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Critical velocity for vortex nucleation in a finite-temperature Bose gas
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We use classical field simulations of the homogeneous Bose gas to study the breakdown of superflow due
to vortex nucleation past a cylindrical obstacle at finite temperature. Thermal fluctuations modify the vortex
nucleation from the obstacle, turning antiparallel vortex lines (which would be nucleated at zero temperature)
into wiggly lines, vortex rings, and even vortex tangles. We find that the critical velocity for vortex nucleation
decreases with increasing temperature and scales with the speed of sound of the condensate, becoming zero at
the critical temperature for condensation.
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I. INTRODUCTION

A defining feature of superfluids is the absence of excita-
tions when the flow (relative to some obstacle or boundary)
is slower than a critical velocity; above this velocity, the
flow becomes dissipative. This can be understood in terms
of the Landau criterion, which predicts excitations when
the local fluid velocity exceeds vL = min[E(p)/p], where
p is the momentum of elementary excitations and E(p)
their energy [1]. In weakly interacting atomic Bose-Einstein
condensates, and for infinitesimally small perturbations, one
obtains vL = c, the speed of sound. The breakdown of
superfluidity has been experimentally probed by introducing
a localized repulsive obstacle, engineered via the repulsive
force generated by a focused blue-detuned laser beam and
moving the condensate relative to the obstacle [2–9]. This
has enabled the measurement of the critical velocity and the
direct observation of the ensuing excitations, that is, pairs
of quantized vortex lines with opposite polarity. In flattened
condensates, this scenario currently provides a route to
engineer states of two-dimensional quantum turbulence [2,3];
it also gives insight into the deep link between quantum fluids
and their classical counterparts, where it has been predicted
that the wake of quantized vortices produced downstream
of the obstacle can collectively mimic the classical wakes,
including the Bérnard-von Kármán vortex street [10–12].

The motion of an obstacle in the zero-temperature Bose gas,
described by the Gross-Pitaevskii equation, is a well-studied
problem, particularly for circular obstacles in two-dimensional
(2D) geometries. The pioneering simulations by Frisch et al.
[13] of an impenetrable circular obstacle moving within
the 2D nonlinear Schrödinger equation demonstrated the
existence of a critical velocity of value vc ∼ 0.4c above which
vortex-antivortex pairs are nucleated. For small obstacles,
boundary effects tend to suppress vortex nucleation, and,
as the obstacle’s size increases, the critical velocity reduces
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towards an asymptotic value [14–16]. The critical velocity also
depends on the shape of the obstacle; for example, obstacles
with elliptical cross section lead to reduced or heightened
vc, depending on the orientation relative to the flow [11,17].
Similar behavior holds for spherical obstacles, albeit with the
emission of vortex rings and increased critical speeds of circa
0.7c [11,18,19]. In current condensate experiments [2–9], the
obstacles are penetrable, corresponding to a Gaussian potential
of finite amplitude, produced via an incident blue-detuned laser
beam. The same qualitative behavior emerges for impenetrable
obstacles, although the critical velocity and vortex nucleation
patterns become modified [10].

Very recently, Kwon et al. undertook a systematic exper-
imental analysis of the critical velocity for vortex shedding,
exploring the dependence of the nucleation on height and width
of the penetrable obstacle and the crossover from penetrable
to impenetrable obstacles [8]. Their results, obtained in a
condensate with temperature much lower than the critical
temperature for condensation, are in agreement with previous
zero-temperature predictions based on the Gross-Pitaevskii
equation. Their work has made a significant step in consoli-
dating our theoretical and experimental understanding of the
critical velocity in a condensate in the zero-temperature limit.
At the same time, it has highlighted the need to extend the study
of the critical velocity to finite temperatures. While the role of
finite temperature has been explored considerably for another
vortex nucleation scenario, namely within deformed, rotating
traps [20–25] (for which unstable surface modes underpin the
vortex nucleation), there is a paucity of literature relating
to the finite-temperature behavior of vortex nucleation by
a translating obstacle. Indeed, to our knowledge, the only
finite-temperature analysis of a moving obstacle in a 3D
condensate is that of Leadbeater et al. [26], who found that the
critical velocity of a hard sphere decreases with temperature.

