual-core structure [13]. In such a setting, the
self-attractive nonlinearity gives rise to matter-wave solitons,
which self-trap in the free direction [14]. The SSB destabilizes
symmetric solitons and replaces them by asymmetric ones,
provided that the norm of the wave function (which determines
the effective strength of the intrinsic nonlinearity) exceeds a
critical value [13]. In the latter case, the mean-field symmetry
breaking is a phase transition of the first kind (alias a subcritical
bifurcation [12]), which includes hysteresis. The subcritical
transition is typical to solitons in dual-core waveguides with
the Kerr self-focusing [15]. The same type of the transition
may be featured by continuous-wave (CW) states in dual-core
systems with non-Kerr nonlinearities [16].

In addition to the analysis of static symmetric and asym-
metric modes, dynamical regimes, most typically in the form
of oscillations of the mean-field wave function between two
wells of the DWP structure, were analyzed too. Following
the analogy with Josephson oscillations of the wave function
of Cooper-paired electrons in superconducting tunnel junc-
tions [17], the possibility of oscillations in bosonic Josephson
junctions was predicted [18]. The simplest dynamical model
of the Josephson oscillations in bosonic systems was derived
by means of the tight-binding approximation [19].

Experimental manifestations of the SSB have been ob-
served in both BECs and photonics. Self-trapping of a
macroscopically asymmetric state of the atomic condensate
of 87Rb atoms, loaded into a DWP, as well as Josephson
oscillations in that setting, were reported in Ref. [20] (in that
case, the effective nonlinearity is self-repulsive, therefore the
respective SSB occurs not in the symmetric g.s., but rather
in the antisymmetric first excited state). The SSB of laser
beams coupled into an effective transverse DWP created in
the self-focusing photorefractive medium was demonstrated
in Ref. [21]. Other experimentally observed SSB effects in
optics are spontaneously established asymmetric regimes of
operation of coupled lasers [22–25], and breaking of chiral
symmetry in metamaterials [26].

In addition to the usual bound states, one may work
with quasi-localized modes in potentials which do not admit
complete trapping in linear quantum mechanics but give rise to
leaky bound states, alias quasi-bound ones. The combination of
such a potential and self-attractive nonlinearity makes it possi-
ble to transform the leaky states into truly bound ones [27,28].
This possibility, in turn, suggests another setting, which is the
subject of the present work: DWP structures embedded into
a potential barrier. In the linear limit, this structure supports
solely symmetric leaky modes, which may be transformed into
self-trapped ones with the help of the cubic self-attraction. The
main feature of the system which, to the best of our knowledge,
was not explored before, is competition between two different
mean-field phase transitions of the second kind, driven by
the nonlinearity: the SSB and transition to the self-trapping.
Realization of the competition in stationary states of the DWP

system is the main subject of the present work. We demonstrate
that, depending on parameters of the DWP structure and
nonlinearity strength, either transition may happen first, with
the growth of the nonlinearity. Another essential problem
addressed in the paper is a dynamical one, namely, Josephson
oscillations in the DWP structure, initiated by the instability
of the symmetric mode, and collisions of free solitons with the
structure.

It is relevant to mention that, in terms of the BEC real-
izations, the present setting represents macroscopic quantum
states, with the phase transitions between them being quasi-
classical ones, considered in the framework of the mean-field
approximation. The validity of this approximation is usually
justified by the large number of atoms in the condensate [3].
The consideration of a few-body state in the DWP can
give rise to quantum phase transitions, such as those in the
Lipkin–Meshkov–Glick model, which applies in this case [29].
As suggested by a recent analysis of the three-dimensional
many-body quantum gas with repulsive binary interactions,
which is pulled to the center by a potential ∼ − 1/r2 [30], the
quantum phase transition may produce results similar to but
different from their mean-field counterparts [31]. In particular,
the g.s. predicted by the mean-field may be replaced by a
metastable state in the quantum many-body theory [30]. In
any case, the consideration of truly quantum phase transitions
in the DWP structure is a subject for a separate work.

The subsequent presentation is structured as follows: The
model is elaborated in Sec. II. Results of the analysis of
symmetric and spontaneously emerging asymmetric trapped
and leaky modes in it are summarized in Sec. III. Detailed
results are obtained in a numerical form, and their basic
features are explained by means of an analytical approach.
Both the trapped and leaky modes undergo the SSB transition
with the increase of the norm, the symmetric modes getting
unstable above the transition point. The nonlinear evolution
of the unstable modes, which features Josephson oscillations,
is studied by means of systematic simulations in Sec. IV. A
related possibility is a capture of incident solitons by the DWP
structure into shuttle states. This possibility is studied in a
systematic form in Sec. V. The paper is concluded by Sec. VI.

