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Quantum random walk of a Bose-Einstein condensate in momentum space
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Each step in a quantum random walk is typically understood to have two basic components: a “coin toss”
which produces a random superposition of two states, and a displacement which moves each component of
the superposition by different amounts. Here we suggest the realization of a walk in momentum space with a
spinor Bose-Einstein condensate subject to a quantum ratchet realized with a pulsed, off-resonant optical lattice.
By an appropriate choice of the lattice detuning, we show how the atomic momentum can be entangled with
the internal spin states of the atoms. For the coin toss, we propose to use a microwave pulse to mix these
internal states. We present experimental results showing an optimized quantum ratchet, and through a series
of simulations, demonstrate how our proposal gives extraordinary control of the quantum walk. This should
allow for the investigation of possible biases, and classical-to-quantum dynamics in the presence of natural and
engineered noise.
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I. INTRODUCTION

Random walks are important in modeling stochastic pro-
cesses and represent a basic component of diffusion phenom-
ena and nondeterministic motion. Hence it is not surprising
that they have broad application in many different contexts of
physics and other scientific disciplines [1]. The concept of a
classical random walk can be translated into a quantum random
walk (QRW) [2] using the entanglement between different
degrees of freedom. For example, a QRW can be realized by
entangling a walk in position space with an intrinsic quantity
such as spin [3]. In such quantum walks, one degree of freedom
typically acts as the “coin” which decides on the direction of
the walk. In contrast to its classical counterpart, a quantum
coin can produce a superposition of two (or more states)
and therefore the corresponding walk is heavily guided by
the entanglement between the coin and the walk degree of
freedom. A potential application of quantum random walks is
probabilistic algorithms for universal quantum computing [4].

Based on the pioneering proposal by Aharonov et al. [2], the
authors of [5] discussed a specific spatial realization of a QRW
with cold atoms in optical lattices. A similar setup was realized
later by Karski et al. [6] with single atoms in real space. Our
goal is to translate the proposal of [5] and similar ones (for
example [7,8]) into a momentum-space random walk, which
we will argue has several important advantages. First, the
experimental basis of our proposal is the atom-optics kicked
rotor (AOKR) which has been studied for more than 20 years
and is a well established technique. Second, in contrast to other
recent work [9], a QRW in momentum space naturally offers
the possibility of independently addressing the two degrees of
freedom of the atoms. In the case we discuss, these degrees
of freedom would be the internal hyperfine states and the
external center-of-mass momenta of atoms in a Bose-Einstein
condensate (BEC).
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The realization of a coin operator is relatively straightfor-
ward and for our system could be implemented with resonant
microwave radiation. The major difficulty of a QRW lies in
producing a shift in momentum space that is dependent on
an atom’s internal state. That is, we need a shift operator that
takes the form

T̂ = exp(ix̂�p/�)|1〉〈1| + exp(−ix̂�p/�)|2〉〈2| ,
which shifts the momentum by ±�p depending on whether
the atom resides in the internal state |1〉 or |2〉. In the periodic
potential of an optical lattice, momentum is naturally quantized
in units of two atomic recoils 2pR = 2�kL, kL being the wave
vector of the laser creating the lattice. Expressing momentum
in these units, the shift operator becomes

T̂ = exp(iθ̂n)|1〉〈1| + exp(−iθ̂n)|2〉〈2| ,
where n is integer. In the usual random walk setup, n = 1
which corresponds to nearest neighbor coupling in momentum
space. We propose to realize the shift by kicking a BEC
with a periodic lattice. Such systems are routinely realized
in the context of the AOKR [10,11], a standard model
for investigating quantum chaos and Anderson localization
in momentum space [12]. The kick will indeed act as a
biased shift, which depends on the internal state of the atom,
when (i) employing quantum resonance conditions on the
dynamics [11,12] and (ii) destroying the spatial-temporal
symmetry using a quantum ratchet [11,15–17]. The direction
of the walk is then controlled by the sign of the kick potential,
which itself is controlled by the internal state. We now explain
in detail how to implement a QRW in momentum space along
these lines.

