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Condensate fluctuation and thermodynamics of mesoscopic Bose-Einstein condensates:
A correlated many-body approach
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We present a correlated many-body approach to calculate the distribution function and fluctuations for a
Bose-Einstein condensate with N interacting atoms in the harmonic confinement. The present formulation uses
the recursion relation for the canonical ensemble partition function (Z). Z is calculated from the energy spectrum
of the many-body effective potential, which keeps all possible two-body correlations and uses the realistic
interatomic interaction. The condensate statistics are in very good agreement with earlier results of an ideal
gas for which exact statistical moments for all temperature are known. We also present the numerical results
of condensate statistics for real experimental situations. The calculated moments nicely exhibit the mesoscopic
effect for a few hundred atoms, whereas the sharp fall in the variance for the large condensate near the critical
temperature shows the possibility of phase transition. We also calculate the critical temperature for the mesoscopic
regime. Our present calculation mimics the JILA experiment with 87Rb atoms.
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I. INTRODUCTION

Statistical properties of quantum many-body systems are
the subject of great interest in statistical physics since long
time back. Recently statistics of weakly interacting Bose gas
have received attention due to the experimental realization of
Bose-Einstein condensate (BEC) in ultracold trapped gases
[1–5]. The total number of atoms in the condensate is strictly
conserved, and the experiments on trapped BEC often consist
of as few as a hundred atoms, which makes the system
mesoscopic. For such systems, the grand-canonical description
is not appropriate and it cannot describe the condensate
fluctuation even qualitatively. The use of a grand-canonical
approach yields the grand-canonical catastrophe [6], and the
use of a canonical ensemble to calculate the fluctuation of such
a mesoscopic system is mathematically complicated.

As for the ideal Bose gas (IG), the exact canonical recursion
relation for the partition function is known, and the condensate
statistics of IG is clearly understood [7–9]. Condensate
statistics and thermodynamics of weakly interacting Bose
gas (WIG) has also been extensively studied in canonical
ensemble [10–18]. Most of the studies use the Bogoliubov
approximation, however none of them are very accurate. Near
the critical temperature Tc, the problem of interacting Bose
gas becomes a difficult one and the correlation becomes
substantial. Later the canonical recursion relation technique
was substantially improved, considering the recursion is made
over the number of states and excitations [13]. Although this
technique gives a relatively good result for a very large number
of particles, it is not so accurate near the critical temperature.
In another series of similar work, the canonical ensemble
recursion relation for the partition function of WIG is obtained
by utilizing the canonical ensemble quasiparticle formalism,
and condensate statistics of mesoscopic WIG BEC is discussed
[14]. This work considers N particles in a cubical box and
the temperature dependence of various statistical moments of
condensate fluctuation are investigated.

However, the real experimental situation considers N

interacting atoms in external harmonic confinement, and we

do not find any systematic and thorough calculation which
considers the real experimental situation and discusses several
issues in the region T � Tc. Thus the atom statistics of the
mesoscopic BEC is still challenging and it is possible to
measure experimentally in the near future. Until now only
the statistics of the total number of atoms in the condensate
have been measured experimentally. The BEC is often referred
to as an atom laser, although the statistical properties of
thermal equilibrium atoms are notably different than those of
photons. The analogy between BEC and the laser threshold
master equation approach has been described earlier [15],
and the experimental technique of scattering of laser pulses
from the quantum gas is proposed in Refs. [19–22] but not
realized experimentally; however, it is possible to measure
experimentally. Thus the calculation of condensate fluctuation
for the real experimental situation with N interacting atoms in
the harmonic confinement needs thorough investigation. In the
present paper, we provide an ab initio but approximate many-
body approach to calculate the probability of a distribution
function N of atom condensate using the canonical partition
function. We propose here the use of a two-body correlated
basis function (TBCBF) and also choose the realistic inter-
atomic interaction. The TBCBF is ideally suited for the dilute
BEC, where three- and higher-body correlations are ignored.
In our earlier works, we extensively used the TBCBF to
discuss several static and dynamic properties of the condensate
[23–25]. The TBCBF is basically a subset of the full hyper-
spherical harmonics (HH) which keeps all the basic features of
the condensate, but it also greatly reduces the computational
difficulty even for larger numbers of bosons. For our present
study we chose 87Rb atoms trapped in a spherically symmetric
harmonic oscillator potential. The number of interacting atoms
in the trap varies from as few as 50 to as high as 10 000.
It allows us to study the mesoscopic region very carefully
and also to observe how the different statistical fluctuations
change with gradual increase in interatomic interaction. We
first calculate the whole energy spectrum of the condensate and
then calculate the canonical partition function using recursive
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approaches [19,26]. Then all statistical fluctuations and the
condensate statistics are calculated for the entire range of
temperature.