II. THE MODEL

The underlying dynamical model, based on Eq. (1), gives
rise to stationary modes with propagation constant k (in BECs,
−k is the chemical potential),

ψ(x,z) = eikzu(x), (3)

where real modal functions u(x) satisfy the equation

−ku + 1
2u′′ + u3 = H (x)u. (4)

Solutions with k > 0 represent self-trapped localized states,
while k < 0 corresponds to delocalized leaky modes, which
do not vanish at x → ±∞. The states of these two types
are characterized, respectively, by convergent and divergent
norms, N = ∫ +∞

−∞ u2(x)dx (proportional to the total power of
the light beam in optics, or the total number of atoms in BECs),

023644-2



SPONTANEOUS SYMMETRY BREAKING OF SELF-TRAPPED . . . PHYSICAL REVIEW A 93, 023644 (2016)

-10 -5 0 5 10

0.0

0.5

1.0

1.5

2.0
H

(x
)

x

A

FIG. 1. The symmetric double-well potential for leaky modes
(quasi-bound states), defined as per Eq. (6).

and Hamiltonian (energy),

E =
∫ +∞

−∞

[
1

2
(u′)2 − 1

2
u4 + 2H (x)u2

]
dx. (5)

The DWP can be readily implemented in experiment. In
optics, waveguides with this structure are fabricated with the
help of the implanting technique [32], while in BECs the
DWP setting can be created by means of electromagnetic
fields [33]. In the present work, calculations are reported for
the rectangular DWP profile with the elevated floor:

H (x) =
⎧⎨
⎩

A at |x| < 0.5
2 at 3 < |x| < 7
0 elsewhere,

(6)

where A > 0 is the height of the inner potential barrier
(see Fig. 1), while height Hmax = 2 of the outer barriers
is fixed by scaling. Values of lengths adopted in Eq. (6)
adequately represent the generic situation, as demonstrated by
additional numerical results (not shown here in detail). Indeed,
it is demonstrated below that the symmetry-breaking and
self-trapping transitions, and the competition between them,
crucially depend on the tunneling transparency of the central
barrier and the nonlinearity strength, i.e., the barrier height, A,
and total norm, N . These are two control parameters which
are subject to the variation in the subsequent analysis. For the
same reason, the main findings are not sensitive to a particular
shape of the DWP. In particular, the rectangular form of the
DWP, adopted in Eq. (6), which may be essential for some
dynamical effects such as temporal scaling in the relaxation
of perturbations [34], produces results which are essentially
the same as those generated by smooth DWP profiles (for
the self-trapping of the leaky modes in a single potential
well, this property was known before [27]). As concerns the
necessity of having the elevated potential floor, it may make
the experimental creation of the structure easier, because the
“floor” is naturally built by overlap of fringes of two potential
barriers which determine the DWP (in previously reported
experimental realizations of the DWP in BECs [20], the bottom
level of the potential had to be depressed, because those DWPs
trapped condensates with the repulsive interactions, contrary
to the case of the self-attraction, considered herein).

Obviously, in the absence of the self-attractive cubic term,
the potential (6) cannot support any bound state in the
respective linear model, while weakly delocalized quasi-bound
states are possible. Indeed, a straightforward estimate of the
tunneling coefficient for the tall barriers separating the inner
and outer parts of structure (6) yields

T � exp(−
√

2Hmax − q2W ) ≈ 4.4 × 10−4, (7)

where Hmax = 2 and W = 4 are the height and width of the
potential barriers, as per Eq. (6), and q ≡ π/l = π/6 is the
wave number of the lowest quasi-bound state in the potential
box of width l = 6.

For the study of collisions of moving solitons with the DWP
structure, the height of the inner barrier is fixed to be A = 0.5,
while the height, H0, and width, W0, of the outer barriers will
be varied to allow clearer observations of different collision
scenarios:

H (x) =
⎧⎨
⎩

0.5 at |x| < 0.5
H0 at 3 < |x| < 3 + W0 ≡ �/2
0 elsewhere.