II. QUANTUM WALKS AT QUANTUM RESONANCE

AOKR experiments work with ultracold atoms subject
to periodic kicks by an optical lattice. A schematic of the
experimental setup we have used in the past is shown in
Fig. 1. The small initial temperature necessary to resolve
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FIG. 1. Schematic of our proposed experiment for the realization
of a quantum random walk in momentum space. The optical lattice
is pulsed periodically to implement the momentum shifts at quantum
resonance. The internal states F = 1 and F = 2 of the atoms in the
rubidium-87 condensate are controlled by microwaves.

the single momentum peaks is most easily reached using a
Bose-Einstein condensate. For sufficiently dilute condensates
we may safely neglect atom-atom interactions. Using dimen-
sionless variables, the quantum dynamics of the center of mass
of the atoms are then described by the following single-particle
Hamiltonian [10,11]:

Ĥ (x̂,p̂x,t) = p̂2
x

2
+ k cos(x̂)

∑
j∈Z

δ(t − jτ ). (1)

Here j counts the number of kicks, the kick period is τ , the kick
strength is k = �2τp/�, where τp � τ is the pulse length, �

is the Rabi frequency, and � is the detuning of the kicking
laser from the atomic transition.

The periodicity of the potential implies conservation of
quasimomentum (QM) β with px = n + β, where n is integer
in our units and β takes on values between 0 and 1. Using
Bloch theory, the atom dynamics from immediately before the
(j − 1)th kick to immediately before the next j th kick is given
by the Floquet operator [11]:

Ûβ,k = e−iτ (N̂+β)2/2 e−ik cos(θ̂ ), (2)

where N̂ = −i d
dθ

is the (angular) momentum operator with
periodic boundary conditions and θ = x mod(2π ). The second
factor of the Floquet operator can be expressed in momentum
representation as

exp(−ik cos θ ) =
∑
m

(−i)m exp(−imθ )Jm(k), (3)

where the J ’s are Bessel functions of the first kind and give
the coupling amplitudes between the initial n and final m

momentum states. The Bessel function properties are such
that this amplitude will decay rapidly as the difference |m − n|
increases [12]. In fact for k ∼ 1 roughly only nearest neighbor
momentum states are coupled such that m = n ± 1. However,
the symmetric nature of the momentum step and the fact that
there is no role for a coin toss in this setup makes it difficult to
implement a QRW walk in its usual form.

In the following, we require quantum resonant dynamics
of the AOKR. This implies that the first factor on the right of
Eq. (2) equals the identity. The principal quantum resonances
are obtained for τ = 2π	, with positive integer 	, and β =
1/2 + l/	, with l = 0,1, . . . ,	 − 1 [11–13]. The quantum

resonances can be seen as the Talbot effect (albeit in the time
domain) for atomic matter waves diffracted from the optical
grating induced by the flashed periodic potential [11,14].
Examples are τ = 2π (for β = 0.5) or τ = 4π (for β = 0),
corresponding to the half or the full Talbot time, respectively.
For realizing a perfect atomic ratchet, quantum resonance
conditions should be met; see [11,16–18]. Quantum walks
based on the Talbot effect [19] and quantum accelerator
modes [20] were proposed, yet never realized due to technical
problems in their implementation. We will now describe in
detail how to implement a simpler QRW at quantum resonance
using an atomic ratchet current whose direction is controlled
by two different internal states of the atoms.

The dynamics given by Eq. (1) can be made asymmetric
in n space by breaking the spatial-temporal symmetry of the
problem. Experimentally, this is most easily realized by the
choice of the initial state, such as

|ψ2〉 = |ψ(n,t = 0)〉 = 1√
2

(|n = 0〉 + eiφ|n = 1〉).