The paper is organized as follows. Section II deals with
the many-body formalism. Section III contains the calculation
of various fluctuation quantities both for the ideal and
interacting Bose gas under harmonic confinement. We also
present thermodynamics for the mesoscopic BEC. Section IV
concludes with a summary.

II. FORMALISM: CORRELATED POTENTIAL
HARMONICS EXPANSION TECHNIQUE

Since the technique of the correlated potential harmonics
expansion (CPHE) method adopted for the approximate
solution of the many-body Schrödinger equation for the dilute
Bose condensates is well established and documented [23–25],
only a brief outline is presented below.

Consider a system of N identical bosons, each of mass
m, confined in a spherically symmetric harmonic oscillator
potential of frequency ω. The center-of-mass motion can be
decoupled and the Schrödinger equation for the relative motion
of the system is described by N ′ = N − 1 Jacobi vectors
defined as

�ζi =
√

2i

i + 1

⎛
⎝�xi+1 − 1

i

i∑
j=1

�xj

⎞
⎠, (i = 1,...,N ′), (1)

where �xi is the position vector of the ith particle. The
Schrödinger equation for the relative motion is[

−�
2

m

N ′∑
i=1

∇2
�ζi

+ Vtrap(�ζ1,...,�ζN ′ ) − ER

]

×ψ(�ζ1,...,�ζN ′ ) = 0. (2)

Here the trapping potential (Vtrap = ∑N
i=1

1
2mω2x2

i ) and

the net interatomic interaction [V = ∑N
i,j<i V (�xi − �xj )] are

expressed in terms of the Jacobi vectors. The energy of
the relative motion is ER . The evolution of the system can
be viewed by following the motion of one point in 3N -
dimensional hyperspace. The polar coordinates of this point
are expressed by the hyperspherical variables. A hyperradius
is defined as

r =
[

N ′∑
i=1

ζ 2
i

] 1
2

. (3)

Remaining (3N ′ − 1) variables are taken as the polar
angles of N ′ Jacobi vectors and N ′ − 1 angles defining the
relative lengths of these Jacobi vectors. These are collectively
referred to as “hyperangles” [27]. The hyperspherical har-
monics expansion method (HHEM) consists of expanding the
relative wave function ψ in the complete set of hyperspherical
harmonics (HH). Actually, the HH are the eigenfunctions
of the grand orbital operator [hyperangular part of the N ′-
dimensional Laplace operator, given by the summation in the
first term of Eq. (2)] [27]. Substitution of this expansion in
Eq. (2) and projection on a particular HH give rise to a set of
coupled differential equations (CDEs). This straightforward

procedure becomes more and more difficult as A increases
beyond 3, due to the very rapid increase in the degeneracy
of the HH basis [27] for a given hyperorbital quantum
number (K). The calculation of potential matrix elements also
becomes increasingly difficult and tedious as N increases.
Even though this transparent procedure takes care of all
many-body correlations, a full calculation by the HHEM
becomes difficult for N > 3. However, in a recent work [28]
up to N = 6 particles have been considered in the calculation
of the universality and scaling in the N -body Efimov physics.

The density of a typical Bose-Einstein condensate is very
low so that the average interparticle distance is much larger
than the range of interatomic interactions and the three-body
collisions are completely negligible. We may also neglect
any correlations higher than two-body correlations in such
an extremely dilute system. Then the expansion basis for
the many-body wave function can be restricted to the subset
of HH, which involves two-body correlations only. This
drastically reduces the algebraic and numerical complexity
of the problem. Under this condition, ψ can be decomposed in
Faddeev components ψij for the (ij )-interacting pair, whose
separation is �rij [29]:

ψ =
N∑

i,j>i

ψij (�rij ,r). (4)

The Faddeev component ψij describes the motion of the
system when the ij pair interacts while the remaining N − 2
are essentially spectators. Clearly, then, ψij (�rij ,r) can be
expanded in a subset of HH, called the potential harmonics
(PH), which is sufficient for the expansion of the interaction
potential V (�rij ) as a function in the hyperangular space.
A simple analytic expression for the potential harmonic
P lm