(8)

Detailed consideration of the SSB in the leaky modes will
require an explicit calculation of small-amplitude radiation
tails attached to those modes outside of the barriers, i.e., at
|x| > 7; see Eq. (6). For this purpose, the DWP is embedded
into a broad free-space domain, |x| < L/2, with zero boundary
conditions (BCs):

u(|x| = L/2) = 0. (9)

III. SPONTANEOUS SYMMETRY BREAKING OF LEAKY
AND TRAPPED MODES

A. Structure of symmetric and asymmetric modes

Numerical solutions of Eq. (4) were obtained by means of
the shooting and Newton-matrix methods. While the former
makes it possible to find all relevant solutions independently
of an input trial function, the latter method can be applied to
obtain solutions with high accuracy, provided that the initial
guess is taken not too far from the final result. For the setting
addressed in this paper, the combination of both algorithms is
the most efficient way of obtaining stationary solutions.

As is typical for the SSB in systems with self-focusing
nonlinearity, it was found that the g.s. is spatially symmetric
below the bifurcation point (k < kbif) and asymmetric above
it, at k > kbif . The symmetric state exists at k > kbif too,
but in that case it is not a g.s., and is no longer stable. As
mentioned above, all mean-field phase transitions exhibited
by the present system are of the second kind, featuring no
hysteresis or bistability between symmetric and asymmetric
modes.

Generic examples of unstable symmetric and stable asym-
metric states of both trapped (k > 0) and leaky (kbif < k < 0)
types are displayed in Figs. 2(a) and 2(b), respectively. In
the latter case, the delocalized tails of the leaky mode are
extremely small, with amplitude

u
(max)
rad ≈ 1.2 × 10−4. (10)

Taking into consideration the value of the amplitude of the
delocalized mode at its center, U0 ≈ 0.40, tunneling coefficient
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FIG. 2. (a) Typical examples of trapped symmetric (black) and asymmetric (blue, gray in printed version) states for propagation constant
k = 0.1, the respective norms being Nsymm = 1.542 and Nasym = 1.082. (b) The same for leaky modes, at k = −0.085, with Nsymm = 0.642
and Nasym = 0.630. The inset in panel (b) zooms in on one spatial period the small oscillatory tail of the symmetric leaky mode. For the sake of
comparison, panel (c) displays the symmetric and asymmetric states with the same k as in panel (b), but trapped in DWP (6) with impenetrable
outer barriers (i.e., H = 2 is replaced by H = ∞ in them), the respective norms being Nsymm = 0.792 and Nasym = 0.769. All the modes are
produced by potential (6) with the height of the inner barrier A = 0.5.

(7) predicts an amplitude u
(max)
rad ∼ T U0 � 1.8 × 10−4, in rea-

sonable agreement with its numerically found counterpart (10).
For a given k, the spatial period of the tail in free space
is expected to be λ = π

√
2/|k| ≈ 15 for k = −0.085 in

Fig. 2(b), while the numerical solutions demonstrates a close
value, λ ≈ 13.5 (the small deviation from the predicted value
may be explained by the proximity of the tail to the outer
barrier).

The formally diverging contribution of the tails to the total
norm of the leaky mode is negligible, Nrad � (L/2)[u(max)

rad ]2,
where L ≈ 20 is the total size of the free-space part of the
configuration displayed in Fig. 2(b). Indeed, estimate (10) for
the tail’s amplitude yields Nrad ∼ 10−7, therefore the leaky
modes have definite values of the norm, as indicated in the
caption to Fig. 2(b).

For the sake of direct comparison between leaky and
trapped modes, in Fig. 2(c) we display stationary states with
the same propagation constant as in Fig. 2(b), but in the case

when they are confined by impenetrable (infinitely tall) outer
potential barriers in Eq. (6). It is seen that, similar to the
situation shown in Fig. 2(b), the smaller and larger values of N

correspond to the broken asymmetric and unbroken symmetric
modes, respectively. However, in the infinitely deep potential
box, the profiles of the wave functions are, naturally, narrower
and taller.

The symmetric modes displayed in Fig. 2 feature split
peaks, due to the fact that the inner potential barrier in Eq. (6)
is relatively high. On the other hand, the same potential
structure with an essentially smaller barrier height A supports
single-peak symmetric modes; see Fig. 6 below.