Such a state receives an average change in momentum per kick
of

�〈p̂〉 = −k sin(φ)/2, (4)

so that by choosing φ = ±π/2 and k ∼ 2 the average
momentum can be either decreased (increased) by one
step [11,16–18]. Experimental data for an initial state with
three components, i.e.,

|ψ3〉 = 1√
3

(e−iφ|−1〉 + |0〉 + eiφ|1〉),

are shown in Fig. 2. The directed transport is clearly visible,
as well as its directional dependence on the phase φ. Including
more momentum states improves the “purity” of the ratchet
effect. For example, in [16] a significant amount of the initial
two-component state recoiled in the opposite direction of the
ratchet. This can be contrasted with the almost pure ratchet
demonstrated by the data in Fig. 2. Below we will also consider

FIG. 2. Experimental data showing the momentum distribution
of a BEC as a function of time for an asymmetric initial state of the
form |ψ3〉. The ratchet effect and its dependence on the relative phase
φ are very clear. Note that in contrast to the experiments in Ref. [16],
almost all of the initial state participates in the ratchet. The data are
taken in the limit of small kick periods simulating kicks at (half)
the Talbot time while keeping decoherence effects to the minimum;
see [21].
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the initial state

|ψ4〉 = 1
2 (ei π

2 |−1〉 + |0〉 + e−i π
2 |1〉 + e−iπ |2〉).

As mentioned previously, we want to make a step for our
walk contingent on the result of a coin toss. Here we propose to
use a coin toss that connects the components of a pseudospin
±1/2 system that experimentally corresponds to the ground
hyperfine levels of a rubidium-87 atom. Such an operation
can be implemented in the laboratory with a microwave pulse
resonant to the transition between the F = 1,mF = 0 and F =
2,mF = 0 levels of the 52S1/2 state; see Fig. 1. A 50:50 coin
toss in such a scheme would correspond to a π/2 pulse of the
microwaves.

We now want to engineer our system such that the hyperfine
level controls the direction of the kick. That is, the one-step
operator should be expressible as

Ûkick = exp[−ik cos(θ̂ )σz], (5)

where σz is the Pauli matrix.
We note that in our previous experiments with kicked

rubidium-87 BECs [16,17,22–24], the BECs were prepared
in the 52S1/2F = 1 level and the kicking light had a frequency
corresponding to transitions between the 52S1/2F = 2 and
52P3/2F = 3 levels. This produced a standing wave with a
detuning of � ∼ 6.8 GHz. Clearly this configuration can no
longer be applied to what we wish to achieve here as the light
would be resonant with one of the internal states of interest.
However, by detuning the kick laser frequency between the two
hyperfine levels, we can regain the far off-resonant condition
and produce periodic potentials. Then the ac-Stark shift, and
hence also the kick strength k, see its definition after Eq. (1),
differ in sign for the two states since the laser is either red
or blue detuned (� > 0 or � < 0). What this implies for
our proposal is that the ratchet current changes sign with the
sign change in the detuning. For example, when the F = 1
component has k > 0 and a negative ratchet current, the F = 2
level will experience k < 0 and a positive ratchet current; see
Eq. (4).

The internal degree of freedom is denoted by spin up,
|1/2〉, and spin down, |−1/2〉 (experimentally corresponding
to the F = 2,mF = 0 and F = 1,mF = 0 states), while the
interaction between the spins is represented by the two-
parameter unitary rotation matrix

M(α,χ ) = 1√
2

(
cos α

2 e−iχ sin α
2

−eiχ sin α
2 cos α

2

)
. (6)

Before the kicking sequence, we propose to initialize the
system starting from the spin down state and an application
of a so-called Hadamard gate (the matrix above with α = π/2
and χ = 0). Hence, we start the first step with the internal state

M̂(π/2,0)|n,s = −1/2〉 = 1√
2

(|n,−1/2〉 + |n,1/2〉). (7)

The matrix for the single coin toss applied after each kick
(or step of the walk) is most conveniently represented by the
matrix of a 50:50 beam splitter acting on |n,s〉, e.g., by

M(π/2,−π/2) = 1√
2

(
1 i

i 1

)
.