2K+l(�
ij

N ′) is possible and may be found in [29]. Here, l

and m are the orbital angular momentum of the system and
its projection and K is the 3N ′-dimensional grand orbital
quantum number. Expansion of the Faddeev component in
the PH basis is given as

ψij (�rij ,r) = r− (3N−1)
2

∑
K

P lm
2K+l

(
�

ij

N ′
)
ul

K (r). (5)

Then Eq. (2) can now be written as

(T + Vtrap − ER)ψij = −V (rij )
N∑

k,l>k

ψkl, (6)

where T represents the total kinetic energy. Due to the strong
short-range repulsion of the interatomic interaction, ψij must
be very small for small rij . However, the leading terms of PH
corresponding to small values of the grand orbital quantum
number K do not have this behavior. Hence the rate of
convergence is very slow. The convergence rate is improved
greatly by including an additional short-range correlation
function η(�rij ), which is chosen to be the zero-energy solution
of the two-body Schrödinger equation,

−�
2

m

1

r2
ij

d

drij

(
r2
ij

dη(rij )

drij

)
+ V (rij )η(rij ) = 0, (7)

and hence has the same short-range behavior as ψij (�rij ,r).
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In a typical BEC achieved in laboratories, the average
interparticle separation is much larger than the range of
two-body interaction. Under this condition, the two-body
interaction can be represented by the s-wave scattering length
(as). The asymptotic form of η(�rij ) reflects this, as it is given by
C(1 − as

rij
) for large rij [30]. In our calculation we choose the

interatomic potential V (�rij ) to be the van der Waals potential
whose short-range repulsion is modeled by a hard core of
radius rc:

V (�rij ) = ∞ for r < rc

= − C6

rij
6

for rij � rc. (8)

The value of rc is adjusted to reproduce desired as in
the asymptotic form of η(�rij ) [30]. This ensures that the
correct effective two-body interaction, expressed in terms of
as , appropriate for the condensate has been taken.

Substitution of the expansion, Eq. (5) including η(�rij ), and
projection on the PH for the (ij ) partition gives[

−�
2

m

d2

dr2
+ �

2

mr2
{L(L + 1) + 4K(K + α + β + 1)}

+Vtrap(r) − ER

]
UKl(r)

+
∑
K ′

fKlVKK ′ (r)fK ′lUK ′l(r) = 0, (9)

where UKl(r) = fKl ul
K (r), L = l + 3N−6

2 , α = 3N−8
2 , β =

l + 1
2 , l being the orbital angular momentum of the system

contributed by the interacting pair. The constant f 2
Kl represents

the overlap of the PH for interacting partition with the sum of
the full set of PH for all partitions and its expression in a closed
form can be found in Ref. [29]. The resulting potential matrix
element VKK ′ (r) is given by [24]

VKK ′ (r) = (
h

αβ

K h
αβ

K ′
)− 1

2

∫ +1

−1

{
P

αβ

K (z)V

(
r

√
1 + z

2

)

×P
αβ

K ′ (z)η

(
r

√
1 + z

2

)
Wl(z)

}
dz, (10)

where h
αβ

K and Wl(z) are, respectively, the norm and weight
function of the Jacobi polynomial P

αβ

K (z) [31]. Inclusion of
the short-range correlation function η(rij ) makes the PH basis
nonorthogonal. Standard procedure for handling a nonorthog-
onal basis can be followed. However, dependence of the
overlap 〈P lm

2K+l(�
(ij )
N ′ )P lm

2K ′+l(�
(kl)
N ′ )η(rkl)〉 on the hyperradius r

makes this very involved. On the other hand, actual numerical
calculation shows that this overlap matrix is nearly a constant
times the unit matrix, except for a small interval of r near
rc. Disregarding its derivatives, we approximately get Eq. (9),
with an effective potential matrix element given by Eq. (10).
One notices that the effective two-body interaction seen by the
pair is governed by as through η(�rij ) and becomes V (rij )η(rij ).
One can understand this physically as follows. Since the
interacting atoms in the BEC have very low energy, a pair of
them do not come close enough to “see” the actual interatomic

interaction. (Note that η(rij ) is vanishingly small for small
values of �rij [25]).