B. Spontaneous symmetry breaking of radiation
tails in leaky modes

As mentioned above, the SSB of trapped modes is a known
effect, which was previously studied in other forms [5,24]. A
phenomenon reported here is the SSB of leaky modes, which
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FIG. 3. (a) A typical example of tails of an asymmetric leaky mode, found at propagation constant k = −0.075. (b) The total norms of the
right and left tails of the asymmetric leaky mode, along with the tail norm for its symmetric counterpart, vs k. Vertical arrows indicate positions
of the maxima predicted, through the commensurability condition, by Eq. (12). (c) The asymmetry parameter for the tails’ norm, defined as
per Eq. (11), vs k. These results were obtained for A = 0.5 in DWP structure (6), and the total size of the system is L = 128.

include nonvanishing tails extending into free space outside of
the DWP structure. Even if the tails have small amplitudes,
it is interesting to analyze their structure in asymmetric
modes, because this issue was not considered previously. To
this end, we here focus on the symmetric and asymmetric
states in the setting based on the DWP (6) with A = 0.5 and
� = 14, embedded into a broad domain of size L = 128; see
Eqs. (6), (8), and (9). In this case, the asymmetric modes are
found at k � −0.100.

A characteristic example of asymmetric tails, i.e., left and
right tails with unequal amplitudes, is shown in Fig. 3(a) for
k = −0.075 . Further, separately calculated total norms of the
right and left tails, in regions �/2 < x < L/2 and −�/2 <

x < −L/2, along with the norm of the tails in the coexisting
unstable symmetric leaky mode, are displayed, as functions of
k, in Fig. 3(b). This dependence exhibits two notable features.
First, the asymmetry between the right and left tails emerges
at k = −0.100 and gradually increases with the increase of k

(i.e., decrease of |k|), even if each tail’s norm vanishes in the
limit of k → 0 (when the transition to the self-trapped mode

takes place, and the tails vanish). This feature is illustrated by
Fig. 3(c), which displays the asymmetry measure vs k:

θ (k) ≡
∫ L/2
�/2 u2(x; k)dx − ∫ −L/2

−�/2 u2(x; k)dx∫ L/2
�/2 u2(x; k)dx + ∫ −L/2

−�/2 u2(x; k)dx
. (11)

Second, the dependence of the tails’ norms on k shows strong
oscillations, which is explained by the commensurability-
incommensurability transitions between the wavelength of the
radiation tail and the total size of the free-space domains,
L/2 − �/2. Indeed, the radiation wave number given by
the free-space dispersion relation for linearized equation (4),
q = √−2k, determines the the radiation half wavelength,
π/q, which, in the case of the commensurability, satisfies
the relation (π/q)n = L/2 − �/2, with n = 1,2,3, . . .. Thus,
maxima of the radiation amplitude are expected at discrete
values of the propagation constant,

kn = −2[πn/(L − �)]2. (12)
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FIG. 4. Families of symmetric and asymmetric modes, represented by curves for the norm vs the propagation constant in panels (a)–(c),
Hamiltonian vs the norm in panels (d)–(f), and the asymmetry [defined per Eq. (15)] vs the norm in panels (g)–(i). The left, middle, and right
plots correspond to the height of the central barrier in potential (6) A = 0.05, 0.2, and 0.5, respectively. Continuous (olive) and dotted (red)
lines designate stable and unstable states, respectively. The dashed lines in the top and middle panels depict, for the sake of comparison, the
N (k) and E(N ) dependencies for the free-space solitons, given by Eq. (13). The square symbols in panels (a)–(f) designate the location of the
bifurcation points.

As shown in Fig. 3(b), Eq. (12) quite accurately predicts the
positions of the tail-norm peaks for n = 2,3,4,5,6,7, and
8, for L − � = 114, which corresponds to the present case
[n = 1 yields k1 ≈ −1.5 × 10−3, for which the tail’s ampli-
tudes are too small to discern the corresponding maximum,
while Eq. (12) with n = 9 predicts k9 ≈ −0.123, for which
asymmetric modes do not exist].

C. Spontaneous-symmetry-breaking diagrams

Getting back to the consideration of the SSB for the entire
system, systematic results are presented by means of plots
of N (k) and E(N ) [the Hamiltonian is defined by Eq. (5)]
for symmetric and asymmetric modes, which are displayed in
Figs. 4(a)–4(c) and 4(d)–4(f) for three different values of height
A of the inner barrier of potential structure (6). Note that the
N (k) curves obey the Vakhitov–Kolokolov criterion [35,36],
which is necessary but not sufficient for the stability of

modes supported by the self-attractive nonlinearity (it does
not catch the instability of the symmetric modes coexisting
with asymmetric ones). It is relevant to compare these plots
with their counterparts,

