
PHYSICAL REVIEW A 93, 023641 (2016)

Atomic multiwave interferometer for Aharonov-Casher-phase measurements
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We present an atomic multiwave interferometer with magnetic sublevels to precisely determine the Aharonov-
Casher (AC) geometric phase. Simulations show that this interferometer has sharper fringes than a normal
two-wave interferometer, which means a higher phase resolution can be achieved. Moreover, atoms evolving in
a single hyperfine structure state make the interferometer insensitive to the dc Stark phase shift. This dc Stark
shift is one of the main noise sources in AC phase measurements. The constraint of the photon rest mass is also
discussed when using this atomic interferometer to measure the Aharonov-Casher phase.
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I. INTRODUCTION

The Aharonov-Casher (AC) phase [1] is a typical geometric
phase, which is induced by a potential without a classical force
and is independent of the modulus velocity of the particle. If
considering a neutral particle with a magnetic dipole moment
μ, traveling along a closed path around a charged wire, then
the particle should acquire an AC topological phase shift given
by

�ϕAC = 1

�c2

∮
μ × E · dr, (1)

where E is the electric field due to the wire. The AC phase was
directly observed [2] and measured [3–8] in some experiments.
The first experiment that demonstrated the existence of the AC
effect was done with a neutron interferometer with a precision
of 24% [3]. To improve the sensitivity, atom interferometers
based on Ramsey or Ramsey-Borde interferometry were
made to measure the AC phase. People turned to the atom
interferometer because the magnetic moment of some atoms
is about 1000 times larger than that of a neutron, which can
therefore increase the signal-to-noise ratio dramatically. The
current best accuracy for AC phase measurements [5] has a
relative uncertainty of 1.4%. It will be interesting to improve
the precision by searching for new methods or sensors.

High-precision cold-atom interferometers could be the
potential tools for accurate measurements of the AC phase.
Cold-atom matter-wave interferometers were demonstrated
to be valuable tools for precision inertial sensors [9–16],
determining physical constants [17,18], and other fundamental
research [19]. The Mach-Zehnder-type two-wave atom inter-
ferometers (AIs) have excited worldwide interests and are
widely used in precision measurements. Atom interferometers
composed of multiple matter waves, using either atomic
momentum states or internal states, have also been proposed
and demonstrated. Multiwave AIs with separated spatial paths
were based on the momentum recoil scheme, realized by the
optical pumping [20], the optical lattice [21–25], Raman laser
pulses [26–28], or diffraction from optical standing waves
[29–32]. Petrovic and co-workers [33,34] demonstrated a
multiple-internal-state cold-atom interferometer with Zeeman
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sublevels in which the rf pulse combined with Raman
transitions is used to couple different Zeeman states. Similar
to the Fabry-Pérot optical interferometer, the multiwave AI
has sharper fringe patterns, which leads to a higher phase
resolution than the two-wave interferometer.

Inspired by Petrovic and co-workers, we present an atomic
multiwave interferometer using only Raman laser pulses.
Atoms are coupled to multiple magnetic Zeeman states by
the first laser pulse through stimulated Raman transitions.
Each Zeeman state represents an atomic matter wave. After
a free evolution time T , these matter waves are recombined
by another Raman pulse to form interference patterns. By
selecting appropriate laser polarization and frequency, atoms
stay in one angular momentum state, which makes this atom
interferometer insensitive to the phase shift induced by the
electric field. On the other hand, the atom interferometer is
sensitive to the magnetic field because atoms are superposed
in Zeeman states. This provides a promising way for magne-
tometry [35] and making other physical measurements related
to the magnetic moment.

The magnetic moment of each arm in this multiwave
interferometer is different. If we add a dc electric field on
the atoms, according to Eq. (1), the accumulated Aharonov-
Casher [5] phase is proportional to the difference of the
magnetic quantum number �mF . Thus this multiwave AI with
cold 87Rb atoms can be employed to measure the AC phase.
The dc Stark phase can be easily a dominant noise in AC phase
measurements when high dc voltages are applied. However, in
our scheme, interferences will happen between the magnetic
sublevels of one hyperfine structure state (|F = 1〉 or |F = 2〉),
so the main dc Stark phase shift due to scalar polarizability will
vanish [7]. Considering the simplest case, we use a three-wave
AI for theoretical analysis. The AC phase is expected to be
measured with a relative resolution of 10−5 limited by the
quantum projection noise.