In this work we study the motion of a cylindrical Gaussian-
shaped obstacle through a 3D homogeneous Bose gas at finite
temperature via classical field simulations. We find that the
critical velocity decreases with temperature and increases
with condensate fraction (ratio of condensate to total density).
Indeed, the critical velocity is found to be closely proportional
to the speed of sound of the condensate, which scales as
the square root of the condensate fraction. Above the critical
velocity, vortex nucleation occurs either through pairs of vortex
lines, collections of vortex rings, or direct formation of a vortex
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tangle, and we indicate the occurrence of these structures in
the parameter space of condensate fraction and flow speed.

II. CLASSICAL FIELD METHOD

We consider a weakly interacting Bose gas with N atoms in
a periodic box of volume �3. The atoms have mass m and their
interactions are approximated by a contact pseudopotential
Vint(r − r′) = gδ(r − r′), where g is a coefficient which
characterizes the atomic interactions and δ is the Dirac δ

function [27].
In order to theoretically model thermal excitations of

the weakly interacting Bose gas, one must progress beyond
the standard mean-field approximation to include both the
condensate and the thermal fraction atoms in the gas. Various
methods have been proposed for this purpose, as reviewed
elsewhere [28–33]. Among these methods, a popular one is
the classical field method [33–39]. This method is based
on the observation that, providing the modes of the gas are
highly occupied (an a priori assumption in our work), then
the gas can be approximated by a classical field ψ(r,t) whose
equation of motion is the Gross-Pitaevskii equation (GPE).
However, whereas the GPE conventionally describes the
condensate only, ψ(r,t) now describes the entire multimode
“classical” gas [28,29]. The classical field method has been
used to model phenomena beyond-mean-field effects, includ-
ing thermal equilibration dynamics [36,38,40,41], condensate
fractions [39], critical temperatures [42], correlation functions
[43], spontaneous production of vortex-antivortex pairs in
quasi-2D gases [44], thermal dissipation of vortices [45], and
related effects in binary condensates [40,46,47].

We parametrize the gas by the classical field ψ(r,t). The
density distribution of atoms is then |ψ(r,t)|2. The evolution
of ψ is governed by the GPE

i�
∂ψ

∂t
=

[
− �

2

2m
∇2 + Vobj(r,t) + g|ψ |2

]
ψ, (1)

where Vobj(r,t) is the externally applied potential. The GPE
conserves the total number of particles, N = ∫ |ψ |2dV , and
the total energy,

H =
∫ (

�
2

2m
|∇ψ |2 + Vobj|ψ |2 + g

2
|ψ |4

)
dV.

In what follows, we express all quantities in terms of the natural
units of the homogeneous Bose gas: density in terms of a
uniform value ρ, length in terms of the healing length ξ =
�/

√
mgρ, speed in terms of the speed of sound c = √

ρg/m,
energy in terms of the chemical potential of the homogeneous
condensate μ = ρg, and time in terms of τ = �/gρ.

We label the modes of the system through the wave vector
k. To allow for occupation across all classical modes of the
system, the initial condition is highly nonequilibrium,

ψ(r,0) =
∑

k

ak exp(ik · r), (2)

where the coefficients ak are uniform and the phases are
distributed randomly [36]. The occupation of mode k is
nk = |ak|2. The final temperature/condensate fraction of our
simulations is varied through a rescaling of ψ , so as to fix the
quantities N and H .

The GPE is evolved numerically, in the absence of any
potential Vobj, using a fourth-order Runge-Kutta method on a
1923 periodic grid with time step 	t = 0.01τ and isotropic
grid spacing 	 = 0.75ξ . The spatial discretization of our
numerical grid implies that high momenta are not described in
our simulations. In effect, an ultraviolet cutoff is introduced,
nk(t) = 0 for k > kmax, where k = |k| and the maximum
described wave-vector amplitude is kmax = √

3π/	.
The ensuing evolution from the strongly nonequilibrium

initial conditions has been outlined previously [36,40]. Ini-
tially, the mode occupation numbers nk are uniformly dis-
tributed over wave number k, up to the cutoff. Self-ordering
leads to the rapid growth in the occupation of low-k modes,
which initially evolves in a state of weak turbulence. Then
the distribution evolves to a bimodal form. The high-k part
of the distribution is associated with the thermal excitations
and low mode occupations. The low-k part of the field
is the quasicondensate, characterized by macroscopic mode
populations and superfluid ordering.