The procedure of introduction of the PH basis and inclusion
of the short-range correlation function, which is collectively
referred to as the correlated potential harmonic expansion
(CPHE) method, reduces the algebraic and numerical com-
plexities drastically, so much so that the N -body problem
simplifies to one involving only four active degrees of
freedom, the remaining unimportant degrees of freedom for
the dilute BEC being “frozen.” This permits us to solve the
system up to N = 15 000 particles in the condensate. For
larger N , the quantity α becomes too large to be handled
by the computer, especially for the weight function Wl(z)
of the Jacobi polynomial. This CPHE technique has been
successfully applied and tested against known results, both
experimental and theoretical calculated by other authors, for
T = 0 properties of both repulsive and attractive condensates
[23,24,32].

To solve Eq. (9) we adopt the hyperspherical adiabatic ap-
proximation (HAA) [33], which not only simplifies the compu-
tational complexities, but also it provides an effective potential
in the hyperradial space in which the condensate moves. In
this approximation, the hyperradial motion is adiabatically
separated from the hyperangular motion, assuming the former
is much slower than the latter. This assumption is justified,
since the hyperradial motion corresponds to the breathing
mode. The hyperangular motion is solved by diagonalizing the
potential matrix, together with the hypercentrifugal repulsion
for a fixed value of r . The lowest eigenvalue, called the lowest
eigenpotential ω0(r), is used in the adiabatically separated
single hyperradial differential equation

[
−�

2

m

d2

dr2
+ ω0(r) − ER

]
ζ0(r) = 0, (11)

to obtain ER and the hyperradial wave function ζ0(r) in
the extreme adiabatic approximation (EAA) [33]. We solve
Eq. (11) by the Runge-Kutta method, subject to appropriate
boundary conditions to get ER and ζ0(r). The center-of-mass
energy 1.5 �ω is added to each energy eigenvalue to obtain
the total energy of the system. Orbital angular momentum
(l) is a good quantum number for a spherically symmetric
trap and central interatomic potential. With l = 0, we obtain
En0,(n = 0,1,2, . . .). In a similar fashion energy levels for l >

0 can be calculated as hyperradial excitations in the effective
eigenpotential corresponding to a particular l. However, there
are serious numerical problems arising from the fact that the
weight function Wl(z) becomes very critical for l > 0, so
that numerical evaluation of Eq. (10) involves a large error.
Hence we take the potential matrix element for l = 0 (which
does not change much with l) and add the hypercentrifugal
term corresponding to the chosen value of l. In incorporating
the hypercentrifugal term, the shift of minimum value of the
hyperradius corresponding to ω0(r) is taken into account and
approximated so as to yield the correct contribution of the
centrifugal term.

Before closing the discussion we must say that the theoret-
ical formulation used in this manuscript (CPHE) to calculate
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several statistical fluctuations of Bose-Einstein condensate
accurately describes the correlation in bosonic systems and
goes beyond the mean-field approximation. The system which
is considered in the present work mimics the BEC of the
JILA trap, which is dilute. In this typical experiment as the
density of the Bose gas is small, only interactions between
two particles at a time are expected to play a major role.
To make the problem manageable, we restrict the basis
by allowing only two-body correlations, which is vital for
the experimental condensate. However, for dense systems
the effect of higher-body correlations may come into the
picture. The present formalism is applicable for short-range
and attractive interaction. It can also successfully consider
the realistic van der Waals potential with a short-range hard
core and long-range tail, which allows us to observe the
effect of long-range interaction in the calculation of several
condensate properties. The success is spectacular for attractive
BEC where the inclusion of two-body correlation makes a
drastic difference in the calculation of critical coefficient
defined as Ncras/aho with the mean-field results [25]. As
the correlated basis set keeps all two-body correlations, the
effective degrees of freedom is always four, which makes
the calculation manageable even for quite a large number of
bosons [32]. It also allows us to study the finite-size effect
over the mean field when the number of bosons is truly
finite in the experimental BEC. The calculation of low-lying
collective excitations and their comparison with mean-field
results is also reported [32]. Several thermodynamic prop-
erties, including the specific heat, condensation temperature,
and condensate fraction, have been recently calculated for the
same system and their comparison with the experimental and
mean-field results was also reported recently [32]. Thus the
CPHE basis is a very effective basis for the consideration of
experimental BEC of the JILA trap and gives generic features.
We believe also that the use of a two-body correlated basis
function for an exhaustive study of the statistical fluctuation
will calculate fluctuation measures accurately. Although cur-
rently there are no reported experimental results, we believe
that our theoretical results may be important for future
experiments.