II. MULTIWAVE ATOM INTERFEROMETER

We begin with the analysis of a three-wave AI by con-
sidering a five-level atom, which is denoted by |a〉, |b〉, |c〉,
|4〉, and |5〉 in Fig. 1(a). The atom is illuminated by two
copropagating linearly polarized laser beams (L1 and L2)
with frequencies ωL1 and ωL2, respectively. The polarization
of one laser is along the quantum axes defined by the
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FIG. 1. (a) Level scheme for stimulated Raman transitions by
two copropagating and perpendicular linearly polarized laser beams.
The two beams have a large common frequency detuning � with
respect to the atomic single-photon resonance. The inset shows the
polarization of the Raman beams and the bias field. (b) Time sequence
of a three-wave atom interferometer. The atom is illuminated by
two Raman pulses with a time interval of T , which is similar to a
Ramsey-type interferometer.

magnetic bias field B. The polarization of another laser is
perpendicular to the quantum axes. Thus the two lin⊥lin
lasers can be equivalent to the superposition of σ+ − π and
σ− − π laser beams. As shown in Fig. 1(a), because of the
resonance condition, either σ+ − π or σ− − π can drive
the two-photon stimulated Raman transition between Zeeman
states |mF 〉 and |mF + 1〉. We will start the calculation of
the interaction between five sublevels and Raman beams
in the σ+(I1) − π (I2) configuration, where I1 and I2 are
the intensities of two beams. The reason that we add the
off-resonance beam σ−(I1) − π (I2) is because it can be used
to compensate for the light shift, which will be explained later
in this section.

The system Hamiltonian is given by

H =
∑

k

�ωk|k〉〈k| − d · (E1 + E2), k = (a,b,c,4,5), (2)

where �ωk denotes the energy spacing between corresponding
states, d is the atomic dipole moment, and E1 (2) represents the
electric field of the σ+ (π ) laser. The laser field can be writ-
ten as Ei = Ei0 cos(ωit + ϕi) = Ei0(eiωi t+iϕi + e−iωi t−iϕi )/2.
During the evolution, atoms are in a superposition state
denoted by

|ψ〉 =
∑

k

ck(t)|k〉e−iωkt , k = (a,b,c,4,5), (3)

where ck(t) is the time-dependent probability amplitude, which
can be derived by solving the Schrödinger equation

�

H |ψ〉 = i�
∂

∂t
|ψ〉. (4)

Substituting Eqs. (2) and (3) into Eq. (4), the differential
equations about ck(t) are given by

iċj =
∑

k

ck
jke
−iωkj t , j = (a,b,c,4,5), (5)

in which ωkj = ωk − ωj is the frequency difference of
two states. In this, the Rabi frequency 
jk = −〈j |d ·
(E10 + E20)|k〉/� represents the coupling strength. According
to the selection rule, 
a4 is nonzero only in the case of ca .
Thus, Eq. (5) becomes

iċa = −c4〈a|d · (E10 + E20)|4〉e−iω4a t /�

= −c4〈a|d · (E10e
iω1t−iω4a t+iφ1 + E10e

−iω1t−iω4a t−iφ1

+E20e
iω2t−iω4a t+iφ2 + E20e

−iω2t−iω4a t−iφ2 )|4〉/2�. (6)

The subsequent application of the rotating-wave approx-
imation [36] allows us to consider only the slowly varying
terms. In addition, because of polarization, laser 2 does not
couple level |a〉 to |4〉. So Eq. (6) reduces to

ċa = −ic4
1a4e
i�14a t+iφ1/2, (7)

in which �14a = ω1 − ω4a is the frequency detuning of the
laser field to the atomic resonance. Here the Rabi frequency is
written as 
1a4 = −〈a|d · E10|4〉/�. We then find the rest of
the coupled differential equations

ċb = −i(c4
2b4e
i�24bt+iφ2 + c5
1b5e

i�15bt+iφ1 )/2,

ċc = −ic5
2c5e
i�25ct+iφ2/2,

(8)
ċ4 = −i(ca
14ae

−i�14a t−iφ1 + cb
24be
−i�24bt−iφ2 )/2,

ċ5 = −i(cb
15be
−i�15bt−iφ1 + cc
25ce

−i�25ct−iφ2 )/2.