From the bimodal distribution, a wave number kc can be
chosen as the boundary in k space between the quasicondensate
and the thermal gas, as performed in [36]. Here we take kc =
10(2π/�), although our qualitative results are insensitive to
the precise definition of kc. The condensate density, ρ0, is
then calculated as the density within the quasicondensate, i.e.,
a coarse-grained averaging over the quasicondensate modes.
This is then used to define the condensate fraction, ρ0/ρ, where
ρ is the total density of the gas.

While the raw wave function is too noisy to allow direct
visualization of vortical structures, this can be overcome by
defining a quasicondensate wave function ψ̂ , as established
in [36]. This wave function is constructed by filtering out
high-frequency spatial modes from the classical field wave
function, by transforming the complex amplitudes via âk =
ak × max{1 − k2/k2

c ,0}. ψ̂ represents the long-wavelength
component of the classical field.

The quasicondensate features a tangle of quantized vortices
which relaxes over very long times, and the final equilib-
rium state is free of vortices. Its physical properties, e.g.,
temperature and condensate fraction, are uniquely determined
by the number of particles N and the kinetic energy E =∫

(�2/2m)|∇ψ |2dV of the system [38]. The equilibrium state
of the noncondensed particles follows the Rayleigh-Jeans
distribution, modified by the nonlinear interaction with the
condensed particles [38]. It is interesting to note that the
equilibrium condensate fraction is insensitive to the number of
modes, providing that the number of modes is, or exceeds, 163

modes. This suggests that this number of modes is sufficient to
model the thermodynamic limit of the system. For comparison,
we employ 1923 modes.

Here we parametrize the system in terms of its particle den-
sity ρ = N/�3 and average energy density 〈H 〉/�3. Note that
the total energy H = E + E0, where E is the kinetic energy
of the system and E0 is the energy of the condensate [38]. The
temperature is evaluated from the condensate fraction using
an empirical relationship established in Ref. [45],

T

Tλ

= 1 − (1 − α
√

ρ)
ρ0

ρ
− α

√
ρ

(
ρ0

ρ

)2

, (3)
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TABLE I. Condensate fraction and temperature of the equilibrium
classical field state for our chosen initial conditions.

Initial conditions

N/�3(ξ−3) 0.50 0.50 0.50 0.50 0.50 0.50
〈H 〉/�3(μξ−3) 2.57 2.13 1.75 1.33 0.53 0.23

Equilibrium state
ρ0/ρ 0.02 0.22 0.36 0.48 0.77 0.91
T/Tλ 0.98 0.81 0.68 0.56 0.26 0.10

where Tλ is the critical temperature for condensation and α =
0.2275 is a fitting parameter. Table I lists the parameters chosen
in our simulations and the resulting condensate fractions and
temperatures of the ensuing equilibrated classical field states.

III. MOVING OBSTACLE AT FINITE TEMPERATURE

A. Critical velocity for vortex nucleation

Having obtained the equilibrated finite-temperature states
of the Bose gas, we now move on to consider a laser-induced
obstacle moving through the gas. The obstacle, uniform in z,
is translated in the x direction at speed v. Our simulations are
conducted in the frame moving with the obstacle, modeled
by the inclusion of a Galilean shift term i�v∂xψ to the
right-hand side of the GPE. In this frame the obstacle is
imposed through the time-independent potential Vobj(r) =
V0 exp [−(x2 + y2)/d2], where d and V0 parametrize the width
and amplitude of the potential, respectively. The amplitude
is linearly increased from V0 = 0 at first introduction to its
maximal value V0 = 5μ over a period of 200τ . The frame
speed is increased adiabatically to the required value according
to the temporal profile v tanh(t̂/200τ ), where t̂ denotes the
time from introduction of the obstacle.