III. RESULTS

A. Canonical recursion relation for weakly interacting gas

As noted earlier, for the present study we start from
the canonical ensemble, which considers the intermediate
situation of the microcanonical ensemble and the grand-
canonical ensemble. In the microcanonical ensemble the gas
is completely isolated and there is no exchange of energy
or atoms, whereas in the grand-canonical ensemble, only the
average energy per atom and the average number of atoms
are fixed; thus there is an exchange of both energy and atoms
which leads to the grand-canonical catastrophe [6]. Thus we
restrict our discussion to the canonical ensemble, which is the
most appealing approach.

Long ago Landsberg proposed a recursion method for
calculation of the partition function of the canonical ensemble
using iteration technique. Thus the partition function Zn of a
canonical ensemble can be calculated by a simple algorithm

[7,26] as

Zn = 1

n

n∑
p=1

SpZn−p, Z0 = 1, and n = 1,2,...,N,

(12)
where,

Sp =
∑

j

exp

(
pEj

kBT

)
. (13)

In the present case, it is given by

Sp =
∞∑

n=0

∞∑
l=0

(2l + 1) exp

(
Enl

kBT

)
, (14)

where Enl corresponds to the energy level with n and l

quantum numbers. As mentioned earlier, the energy levels
are calculated in the lowest eigenpotential ω0(r) which is
obtained by solving the adiabatically separated hyperradial
differential equation. Thus in our methodology the problem
of N -correlated bosons is simply reduced to an effective
one-dimensional problem in the hyperradial space. The whole
condensate moves as a single quantum stuff in the ω0.
Thus further using ω0(r), one can in principle get all the
physical insight of the condensate properties. Our calculated
ground-state energy and low-lying collective excitations are
in good agreement with the experimental results. The results
are compared with mean-field and hydrodynamic results [32].
The beyond mean-field effect is discussed. Thus although we
solve the effective one-body potential for the calculation of
ground and several low-lying and high-lying excitations, the
effect of correlation inherently comes through the calculation
of ω0(r). The effect of correlation and correlation energy are
also discussed in our earlier issues. Thus the calculation of
energy levels which are further used for the calculation of the
partition function retains the effect of correlation and can be
used for the calculation of fluctuation near and above Tc.

In our numerical procedure, we calculate a large number
of energy levels Enl with n and l running typically from 0
to 300 and 0 to 200, respectively. The upper cutoff in n and
l are finally determined by the convergence in the chemical
potential [34].

These relations above are generally used to calculate
the partition function for a moderate number of particles
(N < 1000). For a larger number of particles accuracy drops
drastically due to the inability of handling large numbers by the
computer. To overcome this computational difficulty, another
method [26] is used, where at each step of iteration the partition
function is normalized. The relevant relations are

Z
{0}
0 = 1, (15)

Z{n−1}
n =

n−1∑
p=0

Sn−pZ
{n−1}
p

n
, n = 1,.....,N, (16)

Z
{n}
k = Z

{n−1}
k∑n

p=0 Z
{n−1}
p

, k = 0,.....,n. (17)
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FIG. 1. Plot of ground-state probability P (n0) against n0/N

for noninteracting bosons with N = 200 in the harmonic trap at
T = 0.8T 0

c for various l values. In this case n is kept fixed and
convergence is shown for different l values. A similar convergence
can also established by varying n and keeping l fixed.

The probability to find n particles in the ground state is

P (0)
n = Z

{N}
N−n, (18)

ZN = Z
{n}
N 	N

n=1

n∑
p=0

Z{n−1}
p . (19)

The general relation between the probability distribution
of the n0 number of atoms in the ground state (Pn0 ) and the
canonical partition function is

Pn0 = ZN−n0 (T ) − ZN−n0−1(T )

ZN (T )
. (20)

The average number of atoms in the ground state of the trap is
then defined as

〈n0〉 =
N∑

n0=0

n0Pn0 . (21)

The central moments are then obtained as

〈(n0 − n̄0)m〉 =
N∑

n0=0

(n0 − n̄0)mPn0 . (22)

B. Ideal Bose gas under harmonic confinement

We consider the dilute gas of Bose atoms when the
interatomic scattering length is neglected. The gas is confined
inside a trap so that the number of atoms N is fixed. For the
calculation of Enl for l > 0 we follow our earlier trick [34,35]
and look for the convergence in the probability distribution for
fixed temperature. In Fig. 1 we plot the probability distribution
P (n0) for N = 200 noninteracting bosons at T = 0.8Tc for
various choices of n and l, which exhibit nice convergence.