Because the detuning �ljk is larger than 
ljk , this system
can be approximated by a three-level system with an effective
electromagnetic field [36]. The intermediate states |4〉 and
|5〉 are not populated, while Rabi oscillations can be driven
between states |a〉 and |b〉, as well as |b〉 and |c〉. Thus the
evolution equations of the three-level system are

ċa = − i
2
1a4

4�
ca − i
1a4
2b4

4�
eiδt+iφ12cb,

ċb = − i
1a4
2b4

4�
e−iδt−iφ12ca − i
2

1b5 + i
2
2b4

4�
cb

− i
1b5
2c5

4�
eiδt+iφ12cc,

ċc = − i
1b5
2c5

4�
e−iδt−iφ12cb − i
2

2c5

4�
cc, (9)

where �14a = �24b = �15b = �25c = �, δ = ω12 + ωba =
ω12 + ωcb, and φ12 = φ1 − φ2. The differential equations of
motion for the interaction wave function |ψ(t)〉 = {ca,cb,cc}T

023641-2



ATOMIC MULTIWAVE INTERFEROMETER FOR AHARONOV- . . . PHYSICAL REVIEW A 93, 023641 (2016)

are determined by the Hamiltonian shown in

Vs =
⎛
⎝ −iδACa − i
1a4
2b4

4�
eiδt+iφ12 0

− i
1a4
2b4
4�

e−iδt−iφ12 −iδACb − i
1b5
2c5
4�

eiδt+iφ12

0 − i
1b5
2c5
4�

e−iδt−iφ12 −iδACc

⎞
⎠, (10)

where δACi represents the ac Stark shift of each state induced by the light fields. So Eqs. (9) can be written as

∂|ψ(t)〉
∂t

= Vs|ψ(t)〉. (11)

The time dependence in Eq. (10) can be eliminated by transferring into a rotating frame, turning with the detuning δ, and the
new wave function becomes |ψ(t)〉R = D|ψ(t)〉, so Eq. (11) can be written as

∂|ψ(t)〉R

∂t
=

(
DVsD

† − D
∂D†

∂t

)
|ψ(t)〉R = HR|ψ(t)〉R, (12)

where the transformation matrix is

D =
⎛
⎝e−iδt/ 2

e+iδt/ 2

e+3iδt/ 2

⎞
⎠.

This manipulation leads to the stationary Hamiltonian

HR =
⎛
⎝−i(δ + 2δACa)/2 −i
effe

iφ 0
−i
effe

−iφ i(δ − 2δACb)/2 −i
effe
iφ

0 −i
effe
−iφ i(3δ − 2δACc)/2

⎞
⎠, (13)

where φ = φ12 and 
eff = 
1a4
2b4
4�

= 
1b5
2c5
4�

denotes the effective Rabi frequency. If we take an example that the ground state
is in |5 2S1/2,F = 1〉 of the 87Rb D2 line, the ground state (|a〉, |b〉, or |c〉) corresponds to the magnetic substate (|mF = −1〉,
|mF = 0〉, or |mF = +1〉), and after employing the transition matrix elements, the ac Stark shift of each state becomes

δACa = αI1

(
1/ 6

�
+ 5/ 24

� + 0.072
+ 1/ 24

� + 0.072 + 0.157

)
+ αI2

(
5/ 24

� + 0.072
+ 1/ 8

� + 0.072 + 0.157

)
,

δACb = αI1

(
5/ 24

� + 0.072
+ 1/ 8

� + 0.072 + 0.157

)
+ αI2

(
1/ 6

�
+ 1/ 6

� + 0.072 + 0.157

)
,

δACc = αI1

(
1/ 4

� + 0.072 + 0.157

)
+ αI2

(
5/ 24

� + 0.072
+ 1/ 8

� + 0.072 + 0.157

)
,

(14)

in which α = d2/�
2ε0c. The big detuning � is normally 10 GHz and the intensities of the σ+ and π lasers are I1 = I2 =