Note that this choice has the advantage of being symmetric
with respect to the internal initial state [3]. After each kick,
M(π/2,−π/2) acts on the internal state, which produces a
strong mixing of internal and external degrees of freedom
during the temporal evolution.

III. NUMERICAL RESULTS

Our experimental observables are the internal-state resolved
momentum distributions Ps(n) of the atoms. Thus for an
arbitrary state of the full system

|ψ(j )〉 =
∑
n,s

cn,s(j )|n,s〉,

we can measure

P−1/2(n,j ) = |cn,s=−1/2|2 (8)

and

P1/2(n,j ) = |cn,s=1/2|2. (9)

Figure 3(a) shows the total momentum distributions

P (n,j ) = P−1/2(n,j ) + P1/2(n,j ) (10)

obtained for our AOKR realization for two different types of
initial motional states, while Fig. 3(b) presents the standard
QRW with shift operator

T̂1 = exp(iθ̂ )|1〉〈1| + exp(−iθ̂ )|2〉〈2|. (11)

Overall our proposed realization of a walk has the same
features as the standard QRW, with strong peaks at the maxima
which move ballistically outward such that |nmax| ∝ j . To
make the comparison more meaningful, our method requires
the insertion of a prefactor in the previous relation because
the Bessel functions cause a coupling between states other
than just nearest neighbor [see discussion around Eq. (3)]. The
overall coupling strength that best matched the standard QRW
in Fig. 3(b) was k ≈ 1.5.

We also draw attention to the fact that the oscillations
around the center of the distributions can be suppressed by
choosing an initial state composed of more momentum states

FIG. 3. Numerical simulations comparing the AOKR walk, see
panel (a), to a standard QRW in momentum space with shift operator
T̂1 from Eq. (11), see panel (b), both after 40 steps. In (a) k = 1.5
for two different initial states of the AOKR in its external degree of
freedom |ψ2〉 with φ = −π/2 (dashed line) and |ψ4〉 (solid line).
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[see solid line as compared to the dashed line in Fig. 3(a)].
Interestingly, the final result is very stable with respect to
the phase choice φ in the initial state, which can be detuned
by up to 10%–20% without noticeable differences for our
observation times.

IV. QUANTUM-TO-CLASSICAL TRANSITION
OF THE WALKS

Our QRW becomes classical (manifested by the appearance
of a Gaussian limit distribution around zero momentum) when
adding dephasing. Randomizing the mixing between the two
internal states during the coin toss leads to such a result,
with the characteristic standard deviation for a classical walk
growing as

√
j , as we checked (not shown here). Another

more natural source of dephasing for our kind of experiment
arises from deviations in QM from the resonant value; see the
discussion in Sec. II. Any real BEC has some finite width in
(quasi)momentum, which is typically about �β = 0.01 in its
full width at half maximum (FWHM) [25]. The dependence
of the walk on a finite width in QM is shown in Fig. 4 for
different kick numbers, but otherwise the same parameters as
used in Fig. 3. Up to about 10 to 20 kicks, typical widths of
0.01 have little effect on the quantum walk, whereas larger
widths induce a transition to a classical walk in a systematic
fashion.

We conclude that a QRW could indeed be realized with
a sufficiently small initial width in QM, which is guaranteed
by modern setups with Bose-Einstein condensates. On the
other hand, by actively controlling the width in QM, the
sensitive dependence of the walk may in turn be used as a
reliable detector of decoherence. Consequently, our proposal
can be readily extended to investigate fundamental quantum
decoherence processes and their impact on QRWs. The
sensitive dependence of the AOKR dynamics on QM was

FIG. 4. Numerical simulations on the impact of a finite width in
QM on a QRW in momentum space for the initial state |ψ2〉 after (a)
10 and (b) 20 steps. The ideal quantum walk with resonant QM is
shown by the green dotted lines. Walks with a finite QM distribution
(incoherently averaged over 104 values corresponding to a typical
atom number in the BEC) are shown for �β = 0.01 (black solid
line), 0.025 (red dot-dashed line), and 0.05 (blue dashed line).

also exploited, e.g., in [24] to determine the initial momentum
width of a condensate.