The recursion relations described above are used to de-
termine the probability distribution of the condensate at a
particular temperature. In Fig. 2, we plot the distribution of

 0

 0.05
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 0  50  100  150  200

P
(n

0)

n0

N = 200

T = 0.8T0
c

T = 0.5T0
c

T=0.2T0
c

FIG. 2. Plot of ground-state probability P (n0) against n0 for
noninteracting bosons with N = 200 in the harmonic trap at different
temperatures calculated by PHEM (dotted green lines). The curves
with the solid (red) lines correspond to results obtained from the
canonical ensemble quasiparticle techniques [18].

the atom number in the ground state of the trap for N = 200
atoms at T = 0.2Tc, 0.5Tc, 0.8Tc.

For the ideal gas one can have the exact probability
distribution of the number of uncondensed atoms. In Fig. 2, we
observe that with an increase in temperature, the condensate in
the ground state is depleted as the probability of uncondensed
atoms in the higher states gradually increases. Thus the peak
value of Pn0 decreases with increase in T . At T 	 Tc, the
distribution shows a sharp peak near n̄0 and becomes broader
at higher T . Condensation of N bosons has also been studied
by some effective formulations earlier. One uses a master
equation together with a canonical ensemble of quasiparticle
techniques [18]. Upon comparison of our numerical simulation
with Fig. 2 of Ref. [18], we observe excellent agreement at all
temperatures.

Next we calculate the average condensate particle number
〈n0〉, its variance 
n0, the third central moment 〈(n0 − n̄0)3〉,
and the fourth central moment 〈(n0 − n̄0)4〉.

We plot them in Fig. 3 for an ideal gas of N = 200 particles
in a harmonic trap. For comparison with earlier calculations
(CNB5) [18], we plot the results of CNB5 as the dots. The nice
agreement with our numerical results for the ideal gas proves
the accuracy of our numerical many-body computation.

C. Interacting Bose gas under harmonic confinement

Although the earlier calculation of IG Bose gas has been
extended to consider the interacting bosons [21,36], we do not
find any research work which considers the realistic situation
where N interacting atoms are in the external harmonic trap.
All previous papers in this area dealt with N atoms confined
in a rectangular box with periodic boundary conditions.
It is already pointed out that in such a box confinement
with periodic boundary conditions the condensate will still
have the zero-momentum component of the atomic field
which corresponds to the ideal gas. Next, in the Bogoliubov
quasiparticle excitation spectrum, the quasiparticles are treated
as independent bosons. Thus none of these papers fully take
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FIG. 3. Plot of different moments against T/T 0
c for N = 200

in the harmonic trap by PHEM (blue solid lines) and comparison
with the result obtained from the canonical ensemble quasiparticle
techniques (red points) [18].

into account the interacting Hamiltonian. Thus the main
motivation of our present work is to push our quantum
many-body calculation to the real experimental situation where
we truly consider the effect of the interacting Hamiltonian. We
consider a finite number of atoms, which allows us to study the
mesoscopic regime. We calculate several fluctuation measures
for the interacting gas in the harmonic trap and observe the
effect of repulsive interaction on the ground-state distribution
and the statistical behavior of the N -atom condensate. We
choose the spherically symmetric trap of frequency 77.78 Hz
as the external trap which mimics the JILA experiment with
87Rb atoms. The parameters of the van der Waals interaction
are chosen, which accurately describes the Rb–Rb interaction
and corresponds to the scattering length of 100 Bohr, which
directly relates the JILA experiment for the interacting BEC.

We perform the following calculation for an N -atom
trapped system where the dimer interaction is represented by
the scattering length as = 0.004 33 o.u., which corresponds
to the Rb condensate in the JILA trap [5]. The external trap
remains the same as used for the calculation of ideal Bose gas.
In Fig. 4, we plot the results of Pn0 as a function of n0 for
particle number as N = 200. The effective interaction of the
condensate is defined by the quantity Nas , which is repulsive
for the present choices of N and as .

From Fig. 4 we observe that the repulsive interaction among
the atoms reduces the distribution significantly. This implies
that the repulsive interaction enhances the population in the
excited states with appropriate depletion in the ground state.