100 mW/cm2. The light shift for each state is obviously unequal. For example, the difference between states |−1〉 and |0〉 is
δACb − δACa ≈ −18.6 Hz. Then the accumulated phase shift is 2π (δACb − δACa)τ ≈ 2.3 × 10−3 rad during the second π pulse
of 20 μs. It should be considered when the AI is used for precision measurement. However, when we take into account the
off-resonance σ− light of laser 1 that is put aside, the light shifts become

δACa = αI1

(
1/ 6

�
+ 5/ 24

� + 0.072
+ 1/ 24

� + 0.072 + 0.157
+ 1/ 4

� + 0.072 + 0.157

)
+ αI2

(
5/ 24

� + 0.072
+ 1/ 8

� + 0.072 + 0.157

)
,

δACb = αI1

(
5/ 24

� + 0.072
+ 1/ 8

� + 0.072 + 0.157
+ 5/ 24

� + 0.072
+ 1/ 8

� + 0.072 + 0.157

)
+ αI2

(
1/ 6

�
+ 1/ 6

� + 0.072 + 0.157

)
,

δACc = αI1

(
1/ 4

� + 0.072 + 0.157
+ 1/ 24

�
+ 5/ 24

� + 0.072
+ 1/ 6

� + 0.072 + 0.157

)
+ αI2

(
5/ 24

� + 0.072
+ 1/ 8

� + 0.072 + 0.157

)
.

(15)

Now the difference of light shifts is (in Hz)

δACb − δACa = αI1

(
−1/ 6

�
+ 5/ 24

� + 0.072
− 1/ 24

� + 0.072 + 0.157

)
+ αI2

(
1/ 6

�
− 5/ 24

� + 0.072
+ 1/ 24

� + 0.072 + 0.157

)

= −1.2I1 + 1.2I2. (16)
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FIG. 2. (a) Three-wave Rabi oscillation. (b) Interference fringes when atoms are prepared in initial state |b〉. (c) Interference fringes in
initial state |c〉. In all the graphs, the solid line represents the possibility of atoms in state |b〉. The red and green dashed lines represent state |a〉
and state |c〉, respectively.

When I1 and I2 are comparable within 1%, the difference of light shifts can decrease to 10−5 rad after taking into account the
laser polarization fluctuation, which is two orders smaller than the case of only σ+ light. Thus we can say that this type of AI is
insensitive to the light shift, which is all denoted by δAC.

After solving Eq. (12), we are able to obtain the phase behavior after t once we know the initial wave function. It can be
written as

|ψ(t)〉 = U (
eff,t,δ,δeff)|ψ(0)〉, (17)

where U is the evolution matrix of ground states, which is shown in Eq. (18) for zero detuning δ = 0. Here we define

ω =
√

δ2 + 2
2
eff for simplicity:

U = e−itδAC

2

⎛
⎝ 1 + cos(ωt) −i

√
2 sin(ωt)eiφ [cos(ωt) − 1]e2iφ

−i
√

2 sin(ωt)e−iφ 2 cos(ωt) −i
√

2 sin(ωt)eiφ

[cos(ωt) − 1]e−2iφ −i
√

2 sin(ωt)e−iφ 1 + cos(ωt)

⎞
⎠. (18)

Assuming an initial wave function of this three-state system
|ψ(0)〉 = {0,1,0}T , the transition probabilities of the three
states as a function of pulse length τ are Pa(τ ) = Pc(τ ) =
sin2(

√
2
effτ )/2 and Pb(τ ) = cos2(

√
2
effτ ), respectively.

The Rabi oscillation obtained by numerical simulation is
shown in Fig. 2(a), while the Rabi frequency is set to 2π × 104

Hz. As we can see, all the population flows from state |b〉
to states |a〉 and |c〉 with the same probability with pulse
time τ = π

2
√

2
eff
= 17.7 μs. So this type of Raman pulse is

similar to the so-called π pulse in a two-level system; when
τ = 8.8 μs, it is the π/2 pulse.