Simulations are repeated (from identical initial conditions)
with increasing terminal speeds (in steps of 0.057c) until
vortices are detected. Vortex detection is by visual inspection of
the filtered density, up to a maximum simulation time t̂ = 500τ

(which is long enough to ensure that the obstacle is fully
introduced and at terminal speed, but otherwise arbitrary). This
procedure defines the critical velocity vc. There is a systematic
uncertainty in our measurement of vc, arising from the discrete
terminal speeds employed. Note that we have repeated this
process for multiple randomized initial conditions and find
no change in our measurement of vc; that is, the systematic
uncertainty due to using discretized speeds is larger than the
statistical uncertainty arising from different random initial
conditions.

Figure 1 shows the variation of vc with both condensate
fraction ρ0/ρ (lower abscissa) and temperature T/Tλ (upper
abscissa) for two example obstacles widths. The critical
velocity has a maximum value at zero temperature (unit
condensate fraction) and decreases nonlinearly as temperature
increases (condensate fraction decreases), reaching zero at the
critical point for condensation.

At zero temperature, the critical velocity is of the order of
the condensate speed of sound c = √

ρg/m, with a general
form vc(T = 0) = βc, where β is a parameter which depends
solely on the shape of the obstacle (here d and V0). The
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FIG. 1. Critical velocity vc for the moving Gaussian-shaped
obstacle (uniform in z) as a function of condensate fraction ρ0/ρ

and temperature T/Tλ for obstacle widths d = 2ξ (blue circles) and
d = 5ξ (red squares). The dotted lines show the analytic model
vc = β

√
ρ0/ρ with fitted coefficients β = 0.46c and 0.35c. (Inset)

The critical velocity approaches an asymptotic value as the obstacle
size is increased. Included is a fit of the form vc = α/d + γ with
α = 0.26(ξ 2/τ ) and γ = 0.18c. Error bars represent the systematic
uncertainty in vc due to the discretized values of v considered.

simulated vc data in Fig. 1 closely follow the simple functional
form vc(T ) = vc(0)

√
ρ0/ρ, as shown by the dashed lines. An

expression for the critical velocity valid at zero and nonzero
temperatures is

vc(T ) = β
√

ρ0g/m. (4)

In other words, for a given obstacle, the critical velocity is a
fixed fraction of the speed of sound based on the condensate
density rather than the total particle density [26].

The inset of Fig. 1 shows the variation of vc with the
obstacle width d at finite temperature for the example of
T/Tλ = 0.56. The qualitative behavior is consistent with that
seen at zero temperature [11,15,48]: For small d the critical
velocity is sensitive to d (due to the prominence of boundary
layer effects), but as d increases vc decreases towards a limiting
values (the Eulerian limit). However, the critical velocities
are systematically reduced compared to the zero-temperature
case due to the reduced condensate speed of sound at finite
temperature.

B. Vortex nucleation pattern

Finally, we examine the manner in which vortices are
nucleated from the obstacle. At zero temperature, one expects
the nucleation of straight antiparallel vortex lines from the
obstacle, either released in unison or staggered in time
[10,11,13], which move downstream relative to the obstacle.
At finite temperature, we observe three general regimes of
vortex nucleation, with representative examples shown in
Fig. 2.

1. Vortex lines. A pair of “wiggly” vortex lines is produced
[Fig. 2(a)]. The wiggles are driven by the thermal fluctuations,
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FIG. 2. Snapshots of the typical vortex nucleation from the
moving Gaussian-shaped obstacle with d = 5ξ (gray) in the finite-
temperature Bose gas. The three cases (a)–(c) are representative of the
behavior across the whole parameter space shown in Fig. 3. Shown
are isosurfaces of the quasicondensate density (|ψ̂ |2 = 0.04 〈|ψ̂ |2〉).
(a) Vortices are shed as pairs of antiparallel vortex lines. Here the
system parameters are ρ0/ρ = 0.22 and v = 0.17c, and the snapshots
correspond to times (i) t̂/τ = 210, (ii) 460, (iii) 585, and (iv) 710. (b)
Vortex rings are nucleated from the obstacle. The system parameters
are ρ0/ρ = 0.91 and v = 0.42c, and the times are (i) t̂/τ = 500,
(ii) 700, (iii) 875, and (iv) 950. (c) A vortex tangle forms behind the
obstacle. The system parameters are ρ0/ρ = 0.35 and v = 0.59c, and
the times are (i) t̂/τ = 250, (ii) 375, and (iii) 500.