Nsol = 2
√

2k, Esol = −(1/3)(2k)3/2, (13)

for the NLS solitons in free space, given by Eq. (3) with

usol(x) =
√

2k sech(
√

2kx), (14)

which are displayed by dashed curves in Figs. 4(a)–4(f).
The SSB in the families of trapped and leaky states is

characterized by the asymmetry ratio,

	 ≡ N−1

[∫ +∞

0
u2(x)dx −

∫ 0

−∞
u2(x)dx

]
(15)

[cf. a similar definition for the tails, given by Eq. (11)], which is
shown as a function of N in Figs. 4(g)–4(i). These plots clearly
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FIG. 5. Values of (a) propagation constant k, and (b) total norm N at the SSB bifurcation point vs the height of the inner barrier (A). The
horizontal line k = 0 in panel (a) and the square symbol in panel (b) designate the boundary between the trapped and leaky modes.

identify the SSB-onset points, at which the symmetric mode
gets destabilized and simultaneously a stable asymmetric one
emerges. In accordance with what is said above, the bifurcation
is of the supercritical type [12], i.e., the emerging branches of
the asymmetric states immediately go “forward.” Conclusions
about the stability and instability of the solution branches
displayed in Fig. 4 were produced by means of the well-known
method [36] based on numerical computation of (in)stability
eigenvalues (imaginary parts of eigenfrequencies) for small
perturbations added to the stationary solutions, by using the
respective linearized (Bogoliubov–de Gennes) equations. In
particular, the instability of those symmetric states which
coexist with asymmetric ones is always represented by a single
pair of purely imaginary eigenfrequencies.

The fact that the asymmetric modes, when they exist, have
smaller values of E for given N , hence they realize the system’s
g.s. [see Figs. 4(d)–4(f)], can be easily understood: having their
center shifted from the layer occupied by the positive potential
(|x| < 0.5) to a region where H = 0 (0.5 < |x| < 3; see
Figs. 1 and 2), they obviously reduce the integral value of E.
The same argument explains why, for given k, the asymmetric
modes feature smaller N : having smaller overlap with the
region of H > 0, they need a smaller norm to compensate
the shift of k towards negative values induced by the positive
potential; see Eq. (4).

Note that the families of states displayed in Figs. 4(a)–4(c)
comprise both k < 0 and k > 0, i.e., the leaky and trapped
modes alike. In particular, the SSB bifurcation occurs at k >

0 in Figs. 4(a) and 4(b), and at k < 0 in Fig. 4(c) (in the
latter case, the SSB sets in at k = −0.100, as shown for the
same system in Fig. 3). A noteworthy fact is that the system
features the competition of the two different mean-field phase
transitions driven by the increase of N , i.e., the strength of
the self-attraction: the transition from the quasi-bound (leaky)
state to the self-trapped one, which was previously found in
single-well elevated potentials [27,28], and the SSB in the
DWP structure. Thus, in the cases shown in Figs. 4(a) and 4(b)
the self-trapping transition happens first (at smaller N ), while
in Fig. 4(c) the SSB takes place prior to the onset of the
self-trapping.

The values of the propagation constant and norm at the SSB
bifurcation point are shown as a function of the inner-barrier’s
height A [see Eq. (6)] in Fig. 5. In Fig. 5(a), the boundary
between the SSB occurring with the delocalized and trapped
modes (kbif < 0 and kbif > 0, respectively) is located at A ≈
0.30; the same value corresponding to the boundary designated
by the square symbol in Fig. 5(b). That is, the SSB happens
first (at smaller N ) at A > 0.30, while the transition to the
self-trapping precedes the SSB at A < 0.30.

The fact that the SSB happens with the trapped and leaky
modes, respectively, at small and large A, as seen in Fig. 5, is
easy to explain: small A implies strong linear coupling between
the wave functions in the two barely separated wells; thus,
very large N is required to induce the SSB, being far greater
than the value of N needed for the onset of the self-trapping,
which is determined by the fixed parameters of the outer barrier
in the DWP structure (6). On the contrary, large A implies
weak linear coupling between the strongly separated wells,
hence the respective strength of the nonlinearity (measured
by N ), required for the SSB, is much smaller than the value
necessary for the commencement of the self-trapping. These
arguments clearly suggest that the same sequence of the SSB
and self-trapping phase transitions should take place in generic
DWP structures.