V. REALIZATION OF BIASED WALKS

Our setup permits us to investigate a biased quantum walk
in momentum space. Such a walk is realized by choosing
a laser wavelength for the effective kick potentials which
has two different (but again oppositely signed) detunings
from the excited level. Since the kick strengths are inversely
proportional to the detunings, their ratio k−1/2/k1/2 is given by
the inverse ratio of the detunings. This generalizes the one-step
operator from Eq. (5) into

Ûkick = exp

[
−i cos(θ̂ )

(
k1/2 0

0 k−1/2

)]
, (12)

where the bias is controlled at will by the ratio k−1/2/k1/2.
We present numerical data of such a biased QRW in

Fig. 5, which also contains results for finite distributions of
QM. Interestingly, the quantum walk can be steered into one
direction by applying an additional π pulse [using M(π,0)]
to the internal degree of freedom after exactly half the steps;
see the dashed line in Fig. 5(b). The speed of such a walk is
controlled by the difference of kick strengths between the two
internal states; i.e., the larger the difference the faster the peak
moves toward the left in our case. Increasing the FWHM of
the QM distribution turns the quantum walk classical again,
as was seen in Fig. 4. This is visible in Fig. 5(b), where the
peak that has been at finite momentum for resonant QM moves
toward zero momentum as would be the case for a classical
unbiased diffusive walk. The symmetry of the walk can partly
be restored by applying the π pulse after a different fraction
of the kicks, i.e., after 5 steps rather than 10 as in Fig. 5(b).
However the total spreading is then slower than the situation

FIG. 5. Numerical results on a biased QRW with k−1/2 = −1.72
(F = 1) and k1/2 = 1 (F = 2). Data are shown by the solid lines after
j = 20 steps for the initial state |ψ4〉. The black filled circles in (a)
present corresponding results for a distribution of QM with FWHM =
0.01. The dashed line in (b) corresponds to an optimally directed walk
obtained when applying a π pulse at half of the evolution time, i.e., at
the step j = 10. The other data sets in (b) show results for the same
protocol but with finite QM distributions of �β = 0.01 (black filled
circles), 0.025 (red dotted line), and 0.25 (brown dot-dashed line).
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represented by Fig. 5(a) (without the population inversion
between the kick sequence).

The quantum walk obtained by inversion is very stable
at χ = 0 with respect to the precise value of α defined in
Eq. (6), which just affects the height of the leftward moving
peak, rather than changing the overall momentum distribution.
These possibilities for controlling the walk, together with its
robustness against parameter variation, make it interesting
for actual implementations and use in quantum information
applications.

VI. CONCLUSIONS

The proposed realization of a QRW in momentum space has
several advantages with respect to previous implementation
of a quantum walk. With current setups, which allow for a
detection window of about 50 momentum states [16,17,22,26],
walks between 10 and 50 steps could be experimentally
implemented.

We can easily tune the relative weights in the walk in
order to bias it, simply by changing the relative detunings
from the hyperfine levels. Moreover, the single-particle walks

studied in [6,27–29] are not easily extended to a many-body
setup [30]. However, in contrast to [9] (which addresses
two-body correlations but not the internal states of the atoms),
our implementation works with fully controllable access to
both external and internal degrees of freedom.

Quantum walks in momentum space are also useful for
investigating decoherence during the walk and the quantum-to-
classical transition, see e.g. [31] and references therein, in gen-
eral by adding noise to one or both degrees of freedom in a con-
trolled manner. Apart from the engineering of quantum trans-
port, possible future applications of our proposed walks in mo-
mentum space are the test of fundamental quantum relations in
measurements theory [31] and entanglement statistics [32–34].
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