We can form the three-wave interferometer with a sequence
of two Raman pulses. When atoms are in an initial state
of mF = 0, the first Raman pulse splits them into the
superposition of state mF = 0 and state mF = ±1. After a
free evolution time T , the second pulse recombines the three
matter waves, which then interfere with each other. We can get
the interference patterns using

|ψ(t)〉 = U2(τ )U1(τ )|ψ(0)〉. (19)

Similar to the mirrors used in a Fabry-Pérot interferometer,
we employ two π pulses to form the multiwave atom
interferometer. The transition probabilities of three states
mF = −1,0, + 1 after two π pulses are found are

Pa = Pc = 1
2 sin2(ϕ2 − ϕ1), Pb = cos2(ϕ2 − ϕ1), (20)

which are shown in Fig. 2(b) as a function of the phase
difference of two Raman pulses. If we now assume that all
atoms are initially prepared in state mF = +1, the relative

FIG. 3. (a) Calculated interference patterns of Ramsey atomic
multiwave interferometer with three, five, and seven waves. (b)
Comparison of the midfringe slope in three cases of AI.
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populations of three states after two π pulses are

Pa = cos4[(ϕ2 − ϕ1)/2],

Pb = 1
2 sin2(ϕ2 − ϕ1), (21)

Pc = sin4[(ϕ2 − ϕ1)/2],

which are shown in Fig. 2(c).
To increase the sensitivity, atom interferometers are usually

locked at two neighboring points at midfringe [37], which
has a maximal slope dP/dϕ. In the measurement, from
the difference between two consecutive measured transition
probabilities, the phase error can be evaluated and then used
to correct ϕ2. Using this method, we can increase the sampling
rate and reject common mode noises due to the Raman laser
or the instability of the system. The maximum slope reaches
1 rad−1 in Fig. 2(b) of state |b〉 and the maximum decreases to
0.65 rad−1 in Fig. 2(c) of state |a〉 or |c〉. Obviously, we choose
to prepare the atoms initially in state mF = 0 to get higher
resolution. Compared to 0.5 rad−1 of the typical two-wave
AI, this three-wave AI reaches a double-fringe resolution.
The imperfect polarization of Raman beams can cause the
pulse distortion, which may make the fringe unstable and
cause phase noise and thus will increase the measurement
uncertainty. However, we notice that the laser pulse duration
is only tens of microseconds and the extinction ratio of the laser

polarization can easily reach 103:1 with a Glan-laser polarizer,
thus the phase resolution could be as good as 10−6 rad with an
integration time of 104 s.

Then there is particular interest in increasing the number
of matter waves in this type of atom interferometer. It is
necessary to choose atoms whose ground state |g〉 is composed
of multiple Zeeman sublevels. Based on this, we can form
an equivalent N -level system with the same configuration of
Raman beams. In this N -wave AI, the duration of the π pulse
is still the half period of the Rabi oscillation. According to the
calculated evolution matrix, the interference pattern is obtained
by using Eq. (19) with an initial state |mF = 0〉. Figure 3 shows
the simulated fringes and their differential with a different
number N of matter waves (N = 3,5,7). As N increases, the
fringe becomes sharper and its maximum slope is bigger. The
seven-wave atom interferometer achieves a slope of 2.65 rad−1,
which means that it has 5.3 times higher resolution than that
of the two-wave interferometer. Even though the fringe shape
becomes more complicated, we can use the fringe-locking
method to overcome it, which means the AI just works on two
adjacent points of the largest slope of the fringe.

For a large number of waves where N > 7, assuming a
zero-frequency detuning, the stationary Hamiltonian matrix is
written as Eq. (22). The interference pattern is obtained using
eigenvalue analysis to solve the differential equations

HR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −i
effe
iφ

−i
effe
−iφ 0 −i
effe

iφ

· · · · · · · · ·
−i
effe

−iφ 0 −i
effe
iφ

· · · · · · · · ·
−i
effe

−iφ 0 −i
effe
iφ

−i
effe
−iφ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

III. MEASUREMENT SCHEME FOR THE
AHARONOV-CASHER EFFECT

Because atoms are usually the ideal test mass for precision
measurements, we use them here to detect the Aharonov-
Casher phase. In this scheme, we choose the three-wave
interferometer of cold 87Rb atoms for the simulation and the
experimental schematic is shown in Fig. 4.