These arguments can be cast in a more definite form, if
the central barrier in Eq. (6) is approximated by Hcentral(x) =
Aδ(x), and the outer barriers are made impenetrable, similar
to what is shown in Fig. 2(c). These conjectures replace the
present model by the one for an infinitely deep potential box
split by δ-function barrier, which is the simplest model of the
SSB [24,25]. In the limit of large A, the latter model predicts
the following value of the norm at the SSB bifurcation point:

Nbif ≈ 8π2/
(
3l2A

)
(16)

(see caption to Fig. 2 in Ref. [24]), where l/2 is the coordinate
of the point at which the wave function vanishes (half-width of
the infinitely deep box). In particular, one can identify l � 9 for
A = 0.5 in Fig. 2(b), hence Eq. (16) yields Nbif � 0.65, while
the respective numerical value in Fig. 5(b) is Nbif ≈ 0.62,
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FIG. 6. The evolution of unstable symmetric states is displayed in panels (a)–(c) for potential (6) with A = 0.05, and in panels (d)–(f) for
A = 0.5; the corresponding SSB bifurcations taking place (a)–(c) at positive kbif , viz., kbif ≈ 0.313, and (d)–(f) negative kbif , viz., kbif ≈ −0.100,
respectively: (a) k = 0.314; (b) k = 0.40; (c) k = 0.90; (d) k = −0.08; (e) k = −0.01; (f) k = 0.30 [k > 0 in panel (f) is chosen to display
unstable evolution which takes place far from the bifurcation point]. The instability gets stronger with the increase of k, i.e., moving from the
left panels to the right panels.

which implies a reasonable agreement for the present (not
really large) value of A.

IV. EVOLUTION OF UNSTABLE SYMMETRIC STATES

Conclusions concerning the stability and instability of the
symmetric and asymmetric modes, presented in Fig. 4, were
verified, in addition to the computation of eigenvalues for
small perturbations, by direct simulations, performed by dint
of the finite-difference algorithm. The instability development
of unstable symmetric states was catalyzed by adding small
initial symmetry-breaking perturbations to them. This was
done for the unstable symmetric states with both k > 0 and
for k < 0, i.e., self-trapped and leaky ones. Typical examples
are displayed in Fig. 6, in which the unstable symmetric
modes feature single- and double-peak (split-peak) shapes at
small and large values of the inner-barrier’s height, A = 0.05
and A = 0.5, respectively (in the top and bottom rows of
the figure).

As mentioned above, the instability of symmetric states is
accounted for by pure imaginary eigenfrequencies, hence the
originally developing instability is not oscillatory. However,
the nonlinearity makes the unstable dynamics oscillatory, as
seen in Fig. 6. In other words, the unstable symmetric modes
spontaneously develop bosonic Josephson oscillations. Close
to the instability onset, the effective oscillation period is very
large (as it diverges precisely at the onset point), gradually
decreasing deeper into the instability region. The dynamical
symmetry breaking induced by the weak and moderate insta-
bility is incomplete, leading to periodic oscillations between

the original symmetric state and a new asymmetric state,
as observed in Figs. 6(a)–6(e). Stronger instability causes
complete symmetry breaking, replacing the symmetric state by
an irregularly vibrating asymmetric mode, as seen in Fig. 6(f).

It is relevant to note the difference between the oscillatory
regimes generated by the instability of self-trapped and leaky
modes. Indeed, while Fig. 6(c) demonstrates that the shape of
the oscillating mode is sharp in the former case, the shape is
fuzzy in Fig. 6(e) because it involves an essential radiation
component in the case when the underlying unstable mode is
a leaky one.

V. COLLISIONS OF FREE SOLITONS WITH
QUASI-DOUBLE-WELL POTENTIAL STRUCTURE

In addition to the analysis of the stationary states performed
above, it is also relevant to consider collisions of free solitons
with the elevated DWP structure. For this purpose, the initial
soliton was created as the tilted (moving) version of the static
one given by Eqs. (3) and (14),

ψ(x,z) =
√

2k exp
[
i
(
k − c2/2

)
z + icx

]
× sech

{√
2k[(x − x0) − cz]

}
, (17)

where c is a real tilt (velocity), and x0 is the initial position
of the soliton, chosen far enough from the localized potential
structure (we here take x0 = −15). Generic findings are pro-
duced here for incident solitons with k = 3, the corresponding
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FIG. 7. The chart of outcomes of collisions of free solitons,
launched with tilt c [see Eq. (17)], with potential structure (8), in
the plane of (H0,c). The norm of the incident soliton is fixed as
per Eq. (18). In this figure, the width of the outer potential barriers
is W0 = 4. In region (1), the soliton bounces back from the left
outer barrier. Region (2) refers to trapping the soliton inside the
potential structure, where it performs shuttle motion. In region (3), the
incident soliton passes the structure. The dashed line is the analytical
prediction produced by Eq. (21).