In Fig. 5(a), we present the condensate fraction as a function
of temperature for different interaction strengths na

1/3
s = 0.02,

0.03, 0433 which correspond to N = 100, 500, 1000 atoms
under confinement when the ideal Bose gas corresponds to
na

1/3
s = 0. We observe that the condensate fraction exhibits

a smooth transition while passing the critical temperature. It
nicely shows that the repulsive interaction reduces the mean
condensate occupation in the ground state.

In Figs. 5(b)–5(d) we plot several fluctuation quantities
such as the second, third, and fourth central moments of the
condensate for the same interaction parameters used to define
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0

FIG. 4. Plot of ground-state probability P (n0) against n0 for
interacting bosons with N = 200 in the harmonic trap at different
temperatures calculated by PHEM (solid red lines). The curves with
the dotted (blue) lines correspond to the noninteracting bosons.

the mean occupation of the condensate. All the observations
made in Figs. 5(a)–5(d) are consistent with each other.

In order to study the temperature dependence of fluctua-
tions, the standard deviations (σ ) have been plotted in Fig. 6,
against the temperature kBT

�ω
. The curves exhibit a maximum at

a particular temperature and then drop to zero. It is interesting
to note that at low temperature the fluctuations are independent
of the total particle number (N ) and this independence persists
up to the critical temperature. Beyond the critical temperature
the fluctuations go to zero, as expected.

Next we take the opportunity to define the mesoscopic
effect in BEC and to define the critical temperature. In
recent experiments of BEC in ultracold gases, the number
of condensed atoms is truly finite, and as N � 102–103, the
condensate is mesoscopic rather than macroscopic. Thus it
is interesting to analyze further mesoscopic effect associated
with the calculation of fluctuation in the interacting Bose gas.
At high temperature (T > Tc), the average number of atoms
in the ground state is finite for the finite-size condensate. But
below the critical temperature (T < Tc), the occupation in
the ground state of the trap is macroscopically large, which
is nicely reflected in our calculation. In Figs. 5(a)–5(d), we
explicitly demonstrate a smooth transition for a mesoscopic
regime (�100 atoms) to quite a large system containing a
few thousands of atoms. At the threshold point (T = Tc), the
fluctuation changes sharply for a large particle limit from
which one may consider the possibility of phase transition
at the critical temperature for a large N limit. However, for
systems containing a few hundred atoms, there is not a sharp
critical point. Here we define a critical characteristic value of
temperature where the standard deviation sharply drops to zero
in Fig. 6, where we plot the standard deviation as a function of
kBT
�ω

. In Table I, we present the values of critical temperature
for various numbers of atoms in the trap.

D. Thermodynamics of mesoscopic BEC

The thermodynamics of mesoscopic BEC has been studied
before incorporating the correction to the thermodynamic
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CONDENSATE FLUCTUATION AND THERMODYNAMICS OF . . . PHYSICAL REVIEW A 93, 023636 (2016)

0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

0  0.2  0.4  0.6  0.8 1  1.2  1.4

σ N
 =

 σ
/N

T/Tc
0

    N=100, interacting
    N=100, noninteracting

    N=500, interacting
    N=500, noninteracting

    N=1000, interacting
    N=1000, noninteracting

-10

-5

0

5

 10

 15

 20

0  0.2  0.4  0.6  0.8 1  1.2  1.4

<
(n

0-
<

n 0
>

)3 >
/N

T/Tc
0

N = 100 interacting
N = 100 without interaction

N = 500,with interaction
N = 500, without interaction

N = 1000,with interaction
N = 1000, without interaction

0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0  0.2  0.4  0.6  0.8 1  1.2  1.4

<
(n

0-
<

n 0
>

)4 >
/N

T/Tc
0

N = 100 with interaction
N = 100 without interaction

N = 500,with interaction
N = 500, without interaction

N = 1000,with interaction
N = 1000, without interaction

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0

(a)

(b)

(c)

(d)

 0.2  0.4  0.6  0.8 1  1.2  1.4

<
n 0

>
/N

T/Tc
0

N = 100
N = 500

N = 1000
noninteracting case
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interacting bosons in the harmonic trap.