The 87Rb atoms are loaded into a two-dimensional (2D)
magneto-optical trap (MOT). During the loading, a repumping
light guarantees that all atoms are in the |5 2S1/2,F = 2〉 state.
The initial mean velocity of the cooled atoms is about 50 m/s

FIG. 4. Experimental schematic for measurements of the
Aharonov-Casher phase: MW, microwave; PD, photodiode.

in the x direction when atoms free fall from a typical 2D MOT.
Then a bias magnetic field in the −y direction is used to define
the quantization axis and all the atoms are optically pumped
into the |F = 1,mF = 0〉 state by a single selective Raman
π pulse. The remaining atoms are blown away by a resonant
light pulse from |F = 2〉 to |F ′ = 3〉.

The zone where the actual interference measurement is
taking place is located in a capacitor with a magnetic
shield. The capacitor is composed of a pair of stainless steel
plates that are 1.05 m long, 10 mm wide, and spaced by
10 mm. We apply a large homogeneous electric field of
E = 1 MV/m in the −z direction for an applied voltage
V = 10 kV. The three-wave interferometer is realized by the
atoms interacting with a sequence of σ+ − π Raman pulses
with the duration of 17.7 μs. The Raman pulses are composed
of two copropagating linearly polarized Raman laser beams
that are red tuned about 10 GHz below the F = 1 → F ′ = 0
resonance of the D2 line and they propagate against the atoms,
which are separated by a distance L = 1 m.

During the free evolution, two wave packets of mF = −1
and mF = +1 states with opposite magnetic dipole moment go
through the electric field on the same path and experience the
AC phase shift. To get the interference signal, a microwave
pulse is applied to select atoms in the mF = 0 state for
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detecting. The obtained interference pattern can be calculated
based on the former section. Adding the free evolution
operator

UT =
⎛
⎝ e−iφf 0 0

0 1 0
0 0 eiφf

⎞
⎠,

Eq. (19) becomes

|ψ(t)〉 = UπUTUπ |ψ(0)〉, (23)

where ϕf is the phase shift due to free evolution of the atoms
between the electrode. Then the probability of atoms in the
mF = 0 state is given by

P0 = cos2(�ϕ + ϕf) = [1 − cos 2(�ϕ + ϕf)]/2, (24)

where �ϕ is the phase difference of two Raman pulses. Here
ϕf = ϕAC + ϕZ includes the AC phase and the Zeeman phase
shift due to the residual magnetic field. The huge dc Stark
effect has been canceled out during the interference because
all the atoms are in the same hyperfine structure state. However,
considering the high-order Stark shift [38–40], there is a
frequency shift between states |±1〉 and |0〉 that is written
as

�ν10 = �ν(5S1/2,1, ± 1) − �ν(5S1/2,1,0) = − 1
4α

(3)
2 E2.

(25)
Here −α

(3)
2 /4 = −104.4 × 10−10 Hz/(V/cm)2 is the third-

order tensor polarizability [39] and E is the applied dc electric
field. After some calculation, the accumulated phase shift
is ϕdS ≈ 0.3 rad, which is comparable to the AC phase.
According to α

(3)
2 , atoms in states |mF = ±1〉 have the same

dc Stark shift f+1dc = f−1dc ≈ 1 Hz with respect to state
|mF = 0〉. During the free evolution stage after the first π

pulse, atoms are only in a superposition of states |mF = +1〉
and |mF = −1〉, thus the interference phase shift ϕdc due to the
dc Stark effect is zero, because ϕdc = (f−1dc − f+1dc)T = 0.
Therefore, this atom interferometer is insensitive to the dc
Stark effect. The dc Stark phase shift will also appear during
the laser pulse duration. Because the pulse lasts several
microseconds, this phase shift is about 10−5 rad, which can
be neglected.