norm being

N = 2
√

2k ≈ 4.90, (18)

according to Eq. (13), other values of N giving similar results.
Figure 7 presents a parameter chart for three different

outcomes of the collisions, produced by varying the height
of the outer barriers, H0 in Eq. (8), and tilt c in Eq. (17). In
the region designated as (1), i.e., for c small and/or H0 large
enough, the incident soliton bounces back the left outer barrier,
as shown in Fig. 8(a) for H0 = 0.6 and c = 0.8. At larger c, in a
relatively narrow region (2) of Fig. 7, the soliton gets captured
inside the potential structure, which resembles the previously
explored possibility of capturing an incident Bragg-grating
soliton by a cavity formed by two locally repulsive defects [37].
Similar to that setting, the trapped soliton performs shuttle
motion between the outer and inner potential barriers, as shown
in Fig. 8(b) for H0 = 0.6 and c = 1.15. The shuttle dynamical
regime is an essential addition to the stationary states revealed
by the analysis presented above. At still larger c, but yet staying
within the boundaries of the narrow region (2), the shuttle
motion of the trapped soliton becomes irregular, see Fig. 8(e)
for H0 = 1.3 and c = 1.8.

In region (3), the initial tilt, c, is large enough for the soliton
to pass the potential structure; see an example in Fig. 8(c)
for H0 = 0.6 and c = 1.5. Another option admitted by this
scenario is shown in Fig. 8(d), where the soliton passes the left
outer barrier, bounces back from the inner one, and escapes
in the reverse direction, passing the left outer barrier again.
Naturally, this collision pattern is common for lower H0, when
the outer barriers are lower than the inner one, which plays

the role of a strong “bouncer.” Furthermore, at c > 1.85, the
incident soliton splits into two fragments, one escaping and
the other one staying in a chaotically evolving trapped state;
see an example in Fig. 8(f) for H0 = 1.2 and c = 1.92.

Collision scenarios were also explored by varying width
W0 of the outer barriers, while keeping their height constant,
H0 = 1, as well as characteristics of the inner barrier and
the distance between the barriers; see Eq. (8). The respective
results, for the same incident soliton as used above (k = 3,
N = 4.90) are summarized in Fig. 9, where regions (1)–(3)
have the same meaning as their counterparts in Fig. 7.

In the latter case, the results may be classified into three
outcomes of the collision, depending on W0: The first outcome
occurs at 0 < W0 < 0.8. It is characterized by a rapidly
growing region of the shuttle motion of the trapped soliton
[region (2)], and sharp transitions between the three evolution
scenarios, (1) ↔ (2), (2) ↔ (3). The second outcome, which
was observed in the range of 0.8 < W0 < 1.8 (in this case,
W0 is, roughly, close to the width of the incident soliton), is
distinguished by gradual transitions between the scenarios.
That means that, for certain values of c, the soliton does
not fully bounce from the barrier, nor penetrate it, but rather
splits into two segments, one of which escapes, while the
other remains trapped. In this case, both the upper and lower
boundaries of region (2) represent tilts at which the soliton is
split into equal fragments. An example of such an outcome
is shown in Fig. 10, for W0 = 1.2 and c = 1.66. The third
outcome, which is observed at W0 > 1.8, is distinguished by
the fact that the variation of W0 almost does not affect the
soliton’s motion. In contrast to the second outcome, and similar
to the first one, the respective transitions between the regions
are sharp.

It is easy to explain the parabolic boundary of region (1) in
Fig. 7, as well as the boundary of the same region in Fig. 9, by
using the perturbation theory for NLS solitons, which treats
them as quasi-particles with mass N [38]. Indeed, the kinetic
energy of the soliton is Ekin = (N/2)c2, while the height of
the outer potential barrier for the quasi-particle, E0, can be
obtained from the third term in expression (5), assuming that
the soliton’s center is located at the midpoint of the potential
barrier:

E0 = H0

∫ +W0/2

−W0/2
u2

sol

(
x ′)dx ′ = H0N tanh

(
1

4
W0N

)
, (19)

where usol is the soliton’s profile (14), x ′ ≡ x − (3 + W0/2)
[see Eq. (8)], and the result is expressed in terms of the
soliton’s norm, as per Eq. (13). Next, equating Ekin to E0

predicts that the boundary between the rebound and passage
corresponds to

ccr =
√

2H0 tanh

(
1

4
W0N

)
. (20)