0

 20

 40

 60

 80

 100

 120

 140

0 5  10  15  20  25  30

σ

kBT/(-h ω)

N=100
N=500

N=1000
N=5000

N=10000
noninteracting

FIG. 6. Plot of the standard deviation against kBT

�ω
for indicated

number of interacting bosons in the harmonic trap. The black (solid)
curve displays the result [12] with the noninteracting particles.

quantities due to the finite number of particles and weak
interaction [9]. The finite particle number constraint gives
the additive correction to the thermodynamic quantities in
the critical region [21,37–39]. However, our calculated many-
body approach takes care of the effect of a finite-sized system
already. Thus in our approach the thermodynamic quantities
are directly calculated from the Bose distribution function

f (Enl) = 1

eβ(Enl−μ) − 1
(23)

and μ is the chemical potential obtained from

N =
∞∑

n=0

∞∑
l=0

(2l + 1)f (Enl). (24)

At T = 0, μ is equal to the ground-state energy, where all
the bosons occupy this level. The total energy of the condensate
at temperature T is calculated from

〈E(N,T )〉 =
∞∑

n=0

∞∑
l=0

EnlP (Enl)

=
∞∑

n=0

∞∑
l=0

(2l + 1)f (Enl)Enl

N
. (25)

The specific heat of the condensate for a fixed particle number
is calculated as

CA(T ) = ∂E(A,T )

∂T

∣∣∣
A
. (26)

TABLE I. Critical temperatures of the condensate for different
particle numbers (A).

A T 0
c (nK) Tc/T 0

c

50 12.934 0.691
100 16.295 0.735
200 20.531 0.784
500 27.865 0.820
1000 35.108 0.848
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For a truly mesoscopic region, as CA(T ) changes
smoothly(exhibiting a hump at T = Tc), it is not possible
to define the critical temperature and we are also not able
to provide an analytic expression for Tc. However, we can
define a transition temperature Tc at which CA(T ) exhibits the
maximum. Thus ∂CA(T )

∂T
|
T =TC

= 0. Heat capacity per particle

( CA

NkB
) as a function of T for WIG with N= 100 and 200

particles is shown in Fig. 7, where T 0
c is the thermodynamic

temperature defined by [30]

T 0
c =

[
A

ζ (3)

]1/3
�ω

k
. (27)

It can be noticed that for T � Tc, the heat capacity is equal
to the thermodynamic value of an ideal gas with CA = 3

2N . At
higher T , the atoms behave classically. For low temperature the
interaction effect is prominent. It is to be noted that interaction
substantially increases the heat capacity in the critical region
and sharpens the peak.

Finally, the critical temperature of the condensate for
different particle numbers (A) in the mesoscopic regime is
presented in Table I. T 0

c is the critical temperature in the
thermodynamic limit defined through Eq. (27) and Tc is
the critical temperature of the condensate with interaction
obtained from the maximum of the standard deviation curves
calculated by CPHE method.

IV. CONCLUSION

In this paper we calculate several condensate statistics
for the interacting Bose gas in the harmonic confinement

for various interaction strengths and in the framework of
correlated many-body formalism. The method by which we
calculate the energy spectrum basically keeps all possible two-
body correlations and uses van der Waals interaction. Although
the condensation of N interacting bosons has been studied
earlier, none of them has considered the real experimental
situation. We considered the BEC in the JILA trap and studied
the interacting bosons in harmonic confinement. The use of
a correlated basis function and van der Waals interaction
exhibits the generic features. Our results for ideal gas are in
good agreement with the earlier calculation, which exhibits
the accuracy of our numerical results. We also calculate the
various fluctuations near the critical points and observe the
effect of interaction. We also study the mesoscopic BEC where
the number of bosons is truly finite and is of great interest in
present day experiments.

As mentioned earlier, the calculation of fluctuations of
a finite number of interacting condensate particles is rather
delicate and requires accurate description. We also addressed
several published papers which deal with various limiting
cases. However, here we present a complete many-body
calculation including interatomic correlation and using re-
alistic van der Waals interaction. Our method considers
very few to a quite large number of systems and offers
thorough investigation of a truly mesoscopic system near and
above Tc. Instead of box confinement we consider the real
experimental scenario where the atoms are trapped under
harmonic confinement. The calculated several fluctuation
properties are qualitatively the same as those obtained for
box confinement. However, the comparison of quantitative
agreement or disagreement between these two is not possible,
as the choice of interaction and the nature of confinement is
different. The box confinement is rather a model calculation,
whereas our calculation considers a real experimental situa-
tion. Although the BEC is often considered as an atom laser
and the study of BEC statistics near Tc is analogous to the
study of photon statistics, we do not find any experimental
results which directly support our results for the moment.
However, our theoretical results may be verified for future
experiments.
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