The Zeeman phase shift will dominate the systematic errors
during the AC phase measurements. Since the Zeeman effect
is independent of the electric field and the AC phase shift is
relative to the direction of the applied electric field according
to Eq. (1), we infer that we can change the direction of the
electric field and make a differential measurement to extract
only the AC phase. The theoretical interference fringe as
shown in Fig. 2(b) is obtained by sweeping the phase of
the second Raman pulse. The phase shift between different
voltage configurations can be thought of as the AC phase
ϕAC = 1

2 [ϕf(+V ) − ϕf (−V )].
The resulting AC phase between states |+1〉 and |0〉 is about

0.5 rad calculated by theoretical expression ϕAC = −μEL

�c2 . The
phase resolution of this multiwave AI will be limited by the
quantum projection noise, which depends on the number of
atoms. The atomic loading rate of a 2D MOT is usually at
a level of 1010 atoms/s. If we set the single measurement
time for 1s, according to the loading rate, after the state
selection and thermal diffusion, about 108 atoms are supposed

to contribute to the interferometer signal. From Eq. (24),
the phase noise of this AI is δϕ = 1/2C

√
N due to shot

noise, where C is the fringe contrast and N is the number
of detected atoms. Then the AC phase resolution becomes
δϕ/ϕAC = 1/C

√
N ; it is supposed to be 10−5 at an integration

time of 100 s, after averaging the phase combination of two
configurations. In addition, if we choose suitable atoms such
as some isotopes of heavy atoms to form an N -wave AI
that contains more interfering matter waves, the higher phase
resolution can be obtained due to the sharper fringes. We also
expect that the accuracy will improve by comparing the former
experiments, after we estimate the system effects induced
by electromagnetic field. In a real experiment, some other
effects such as the electric fringe field between the capacitor
should be considered carefully to reach a relative uncertainty
of 10−5.

We can bound the rest mass mγ of the photon through
the measurement of the AC phase [41]; there will be a
deviation from the AC phase through the modification of
electrostatic field. The effect of a nonzero photon rest mass
can be incorporated into electromagnetism straightforwardly
through the Proca equations [42,43]. In the Proca version, the
potential between the capacitor is given by

�(z) =
(

e−μγ (d−z)

2μγ

− e−μγ z

2μγ

)
σ

ε0
, (26)

where μ−1
γ = �/mγ c is the Compton wavelength of the

photon, d is the electrode spacing, σ is the surface charge
density, and the position of plate with negative charge is z = 0.
Then the electric field is

E(z) = −∇�(z) = − σ

ε0

(
e−μγ (d−z) + e−μγ z

2

)

= E0

(
e−μγ (d−z) + e−μγ z

2

)
. (27)

Using a first-order approximation, this becomes E(z) =
E0(1 − μγ d/2); E(z) approaches E0 = −σ/ε0 as μγ van-
ishes, which is the standard electric field of the electrode.
In comparison, if δE/E = δϕ/ϕAC = 10−5, we would get
μγ = 2 × 10−3 m−1 and the detectable photon rest mass is
7 × 10−43 g according to Eq. (27). If we apply a voltage of 100
kV and increase the atom number to 1010, the expected limit on
mγ is 7 × 10−47 g with an integration time of 12 days, which
is comparable to other experiments [44] for bounding the rest
mass of the photon. Observing the AC phase in different
spacing d of the capacitor but keeping the same electric
field will be helpful in determining the photon rest mass.
By comparing the ratio ϕAC1/ϕAC2 = (2 − μγ d1)/(2 − μγ d2)
of each of two measurements, we can get the Compton
wavelength μγ directly without knowing the absolute value
of the electric field.

IV. CONCLUSION

We have presented a method for measuring the Aharonov-
Casher phase by an atomic multiwave interferometer, which
employs the multiple ground-state Zeeman sublevels driven by
stimulated Raman transitions. This multiwave AI is insensitive
to both the dc and ac Stark phase shifts. The Zeeman shift
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can be canceled out by applying an opposite electric field.
Moreover, sharper fringes will be obtained by using a large
number of atomic waves, which means that a higher phase
sensitivity can be reached compared to the normal two-wave
interferometer. According to the simulations, the measurable
AC phase accumulated in the multiwave interferometer can
be larger than 0.5 rad and a relative resolution of 10−5 in an
integration time of 100 s is expected. The constraint on the rest

mass of photon is also discussed by considering the deviation
from the AC phase.
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