In particular, the respective prediction for dependence ccr(H0)
corresponding to the case displayed in Fig. 7, with W0 = 4 and
N fixed as per Eq. (18), simplifies to

ccr =
√

2H0. (21)

Figure 7 demonstrates that Eq. (21) predicts the parabolic
boundary of region (1) quite accurately, a discrepancy at large
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FIG. 8. Generic examples of outcomes of collisions of the soliton with the double-well potential structure (8) for N = 4.90 (k = 3), W0 = 4,
and different heights of the outer initial barriers, H0, and different tilts c of the incident soliton: (a) [H0 = 0.6,c = 0.8], (b) [H0 = 0.6,c = 1.15],
(c) [H0 = 0.6,c = 1.5], (d) [H0 = 0.3,c = 0.8], (e) [H0 = 1.3,c = 1.8], (f) [H0 = 1.2,c = 1.92]. See further explanations in the text.
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FIG. 9. The same as in Fig. 7, but varying the width of the outer
potential barriers W0 while their height is fixed at H0 = 1. The dashed
curve shows the analytical prediction for the boundary of area (1)
given by Eq. (20).

H0 being explained by the fact that the collision with the tall
barrier causes a deformation of the soliton’s shape. Further,
the full analytical expressions (20) also predicts the boundary
of the same region in Fig. 9 well enough.

FIG. 10. Outcomes of the collisions, for W0 = 1.2 and c = 1.66.
In this borderline example, the soliton hits the right (second) outer
potential barrier and splits into two fragments, one escaping and the
other one staying trapped in the potential structure.
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As concerns the trapping regime in area (2) of Figs. 7
and 9, it is explained by the fact that, while slowly passing
the left barrier, and then passing the inner one, the soliton with
the initial tilt slightly exceeding value (20) suffers radiation
losses due to its deceleration and acceleration. The losses cause
a drop in the kinetic energy below the level necessary for
clearing the right barrier. A feature which relates the trapping
and splitting to the leaky modes considered above is tunneling
of the radiation across the outer potential barriers, which can
be seen, in particular, in Figs. 8(b), 8(e), and 8(f).

VI. CONCLUSIONS

We have extended the known possibility of the stabilization
of leaky modes in quasi-trapping potentials by means of
the self-attractive nonlinearity. Unlike the previously studied
single-well potential, we introduce the spatially symmetric
double-well potential (DWP) with the elevated floor, embed-
ded into the potential barrier. The setting can be implemented
in nonlinear optical waveguides and BEC. The new possibility
offered by this system is the competition of two phase
transitions of the second kind, described in the mean-field
approximation: the onset of the self-trapping of the leaky
modes, and the SSB (spontaneous symmetry breaking) of both
true bound states and leaky modes, under the action of the
self-attractive nonlinearity. With the increase of the norm of
the wave field (which determines the nonlinearity strength),
the former or latter transition happens first if the central
barrier of the DWP structure is, respectively, low or high.
These conclusions are generic, because they do not depend
on details of the DWP structure. New effects are revealed by
the consideration of the SSB of the leaky modes: asymmetry

of radiation tails, which are parts of these modes, and the
commensurability-incommensurability interplay between the
radiation wavelength and the total size of the system, into
which the DWP is embedded. Systematic results have been
produced in the numerical form, and their basic features
were explained with the help of analytical considerations.
The simulations demonstrate that unstable symmetric modes
initiate Josephson oscillations. Collisions of freely moving
solitons with the DWP structure were studied in a systematic
form, too, revealing various generic outcomes of the collisions,
the boundaries between which were explained in the analytical
form. In particular, in addition to the stationary states with
the unbroken and broken symmetry, the collisions reveal the
dynamical mode, in the form of a soliton which performs
persistent shuttle motion in the DWP structure.

Relevant possibilities for the extension of the analysis
reported in this work may be offered by two-component
systems, as well as by a two-dimensional generalization of
the present setting. On the other hand, the results produced by
the competition of the mean-field phase transitions suggest that
it may be interesting too to consider quantum phase transitions
in a many-body bosonic state with attractive interparticle
interactions, loaded into the DWP.
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[20] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M.
K. Oberthaler, Direct Observation of Tunneling and Nonlinear
Self-Trapping in a Single Bosonic Josephson Junction, Phys.
Rev. Lett. 95, 010402 (2005).

[21] P. G. Kevrekidis, Z. Chen, B. A. Malomed, D. J. Frantzeskakis,
and M. I. Weinstein, Spontaneous symmetry breaking in
photonic lattices: Theory and experiment, Phys. Lett. A 340,
275 (2005).
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