which cause the vortex elements to be nucleated at slightly
different times along the obstacle; this is visible at intermediate
times [snapshots (iii) and (iv)]. These elements ultimately
merge together along the axis of the obstacle to form a wiggly
vortex-antivortex line. Similar vortex configurations in the
form of lines which are partially attached to a thin wire were
also observed in liquid helium [49].

2. Vortex rings. Here vortices predominately form vortex
rings [Fig. 2(b)]. The vortex loops generated at the obstacle
rapidly peel away from the obstacle, reconnecting with
adjacent loops to form rings. Due to the way the vortex
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FIG. 3. Vortex line density L (at an observation time t̂ = 500τ ) as
a function of flow speed and condensate fraction, with the qualitative
regimes of vortex nucleation indicated. The vortex line density is
presented in terms of the dimensionless quantity Lξ 2. The solid line
marks the transition from nonvortices to vortices (i.e., the critical
velocity, consistent with the corresponding fitted line in Fig. 1), while
the dashed line is a guide to the eye to show the approximate transition
from the vortex lines or rings regime to the vortex tangle regime.
The markers correspond to the three representative cases shown in
Fig. 2(a), red circle; 2(b), blue square; and 2(c), green diamond.
This line-length density data, obtained from 36 simulations, has been
interpolated. The obstacle has size d = 5ξ .

rings form initially along the obstacle, they are elliptical and
polarized such that they are longer along the obstacle axis.

3. Vortex tangle. Strong interaction between successively
nucleated vortices leads to the formation of a complex tangle
of vortex lines behind the obstacle [Fig. 2(c)].

While the vortex line regime is analogous to the zero-
temperature case, no analog occurs for the ring and tangle
regimes. We note that even a small amount of thermal
fluctuations is enough to vastly change the form of vortex
nucleation, such as the vortex rings produced in Fig. 2(b) for
a condensate fraction of 0.91.

To systematically map the occurrence of these regimes, we
measure the vortex line-length density L (length of vortex line
per unit volume) and vortex polarity R (described below) at a
fixed observation time of t̂ = 500τ , throughout the parameter
space of flow velocity and condensate fraction. Our method
to evaluate the vortex line-length density is described in the
Appendix. The results are presented in Fig. 3. Below the
critical velocity (solid black line) no vortices are produced,
and thus L = 0. Above the critical velocity, L increases
strongly with the flow velocity. This is to be expected since
the frequency of vortex nucleation increases with flow velocity
[13]. L also increases with decreasing condensate fraction
(increasing temperature), indicating the significant role of
thermal fluctuations in enhancing vortex production.

Just above the critical velocity, where the vortex line-length
density is relatively small, vortex nucleation occurs through
vortex lines and rings. The low flow velocity ensures that
the vortex nucleation frequency is low, thereby suppressing
strong interaction or reconnection between nucleated vortices.
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Here, whether lines or rings are produced is sensitive to the
random initial conditions, and so it is not possible to further
distinguish these nucleation regimes within this parameter
space. In these cases a more consistent characterization of
the vortex form is given by R, described below. At higher flow
velocities, where the vortex line-length density is relatively
high, the nucleation frequency becomes sufficiently high that
vortices immediately undergo strong interactions with each
other, reconnecting and developing into a vortex tangle. The
transition in the parameter space from vortex lines or rings to
tangles is indicated approximately by the dashed line, although
statistical effects blur the true boundary.

We further characterize the vortex distribution by its
polarization through the quantity R = Az/(Ay + Az), where
Ay and Az are the total area of vortices when the vortex
distribution is projected along the y and z directions, respec-
tively. A value R ≈ 0 corresponds to vortex lines aligned
predominantly along the z axis, R ≈ 1 corresponds to lines
aligned predominantly along y, and R ≈ 0.5 corresponds
to an isotropic vortex distribution (in the yz plane). The
parameter space of R has the same qualitative form as that for
L, increasing with velocity and decreasing with condensate
fraction. R typically lies in the range 0.1 � R � 0.4 for the
lines or rings regime, consistent with the presence of lines
which are predominantly aligned along z and rings which are
elongated along z. It is worth noting that while the occurrence
of lines or rings, for a given flow velocity and condensate
fraction, is sensitive to the initial conditions, the value of R is
highly reproducible (to within a few percent). For the vortex
tangle regime, 0.4 � R � 0.5. It is worth noting that this shows
that the produced tangle can be highly isotropic, despite 2D
nature of the obstacle that generates it.

IV. CONCLUSIONS

Using classical field simulations, we have analyzed the
nucleation of vortices past a moving cylindrical obstacle
in a finite-temperature homogeneous Bose gas. We have
evolved the classical field from highly nonequilibrium initial
conditions to thermalized equilibrium states with ranging
temperatures and condensate fractions. We have then inserted
a cylindrical obstacle with Gaussian profile into the system
and imposed a flow relative to the gas. We have found that,
above the critical velocity, vortices are nucleated, forming
wiggly antiparallel pairs of vortex lines, vortex rings, or a
vortex tangle. The critical velocity decreases with increasing
temperature, becoming zero at the critical temperature, and
scales with the speed of sound of the condensate, i.e., as the
square root of the condensate fraction. While our work is based
on a homogeneous system, in reality, Bose-Einstein conden-
sates are experimentally confined in traps, rendering the gas
inhomogeneous. Then one can expect corrections to the critical
velocity due to density gradients, as well as modifications to the

vortex nucleation pattern. These higher-order effects could be
studied in future work. However, we note that recent advances
have led to the formation of quasihomogeneous condensates
in boxlike traps [50,51], where these corrections should have
minimal effect.

Data supporting this publication are openly available under
an Open Data Commons Open Database License [52].
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APPENDIX: EVALUATION OF VORTEX LINE LENGTH

For a given wave function, ψ , featuring a vortex distribu-
tion, the vortex volume Vt (the total volume associated with
the vortex cores) is evaluated by numerical integration of the
inside of the vortex isosurface tubes obtained from the filtered
density |ψ̂ |2, with an integration region of the whole numerical
box. Note that the isosurface level should be low enough to
pick out vortex cores only (and not, e.g., fluctuations and
waves), while large enough to contain sufficient grid points
to allow a reasonable numerical evaluation of volume. In this
work we use the isosurface level 0.04〈|ψ̂ |2〉 (chosen so as
to produce filtered vortex cores that are similar in radius to
the true vortex core). The volume calculation can be written
Vt = ∫

�(0.04〈|ψ̂ |2〉 − |ψ̂(r)|2)dV , where � is the Heaviside
step function. In practice the calculation of the vortex core
volume can be efficiently performed by assigning a value of
unity or zero to grid points located within or outside the
isosurface tubes and directly integrating the result using the
trapezium or Simpson’s rule.

The total line length is then deduced by dividing Vt by the
cross-sectional area of a vortex core, At (in effect, the average
cross-sectional area of the isosurface tubes). The measured
values of Vt and At will depend on both the condensate fraction
and the chosen isosurface level but, providing that the vortex
tubes are well separated and the system is equilibrated, their
ratio (and hence the evaluated line length) will remain constant.
For closely positioned vortex tubes, the isosurface level can
affect whether the tubes appear as two separate tubes, or start
to merge, and so will lead to deviations in this ratio. We have
tested the effect of an alternative isosurface value. For twice
the original isosurface value, the difference in the calculated
line length is negligible for systems with low vortex density.
For cases with the highest density of vortices, the difference
remains less than 10%.
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